
Master Thesis:

Automatic optimisation of the
Bloodhound SSC air intake duct

Manon Forey

Supervisor: Dr Ben J. Evans

Submitted to Swansea University in fulfillment of the requirements
for the Master of Science in Computational Mechanics

Swansea University, 2012

Automatic optimisation of the Bloodhound SSC air intake duct

Abstract

The design of an air intake duct is an extremely complex problem, and the aerody-
namicists generally use the experience they have for certain designs to create a new
intake duct.

The method proposed here tries to deviate from the usual ‘trial-error’ approach
of such complex aerodynamics problems, by using an automatic optimisation tech-
nique.

In this paper, a genetic algorithm called ‘Modified Cuckoo Search’ is used to get,
from a set of parameters defining the geometry to optimise, a final design which
minimizes the chosen objective function.

The issue with these genetic optimisation algorithms is the great number of
configurations to experiment, or run through a CFD solver. Here, the cost of the
optimisation is hugely decreased using a reduction order method based on Proper
Orthogonal Decomposition. The solutions for some initial designs are obtained by a
CFD solver, which are then decomposed into a linear combination of ‘modes’. These
modes can then be re-assembled to construct the solution for new configurations.

After some theoretical considerations about the optimisation and order reduction
methods, their efficiency is assessed by optimising the air intake duct preceding the
engine on the British 1000-mph car ‘Bloodhound SSC’.
The method is also compared to other techniques: the modified cuckoo search with-
out a reduction order method, and the optimisation on the direct objective function
interpolation.

1

Automatic optimisation of the Bloodhound SSC air intake duct

Declarations and Statements

Declaration
This work has not previously been accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree.

Signed ...
Date...

Statement 1
This dissertation is the result of my own independent work/investigation, except
where otherwise stated. Other sources are acknowledged by footnotes giving ex-
plicit references. A bibliography is appended.

Signed ...
Date ...

Statement 2
I hereby give my consent for my dissertation, if relevant and accepted, to be avail-
able for photocopying and for inter-library loan, and for the title and summary to
be made available to outside organisations.

Signed ...
Date ...

2

Automatic optimisation of the Bloodhound SSC air intake duct

Contents
1 Introduction 8

1.1 Motivation: the ‘Bloodhound SSC’ 8
1.2 General observations about optimisation 11
1.3 Aim of this project . 12

2 Theoretical aspects, and implementation 14
2.1 Summary of the optimisation problem 14
2.2 Optimisation Algorithm: Modified Cuckoo Search 14
2.3 Reduction-Order Method: Proper Orthogonal Decomposition 17

2.3.1 Prerequisite: Singular Value Decomposition (SVD) 17
2.3.2 Decomposition of the known pressure fields using Proper Or-

thogonal Decomposition (POD) 19
2.3.3 Reconstruction of a new pressure field 22

2.4 Mesh movement . 25
2.5 Summary of the method . 25

3 Results and observations 27
3.1 Some numerical aspects . 27

3.1.1 Computational aspects . 27
3.1.2 Flite2D Preprocessor and Solver 27
3.1.3 Computation of the distortion 29
3.1.4 Parallelization of the initial cases computations 30
3.1.5 Main problems encountered 31

3.2 Proper Orthogonal Decomposition and Reconstruction 32
3.2.1 Influence of the user inputs 32
3.2.2 Influence of the interpolation function 36

3.3 Influence of the initial sampling . 40
3.4 Optimisation algorithm . 42

3.4.1 Modified Cuckoo Search with POD 42
3.4.2 Modified Cuckoo Search without POD 49
3.4.3 Design Of Experiment (DoE) and direct distortion interpolation 51

4 Conclusion 56
4.1 Brief summary of the work done . 56
4.2 Future scopes . 58

Appendices 59

A Mesh Movement Method 59

B Main code 61

C Main Python script for MCS without POD 64

3

Automatic optimisation of the Bloodhound SSC air intake duct

List of Tables
1 Influence of the number of control points 33
2 Influence of the number of snapshots 34
3 Influence of the number of control point displacement range 34
4 Influence of the Mach number . 35
5 Optimal solutions obtained with simple MCS at Mach 0.5 43
6 Computational requirements of the MMCS at different Mach numbers 48
7 Compared computational requirements of the MMCS/POD and the

MCS without POD approaches (best configuration) 51

4

Automatic optimisation of the Bloodhound SSC air intake duct

List of Figures
1 Bloodhound SSC . 8
2 Turbofan . 9
3 Bloodhound SSC Air Intake Duct - Initial Design 10
4 Bloodhound SSC Air Intake Duct - Present Design 10
5 Comparison of the Mach contour at the compressor face for the twin

and single intake ducts . 11
6 Geometry of the Bloodhound SSC air intake duct 14
7 Initial snapshots and PO modes obtained 23
8 MCS/POD process . 26
9 Badly reconstructed PO coefficients 32
10 Percentage error on the POD reconstruction at each snapshot Green:

less than 10% - Red: more than 10% 35
11 Percentage error on the POD reconstruction at each snapshot, with

the corners Green: less than 10% - Red: more than 10% 36
12 Original and reconstructed coefficients for a particular design 37
13 Normalized energy of each PO mode 38
14 First PO coefficient with respect to the two design parameters 38
15 First PO coefficient with respect to the two design parameters, recon-

structed adding the four corners to the initial snapshots 39
16 Full Factorial sampling . 40
17 Latin Hypercube sampling in 2D . 41
18 Box-Behnken sampling in 3D . 41
19 Central Composite sampling . 42
20 Initial nests for MCS . 43
21 Simple MCS at Mach 0.5 — Several tests 44
22 Multiple MCS (MMCS) / POD process 46
23 MMCS at Mach 0.5 — Optimal solution: (0.0643 ; -0.0770) 46
24 MMCS at Mach 0.8 — Optimal solution: (-0.0255 ; -0.1350) 47
25 MMCS at Mach 1.1 — Optimal solution: (0.0550 ; -0.1950) 47
26 MMCS at Mach 1.3 — Optimal solution: (0.1000 ; 0.2999) 47
27 Direct interpolation on the distortion with multiquadric RBF at Ma

0.5 . 52
28 Direct interpolation on the distortion with multiquadric RBF at Ma

0.8 . 54
29 Direct interpolation on the distortion with multiquadric RBF at Ma

1.1 . 55
30 Direct interpolation on the distortion with multiquadric RBF at Ma

1.3 . 55
31 Initial mesh and control point (red) 59
32 Boundary nodes . 59
33 Delaunay graph on boundary nodes 60
34 Internal nodes displacement using barycentric coordinates 60
35 Deformated mesh (top of the mouth displaced of (0.3;0.5) 60

5

Automatic optimisation of the Bloodhound SSC air intake duct

Acknowledgements

I would first like to thank Dr. Ben Evans, and the whole Bloodhound team, who

kindly offered my friend Caner Kara and I to work on this project.

Dr. Evans’ enthusiasm in the whole Bloodhound SSC process as well as his ex-

pertise in CFD have been a real driving force in this Master Thesis.

Many thanks to Caner Kara (MSc. in Computational Mechanics), Sean Walton

(PhD.) and Matt Kear (Level 3), which I had the pleasure to work with during this

year. They all brought different and rewarding contributions to the project, profes-

sionally and humanly.

My final thought goes to Sylvain, always there for me, whatever the times.

Swansea, June 2012

Manon Forey

6

Automatic optimisation of the Bloodhound SSC air intake duct

Definitions & Abbreviations

POD Proper Orthogonal Decomposition

PO Proper Orthogonal (used for modes/coefficients)

ROM Reduction Order Method

SVD Singular Value Decomposition

CS Cuckoo Search

MCS Modified Cuckoo Search

MMCS Multiple Modified Cuckoo Search

RBF Radial Basis Function

Ma Mach number

α Angle of attack

ρ Density

u x-velocity

v y-velocity

pstat or p Static pressure

q Dynamic pressure (q = 1
2 ρu

2 = 1
2 ρ (u2 + v2))

pt Total pressure = static pressure + dynamic pressure

D 2D Distortion

7

Automatic optimisation of the Bloodhound SSC air intake duct

1 Introduction

1.1 Motivation: the ‘Bloodhound SSC’

The ‘Bloodhound SSC’ project, launched in 2007 by Andy Green and Richard Noble,

at the instigation of Lord Paul Drayson (then UK Minister of Science), was created

to be a new iconic scientific and engineering project for the United Kingdom, to

inspire young people and struggle against the loss of British engineers.

It is designed to bring the current land speed record (held by Andy Green, with an

average of 763 mph (1228 km/h) on 1 mile) to 1000 mph (1609 km/h), and go from

0 to 1050 mph (1690 km/h) in 42 seconds.

(a) Left view (February 2012)

(b) Front Dynamic view (January 2012) (c) Rear Dynamic view (February 2012)

Figure 1: Bloodhound SSC

To reach such supersonic speeds, the car will be propelled by a turbofan EJ200

(shown in figure 2a), plus a rocket engine.

8

Automatic optimisation of the Bloodhound SSC air intake duct

(a) Eurofighter turbofan EJ200 (b) Pattern of a turbofan

Figure 2: Turbofan

The part we are interested in is the air intake duct before the entry of the tur-

bofan. Indeed, the intake geometry has an enormous and complex influence on the

performance of the engine, and even on its integrity: a badly designed duct could

well lead to some irreversible damage on the engine.

To insure the quality of the airflow at the inlet (more exactly, at the compressor

face ; see figure 2b for a quick overview of the functioning of a turbofan), some

aerodynamic performance parameters have been defined by aerodynamicists. These

quantities are very much related to the exterior conditions, such as the mass flow

rate, pressure, temperature . . .

The most important parameter is the ‘distortion’ of the air flow at the Aerodynamic

Interface Plan (located a small distance forward the compressor face). It can be

calculated with the variations in the total pressure on that particular aerodynamic

reference plane.

Other parameters, such as the swirl (mean deviation from a purely axial flow up-

stream from the compressor face) or the flow stability (measure of the fluctuation

of the flow in the duct) could be as well considered to define an optimal functioning

point of the engine.

For more information about air intake for high speed vehicle, please read the article

[1].

9

Automatic optimisation of the Bloodhound SSC air intake duct

So, the shape of the duct will have a huge impact on the behaviour of the air

flow entering the engine, and thus its smooth and optimal functioning.

The initial concept, shown in figure 3, had a double duct, joining behind the

driver cockpit.

The poor quality of the air flow generated with this double-duct led the Bloodhoud

engineers to another design, shown in figure 4. The comparison of the Mach contour

for these two cases is presented in figure 5. The flow is indeed much more ‘regular’

in the second case, with the single intake duct.

(a) Scheme of the initial duct (b) CFD Simulation on the initial duct

Figure 3: Bloodhound SSC Air Intake Duct - Initial Design

Figure 4: Bloodhound SSC Air Intake Duct - Present Design

However, this present duct has not been subject to an optimisation study, and is

rather resulting from the experience and background knowledge of the Bloodhound

10

Automatic optimisation of the Bloodhound SSC air intake duct

Figure 5: Comparison of the Mach contour at the compressor face for the twin (left) and single
(right) intake ducts

aerodynamicists. It is this optimisation study that I have been offered to conduct by

Dr Ben Evans (Swansea University), together with Caner Kara (MSc in Computa-

tional Mechanics), and with the help of Sean Walton (PhD) and Matt Kear (BEng

in Aerospace Engineering).

1.2 General observations about optimisation

Optimisation problems tend to be more frequent in our world, of course in Engi-

neering subjects (Mechanics, Control Engineering . . .), but also in the common life,

for Economics or Strategy.

The engineer who has to deal with the search of an optimal solution generally

knows nothing more than the values of the objective function he is trying to optimise

at some certain points, either from experimental data or from a numerical solver.

The usual approach is based on ‘trial and error’, where the results for a bunch of

cases are analysed to get an idea of the ‘best way’ to get to the optimal solution.

11

Automatic optimisation of the Bloodhound SSC air intake duct

However, this optimisation process reveals to be time-consuming, and there is

usually no certainty that the absolute optimal solution has been reached.

To help in that process, many optimisation algorithms have been designed, which

can be divided in two main parts:

• deterministic methods (gradient-based, Gauss-Seidel, . . .): they are effective

when the objective function is known, or when its value at some point is easy

to obtain

• non-deterministic methods (Monte-Carlo method, genetic algorithms, . . .):

they are effective when the evaluation of the objective function at a point

is difficult or/and time-consuming ; they also have the advantage of explor-

ing the available design space more deeply, which leads to finding the global

optimal solution on that space (and not stopping at a local optimum)

1.3 Aim of this project

To simplify the approach, the following study has been conducted in a 2-dimensional

case. However, it can be extended to 3D, using the same methods.

As explained in part 1.1, the aim of this project is to develop and implement a

Matlab code which would find the optimal 2D geometry of the intake duct, in order

to get a good quality air flow at the entry of the engine fitted on Bloodhound SSC.

The function to optimise is the distortion, calculated in 2D as follows:

Distortion =

∫
Γ

Pt l dl


P̄tL
(1)

where Γ is the line where we want to know the value of the distortion, L its

length, Pt the total pressure and P̄t the average total pressure on Γ.

12

Automatic optimisation of the Bloodhound SSC air intake duct

Here, the objective function is unknown and extremely complex with respect to

the geometry of the duct, so a genetic algorithm has been used (as explained in

part 1.2). The one proposed for this particular application, called ‘Modified Cuckoo

Search’ (itself derived from ‘Cuckoo Search’ method, created by Yang and Deb [8]),

was developed in Swansea University [6].

The following part will detail this optimisation method, and the techniques that

have been developed consequently (mesh movement and reduction order methods).

Later in this report, these algorithms will be implemented and the results analysed,

and compared to more classical approaches.

13

Automatic optimisation of the Bloodhound SSC air intake duct

2 Theoretical aspects, and implementation

2.1 Summary of the optimisation problem
Based on the 2D geometry defined in figure 6,

Find the geometry of the air intake duct, in 2 dimensions, which minimizes

the distortion at the exit of the duct (Γ), defined as follows:

Distortion = D =

∫
Γ

Pt l dl


P̄tL

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Car

Duct

Engine Inlet

Figure 6: Geometry of the Bloodhound SSC air intake duct
Blue: car ; Green: duct ; Red: duct exit/engine inlet (for distortion computation)

2.2 Optimisation Algorithm: Modified Cuckoo Search

Choice of modified cuckoo search As the objective function (here, 2D distor-

tion at the exit of the duct) is unknown and certainly very complex with regards to

the design parameters (defining the geometry of the duct), a genetic algorithm has

been chosen to solve this optimisation problem.

The selected method is called ‘Modified Cuckoo Search’ [6], which is itself derived

from the ‘Cuckoo Search’ algorithm [8].

Summary of the method As any other genetic algorithm, it starts with an initial

population, which moves at each iteration (called ‘generation’) following certain

rules. For the modified cuckoo search, the population is divided in two parts: the

14

Automatic optimisation of the Bloodhound SSC air intake duct

individuals with the worse fitness are spread randomly on all over the domain to

find better quality solutions ; for the best ones (and that is where it differs from the

original cuckoo search), an improved solution is searched somewhere in the zone of

these points.

Qualities The modified cuckoo search differs from other usual genetic algorithms

(such as Particle Swarm, Differential Evolution or Cuckoo Search) on the following

points (for more details, see [6]):

• it is robust, for very different applications

• it generally converges faster than the methods previously cited

• its implementation is easy and fast

• it allows to search in the whole design space, both locally (near the best design

points) and globally (to find new interesting design points), and thus tries to

reach a global minimum.

Algorithm This ‘modified cuckoo search’ method begins with a random set of

initial ‘nests’ (chosen for example with a Latin Hypercube sampling), and then goes

through the following algorithm for each ‘generation’ (G being the number of the

current generation, and A a constant usually fixed to 1):

15

Automatic optimisation of the Bloodhound SSC air intake duct

1. 25% ‘best nests’ −→ For each nest xj :

Pick a random nest xk in the ‘top’ nests:

(a) If xj = xk (same nest): do a Lévy flight from xj , with step size

α = A
G2 , to find a new nest, which will replace xj

(b) If xj 6= xk (different nests):

• if F (xj) 6= F (xk) (different fitnesses): move from the worst

nest to the best one with distance |xj−xk|
φ

(φ = 1+
√

5
2 :

golden ratio)

• if F (xj) = F (xk) (same fitness): move half-way to get a new

nest

Replace any random nest by the new nest if this new fitness is

better, and the new nest inside the domain

2. 75% ‘worst nests’ −→ For each nest xj :

Do a Lévy flight from xj , with step size α = A√
G
, to find a new nest,

which will replace xj if it is inside the domain defined previously.

After a rather small number of iterations (‘generations’), a good approximation

of the value of x which optimises the fitness is obtained.

Reduction of cost There is however a remaining problem: the high number of

fitness evaluations means that this process could take weeks, which cannot be tol-

erated for industrial applications.

Indeed, if the value of the distortion had to be known at a particular design point,

a computation through a CFD solver should first be performed, which would take

quite a long time (minimum of one hour). If we start with an initial set of 20 cases,

and run the ‘modified cuckoo search’ for 50 generations (minimum to have a correct

idea of the optimal solution) and on one processor, the process would not be over

16

Automatic optimisation of the Bloodhound SSC air intake duct

before one month. Of course, much more computational resources could be used

(with a cluster of PCs), but some new methods to reduce running time can be used

there, as explained in the next section.

2.3 Reduction-Order Method: Proper Orthogonal Decom-

position

The difficult part is thus to obtain the total pressure field (only field needed to com-

pute the distortion) for any set of parameters, without going through a complete

CFD computation for each case, to then be able to compute the distortion.

For this purpose, an approach based on Proper Orthogonal Decomposition (POD)

has been used. The idea is to decompose the total pressure fields that are already

known for different geometries, extract modes from these data, and then ‘recon-

struct’ the pressure field for new geometries.

The method of POD presented here is called ‘method of snapshots’.

2.3.1 Prerequisite: Singular Value Decomposition (SVD)

From the N initial snapshots (or cases), each containing p values (with N < p), a

matrix of snapshots is created:

A =



a
1©

1 a
2©

1 · · · a
N©

1

a
1©

2 a
2©

2 · · · a
N©

2
...

a
1©
p a

2©
p · · · a

N©
p



↑ ↑

Snapshot 1© Snapshot N©

17

Automatic optimisation of the Bloodhound SSC air intake duct

where each column corresponds to one snapshot.

In our case, each column corresponds to a case/geometry (defined with a set of ge-

ometrical parameters), and contains the values of the total pressure at the nodes of

the mesh: Ai,j = Pt(geometry j, node i).

As the matrix is real, a singular value decomposition (SVD) can be carried out,

to obtain:

A = USV T

where U (p×p) and V (N×N) are orthogonal and S (p×N) is pseudo-diagonal:

S =



λ1

. . .

λN

0



Consequently:

ATA =
(
USV T

)T (
USV T

)
= V STUTUSV T = V STSV T = V diag(λi)V T

so that: (
ATA

)
V = V diag(λi)

which means that the ith column of V is the eigenvector corresponding to the

eigenvalue λ2
i of ATA.

The ith column of V is then the right singular vector corresponding to the singular

value λi of A.

From this decomposition, a Proper Orthogonal Decomposition can be carried

out.

18

Automatic optimisation of the Bloodhound SSC air intake duct

2.3.2 Decomposition of the known pressure fields using Proper Orthog-

onal Decomposition (POD)

This technique enables to decompose some initial results (obtained here with a CFD

solver), for different sets of parameters, in ‘modes’.

The ‘physical’ idea of the POD is to find a basis which minimizes the projection

of the data points on its axis.

The problem we now have to solve is to find a good approximation of the vector

containing the total pressure at the mesh nodes (p), which depends only on the set

of parameters (x) selected for the parametric study (geometrical parameters), by a

finite sum of the following form:

p(x) '
N∑
k=1

c(k)(x) φ(k) (2)

where the
(
c(k)(x)

)
k=1...N

are the coefficients and
(
φ(k)

)
k=1...N

the new basis cre-

ated.

The problem can then be summed up as: find
(
c(k)(x)

)
k=1...N

and
(
φ(k)

)
k=1...N

that minimizes:
N∑
j=1

∣∣∣∣∣
∣∣∣∣∣p(xj)−

N∑
k=1

c(k)(xj) φ(k)
∣∣∣∣∣
∣∣∣∣∣
2

(3)

Coefficients determination The orthogonality of the basis imposes that:

φ(m) · φ(n) = δmn =


1 if m = n

0 if m 6= n

which means that:

p(xj) · φ(i) =
N∑
k=1

c(k)(xj) φ(k)φ(i) = c(i)(xj)

19

Automatic optimisation of the Bloodhound SSC air intake duct

Then, equation (2) can be rewritten:

p(x) '
N∑
k=1

(
p(x) · φ(k)

)
φ(k) (4)

Basis determination The problem stated in (3) can then be rewritten using (4):

min
N∑
j=1

∣∣∣∣∣
∣∣∣∣∣p(xj)−

N∑
k=1

(
p(xj) · φ(k)

)
φ(k)

∣∣∣∣∣
∣∣∣∣∣
2

(5)

We now introduce the Forbenius norm ||.||F , defined as follows:

for a matrix M ∈ Rp×N ,

||M ||F =
N∑
i=1

(||M :,i||2)2

where M :,i is the ith column of M .

If we define Φ such that Φ:,i = φ(i), we get:

N∑
k=1

(
p(xj) · φ(k)

)
φ(k) =

(
ΦΦTA

)
:,j

and ΦTΦ = IN(orthogonality)

Then, as we have p(xj) = A:,j with the snapshot matrix A defined in part 2.3.1:

N∑
j=1

∣∣∣∣∣
∣∣∣∣∣p(xj)−

N∑
k=1

(
p(xj) · φ(k)

)
φ(k)

∣∣∣∣∣
∣∣∣∣∣
2

=
N∑
j=1

∣∣∣∣∣∣∣∣A:,j −
(
ΦΦTA

)
:,j

∣∣∣∣∣∣∣∣
2

=
N∑
j=1

∣∣∣∣∣∣∣∣(A−ΦΦTA
)

:,j

∣∣∣∣∣∣∣∣
2

As the
∣∣∣∣∣∣∣∣(A−ΦΦTA

)
:,j

∣∣∣∣∣∣∣∣
2
are all positive,

Find Φ which minimizes
N∑
j=1

∣∣∣∣∣∣∣∣(A−ΦΦTA
)

:,j

∣∣∣∣∣∣∣∣
2

is equivalent to:

Find Φ which minimizes
N∑
j=1

(∣∣∣∣∣∣∣∣(A−ΦΦTA
)

:,j

∣∣∣∣∣∣∣∣
2

)2

which is again equivalent to:

20

Automatic optimisation of the Bloodhound SSC air intake duct

Find Φ which minimizes
∣∣∣∣∣∣A−ΦΦTA

∣∣∣∣∣∣
F
.

Thus, we can rewrite our problem (5) in terms of the Frobenius norm:

find Φ such that:

min
∣∣∣∣∣∣A−ΦΦTA

∣∣∣∣∣∣
F

(6)

We now use Eckart–Young theorem, which states that, for a matrix A ∈ Rp×N ,

the matrix Ak ∈ Rp×N of rank k that approximates best A, ie min
rank(X)=k

||A−X|| =

||A−Ak||, is given by:

Ak = USkV
T = U kSV

T
k

where the SVD ofA (with singular values sorted in descending order) isA = USV T

and where Sk is the N × p pseudo-diagonal matrix containing the kth first singular

values of A (Sk(i, i) = si = S(i, i) for 1 ≤ i ≤ k, 0 otherwise), and U k and V k are

the matrices containing the k first columns of respectively U and V .

Here, it can then be deduced that: Φ = U kSk, to get an approximation of A of

rank k. Here, the rank does not need to be reduced ; then Φ = US.

To avoid computing the whole U matrix (usually very large), and because A =

USV T (SVD) and V is orthogonal, the previous expression for the modes can also

be re-written as:

Φ = AV

For more simplicity, the modes have been normalized, which finally gives the

best approximation of p(x):

p(x) '
N∑
k=1

c(k)(x) φ(k)

21

Automatic optimisation of the Bloodhound SSC air intake duct

with

φ(k) =
∑N
i=1 v

(k)
i p(xi)∣∣∣∣∣∣∑N

i=1 v
(k)
i p(xi)

∣∣∣∣∣∣ and c(k)(xi) = φ(k)p(xi)

It can also be written under the matrix form:

A = ΦC

with

Φ =
[
φ(1) . . .φ(N)

]
=
[
ψ(1)

||ψ(1)||
. . .

ψ(N)

||ψ(N)||

]
where Ψ = AV ; and C = ΦTA

For more information about POD and SVD, the reader may refer to the papers

[3], [2] and [5].

The POD is then obtained from the SVD of the matrix of snapshots.

It enables to extract some ‘behaviours’ from the snapshots, as shown in figure 7.

2.3.3 Reconstruction of a new pressure field

This decomposition can now be used to ‘compose’ new results, for almost any set

of parameters (in the same range as the initial ones), by interpolating the known

coefficients for a new snapshot.

If we have the N POD modes
(
φ(k)

)
k=1...N

and the corresponding coefficients(
c(k)(xj)

)
k=1...N

extracted from the N initial snapshots (1 6 j 6 N) defined each

by a set of parameters (xj), the solution at a new snapshot(defined by x̂) can be

‘guessed’ as: p(x̂) =
N∑
k=1

c(k)(x̂) φ(k).

22

Automatic optimisation of the Bloodhound SSC air intake duct

Initials Snapshots Proper Orthogonal Modes

−→
� �
� �
� �

Figure 7: Initial snapshots and POmodes obtained (total pressure, plotted for a particular design)

The coefficients
(
c(k)(x̂)

)
k=1...N

can be obtained using an interpolation with a

‘Radial Basis Function’ (RBF), based on the coefficients known for the intial snap-

shots. Here, the multiquadric RBF approach (giving a certain type of interpolation

function, as explained further), described by Rolland L. Hardy, has been used.

23

Automatic optimisation of the Bloodhound SSC air intake duct

We first consider that the value needed (in our case, the PO coefficients c(k)(x)

; here it is generalized with f(x)) can be expressed as:

f(x) =
N∑
i=1

λi ζ(||x− xi||)

where the multiquadric RBF is defined as: ζ(r) =
√
r2 + δ2, where constant δ is

called the shape parameter.

The interpolation function must fit the points xj where the value f(xj) is known,

which leads to:

f(xj) =
N∑
i=1

λi ζ(||xj − xi||) , j = 1 . . . N

ie F = BΛ

where F = (f(xj))j=1...N , B = (ζ(||xi − xj||))i,j=1...N and Λ = (λi)i=1...N .

The interpolation coefficients (λi)i=1...N can then be obtained solving F = BΛ.

Thus, the kth PO coefficient for any new configuration (x̂) can be computed

easily from the kth coefficient of the known snapshots (xj , j = 1 . . . N).

A reconstruction using these new PO coefficients (c(k)(x̂), k = 1 . . . N) and the

previously calculated PO modes (φ(k), k = 1 . . . N) will give the values of the total

pressure at the nodes for the new parametrised geometry:

p(x̂) =
N∑
k=1

c(k)(x̂) φ(k)

24

Automatic optimisation of the Bloodhound SSC air intake duct

2.4 Mesh movement

Finally, using this method raises a last difficulty: when the geometry is modified,

the connectivity must remain the same so that the nodes are always in the same

place. This can be achieved with some particular mesh-movement techniques, to

conserve the connectivity of the mesh.

The mesh movement implementation, performed by Caner Kara (MSc student in

Computational Mechanics, 2010-2012), is briefly explained in appendix A.

The geometry will then be controlled by moving some ‘control points’, located on

the duct boundary, on the x- and y-axis. The x- and y-displacements of the control

points will be the parameters of the study.

2.5 Summary of the method

In figure 8 is shown the MCS/POD process that has been used for this project.

The algorithm of the whole main optimisation code is summed up in appendix B.

25

Automatic optimisation of the Bloodhound SSC air intake duct

Initial
Snapshots

Sampling
(Latin-Hypercube)

User
Inputs

CFD Solver

Solutions
-> Distortions

Proper Orthogonal
Decomposition

Proper Orthogonal
Modes & Coefficients

Modified Cuckoo
Search Generation

New
Configurations

Proper Orthogonal
Reconstruction

Solutions
-> Distortions

Figure 8: MCS/POD process

26

Automatic optimisation of the Bloodhound SSC air intake duct

3 Results and observations

3.1 Some numerical aspects

3.1.1 Computational aspects

This project has been developed using Matlab.

All the important scripts (solver or optimisation code) have been run on the clus-

ter cvcluster in the College of Engineering of Swansea University. It uses PBS

(Portable Batch System), a UNIX work-load management system developed ini-

tially by NASA, and then acquired by Altair Engineering. It enables to manage the

jobs run by the users on a supercomputer.

3.1.2 Flite2D Preprocessor and Solver

Presentation of the preprocessor and the solver The preprocessor and CFD

solver used here were implemented in Fortran by Kaare A. Sorensen (then PhD in

Swansea University). The versions used for this Master thesis dates back from Au-

gust 1998 for the preprocessor and September 1998.

The geometry and mesh are contained in a formatted .dat file, which details the

nodes, connectivity and boundaries of the mesh.

It is then passed into the preprocessor which creates an unformatted .sol file.

The solver then takes this .sol file, as well as a formatted .inp file which contains

all the data for the computation (farfield Mach number, angle of attack, CFL num-

ber, number of iterations . . .). The solver (which is not parallelized) finally creates

a result file (.res) as well as a residual file (.rsd).

However, for this particular project, two main changes have been done to the

preprocessor and the solver.

27

Automatic optimisation of the Bloodhound SSC air intake duct

Modification of the input/output files Some files/parts of files which were

not useful for the project have been removed, to save a great amount space. In the

result files, the data given were the density, x- and y- velocities, the total energy as

well as a data concerning the turbulence. As this particular data was not exploited,

it has been replaced by the value of the static pressure, computed by the solver, but

which was not printed into the result files. To differentiate these two types of result

files, the new one, with the static pressure, has been renamed .resp

Addition of a new boundary type In the 2D solver, some boundary types

were already implemented: inviscid wall, symmetry surface, far field, isothermal or

adiabatic viscous wall, internal outflow.

However, for this project, the ‘engine inlet’ boundary type had to be included in the

solver.

It consists in enforcing a given mass flow at the engine inlet. The process is the

following:

• compute the total length LΓ =
∫

Γ
dΓ (for 2D) of the engine inlet (Γ), as well

as: ptFunc =
∫

Γ

√
T

p
dΓ, where T is the temperature and p the pressure

• compute: engine mass flow =
∫

Γ
ρu · n dΓ

• compute: mass flow function = (engine mass flow)× ptFunc
LΓ

• compute: engine mass factor = imposed engine front mass flow
mass flow function

• modify density and velocity: ρnew = (engine mass factor)× ρold

unew = (engine mass factor)× uold

• recompute total energy: ε = e+ 1
2 u

2
new =

(
ε− 1

2 u
2
old

)
+ 1

2 u
2
new, where e is the

internal energy

• recompute pressure: p = (γ − 1)
(
ρε− 1

2 ρu
2
new

)

28

Automatic optimisation of the Bloodhound SSC air intake duct

After few iterations, the solver finally makes the computed mass flow function

reach the imposed engine front mass flow.

3.1.3 Computation of the distortion

The Matlab code performing the computation of the distortion at the engine inlet

has been implemented by Matt Kear (Level 3 Student).

This code can be split into the following steps:

once the user has entered the 2D intercept ‘plane’ (in fact a line, as the distortion

has a real meaning only in 3D), defined by a set of points, :

1. search for each given point (x̂) on the ‘plane’ the three nearest nodes of the

mesh (x1, x2 and x3), so that that point is inside this new defined node triangle

2. compute the value of the total pressure at the points on the intercept plane,

by weighting the total pressure at the 3 mesh nodes around (x1, x2 and x3,

defined at the previous step) with its barycentric coordinates

3. get the average total pressure on the interface using the pressure (pi) at the

internodes interface points, and the length (Li) between each midpoint of the

segments defining the interface:

Pave =

internodes−1∑
i=2

piLi

internodes−1∑
i=2

Li

4. compute the distortion on the ‘intercept plane’ (or interface):

D =

internodes−1∑
i=2

Li
|Pt − Pave|i+1 − |Pt − Pave|i

2
LPave

29

Automatic optimisation of the Bloodhound SSC air intake duct

3.1.4 Parallelization of the initial cases computations

For the CFD computation of the initial nests, a Matlab script has been written so

that all the cases are all automatically computed in parallel.

After choosing the sets of parameters using a particular sampling (here, a Latin

Hypercube sampling), the Matlab script follows this scheme:

For each set of parameters,

1. create a 2D geometry and mesh (.dat file) corresponding to the chosen geo-

metrical parameters (mesh movement technique coded by Caner Kara)

2. pass the mesh into the preprocessor to create a side-based data structure (.sol

file)

3. write an input file (.inp file), specifying, for example the Mach number, the

number of iterations for the solver and the engine front mass flow

4. write a batchfile, specifying the queue, the number of nodes and processors to

be used, the walltime and the memory needed for the computation

5. write the submit instruction (qsub for the PBS system used for this project)

in a text file (BatchSolv)

Once this has been made for each case, and that every .sol/.inp and batchfile

has been created, the file BatchSolv containing all the submission instructions is

run, which enables to run all the cases in the same time, in parallel.

30

Automatic optimisation of the Bloodhound SSC air intake duct

3.1.5 Main problems encountered

During this project, a series of problems has been encountered, which were finally

solved:

• The initial solver provided was not the final version, and soon demonstrated

some important issues. One of these problems was, for example, the fact that

the solution for a geometry with angle of attack 0° was not giving the same

results has the symmetrical geometry with angle of attack 180°. This problem

has finally been solved after few months by the use of another version of the

solver.

• The Modified Cuckoo Search Matlab code, written by Sean Walton, had also

to be modified, to fit in the whole POD/MCS process, but also to correct

some mistakes. The most important one was to initialize the seed for the

random process, otherwise the Modified Cuckoo Search code would have given

the exact same results at each run, which is not what is asked for a random

genetic algorithm.

• Using the PO Decomposition and Reconstruction, some negative pressure fields

were recovered. The PO coefficients were also very badly reconstructed, as it

can be seen in figure 9, which may explain such negative pressure. It seems

from this figure that the last modes are too much represented, which led to

keeping only the ten first modes.

However, this problem was apparently due to some mistakes in the main code,

where the real value of the parameters were mixed with their normalized values.

31

Automatic optimisation of the Bloodhound SSC air intake duct

0 5 10 15 20 25
−1000

−800

−600

−400

−200

0

200

400

Solver

POD phi(r)=sqrt(r2+0.665*d2)
POD phi(r)=r

POD phi(r)=sqrt(r2+0.15*d2)

Figure 9: Badly reconstructed PO coefficients

3.2 Proper Orthogonal Decomposition and Reconstruction

3.2.1 Influence of the user inputs

To test the POD and the following reconstruction, a series of runs has been per-

formed, while changing the different user inputs:

• number of snapshots

• number of control points to move the geometry

• range of displacement of the control points

• Mach number

The following study has been performed as such: for the chosen user inputs

listed above, all the cases are run with the solver ; then, for each case, a Proper

Orthogonal Decomposition is performed with all the other snapshots, to reconstruct

a PO approximation of the case isolated. The distortion is then calculated, for each

case, from both the real solution (obtained with the solver) and the approximated

solution (obtained with the PO reconstruction). The error made on the distortion

by the POD is calculated as: ε = |DPOD −Dsolver|
Dsolver

.

32

Automatic optimisation of the Bloodhound SSC air intake duct

Number of control points In table 1 are listed the tests done on the number of

control points.

Here, going from one to seven control nodes (with the same ranges for displacement)

increases a lot the error. The average error is multiplied from 5 to 10 when adding

these 6 additional control nodes.

This is perfectly understandable, as 20 and 40 snapshots are clearly not enough

to have a good ‘idea’ of a 14-parameter space (7 control points, with 2 prescribed

displacements each, on x and y).

Distortion Error (%)No Snapshots No Control Points xmax ymax Ma Maximum Minimum Average
1 11.02 0.28 3.4120 7 0.1 0.3 0.8 66.26 1.19 17.25
1 10.17 0.03 2.1140 7 0.1 0.3 0.8 91.69 0.62 22.89

Table 1: Influence of the number of control points

Number of snapshots Table 2 sums up some tests on the influence of the number

of snapshots on the POD reconstruction.

At the first glance, it seems that increasing the number of snapshots does not have

an important effect on how good the approximation of the solution is.

However, the three tests using 7 control points may not mean a lot, as the space is

not enough sampled anyway.

Based on the 1-control point test, the error does not seem to decrease by much. 20

snapshots will then be enough for a 1-control point parametrization.

Range of control point displacements Table 3 indicates a test made by chang-

ing the range of the control point displacement. Here, each control point can move

between −xmax and xmax on the x-direction (here, no x-displacement), and between

−ymax and ymax on the y-direction. For simplicity’s sake, the maximum displace-

ments are the same for all the control points.

It seems here that increasing the range of the displacement leads to an increase in

33

Automatic optimisation of the Bloodhound SSC air intake duct

Distortion Error (%)No Snapshots No Control Points xmax ymax Ma Maximum Minimum Average
20 11.02 0.28 3.41
40 1 0.1 0.3 0.8 10.17 0.03 2.11
20 66.26 1.19 17.25
40 7 0.1 0.3 0.8 91.69 0.62 22.89
40 30.58 0.00 9.41
80 7 0.05 0.1 0.8 32.90 0.11 8.32
20 43.71 2.02 17.81
40 7 0 0.3 0.8 78.54 5.92 22.42

Table 2: Influence of the number of snapshots

the error: for three times the maximum displacement, the error is also increased by

three times.

This can be explained very simply by the fact that we are enlarging the design

domain: thus, for the same number of snapshots, this domain is less ‘known’.

Distortion Error (%)No Snapshots No Control Points xmax ymax Ma Maximum Minimum Average
0.1 26.38 0.41 8.7340 7 0 0.3 0.8 78.54 5.92 22.42

Table 3: Influence of the number of control point displacement range

Mach Number Finally, the tests on the influence of the Mach number are listed

in table 4.

First, let us study the average error. For Mach 0.5, it is much much lower than for

Mach 0.8, 1.1 or 1.3, where the average error is quite similar.

This phenomenon can be understood by noticing that Mach 0.8, 1.1 and 1.3 are all

in a transonic regime, in which some complex phenomena appear (such as shocks)

that the POD may not catch with the sampling imposed here. At Mach 0.5, how-

ever, the regime is subsonic, and thus the solutions are much more ‘continuous’ and

quite similar.

We can also note that the maximum distortion error increases with the farfield Mach

number: indeed, the highest the speed of the car, the more complex the behaviour

of the air flow becomes.

34

Automatic optimisation of the Bloodhound SSC air intake duct

Distortion Error (%)No Snapshots No Control Points xmax ymax Ma Maximum Minimum Average
0.5 4.59 0.05 1.18
0.8 11.02 0.28 3.14
1.1 18.97 0.16 4.8520 1 0.1 0.3

1.3 19.69 0.11 3.52

Table 4: Influence of the Mach number

Figure 10 shows the error of the POD reconstruction at each snapshot (not the

same sampling as for table 4), and for different Mach numbers.

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

 0.48658

 6.6666

 4.2569

 2.895

 1.3187

 2.269

 0.35474

 1.5163
 2.3435

 2.0727

0.025878
 0.35549

 2.4666
0.030166

 1.542

 6.2654

 3.8213

 1.9795

 1.7138

 1.3202

x−displacement

y−
di

sp
la

ce
m

en
t

20 Snapshots −−− 1 control point −−− Ma 0.5

(a) Mach 0.5

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

 5.6484

0.69715

 1.4715

 1.8621
 3.0086

 9.9595

 6.4161

 7.067

 4.9481
 1.832

16.1264

10.5033

12.4538

 22.921

10.8051

10.3893

11.6298

10.3996

18.4021

13.5071

x−displacement

y−
di

sp
la

ce
m

en
t

20 Snapshots −−− 1 control point −−− Ma 0.8

(b) Mach 0.8

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

 7.4853

 6.3888

 4.0928

 8.9142

 4.3493
 8.794

 1.1236
0.32155

 1.518

 4.1514

 6.0449

 6.3414

 3.338

0.69403

16.0407

13.6886

 15.549

41.6421

11.0831

 17.891

x−displacement

y−
di

sp
la

ce
m

en
t

20 Snapshots −−− 1 control point −−− Ma 1.1

(c) Mach 1.1

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

3.7658
1.3615

3.5749

5.4148
4.3304

8.7068
8.4086

118.3365

64.40764

14.21997

11.22923

13.80772

11.05086

22.94649
43.91317

31.56664

56.42497

19.66174

18.60248

29.70673

x−displacement

y−
di

sp
la

ce
m

en
t

20 Snapshots −−− 1 control point −−− Ma 1.3

(d) Mach 1.3

Figure 10: Percentage error on the POD reconstruction at each snapshot
Green: less than 10% - Red: more than 10%

This error could be reduced by adding the four ‘corners’ of the design space into

the snapshots, as shown in figure 11. This solution has been studied, as explained

in the following parts.

Note : From now on, only the top of the mouth of the duct will be moved,

35

Automatic optimisation of the Bloodhound SSC air intake duct

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

 0.14294

 0.31493

 4.2421

 0.87756

 0.35904

 2.126

 0.95815

 0.15641
 0.25747

 0.49734

 0.4777
 0.75418

 0.17826
 0.23423

 0.69648

 4.5671

 0.95609

 1.5612

 0.77272

 1.6517

 3.5213

0.073146 0.77222

 1.1509

x−displacement

y−
di

sp
la

ce
m

en
t

20 Snapshots −−− 1 control point −−− Ma 0.5

(a) Mach 0.5

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

 4.4951

0.15152

 5.3495

 1.4922

 2.1891

 2.3592

 1.5372

 1.3575
0.88931

 1.885

 2.2041
0.39998

 1.3829
0.94933

 9.6362

0.23207

0.43191

 7.3902

 9.8027

 3.2169

 1.1692 3.1768

0.49282

11.0451

x−displacement

y−
di

sp
la

ce
m

en
t

20 Snapshots −−− 1 control point −−− Ma 0.8

(b) Mach 0.8

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

 2.0754

 2.2592

 7.8338

 2.0143

 1.5337

 4.5111
 8.8215

0.18916

0.80636
0.12735

0.37069
0.19633

0.99856

 2.5153

 5.152

 5.6898

 1.4054

0.50147

0.11411 1.4285

0.81915

16.1501

10.7745

18.9681

x−displacement

y−
di

sp
la

ce
m

en
t

20 Snapshots −−− 1 control point −−− Ma 1.1

(c) Mach 1.1

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.29986

 2.7977

 1.7177

 1.5041

0.86331

 2.2542

 6.8325
 1.4639

0.53504

0.70203
0.57872

0.07691
 0.268

 1.6759

0.11737

 1.4582

 5.8644

 1.7815

0.37893

0.80464 0.37399

0.70615

15.8562
19.7448

x−displacement

y−
di

sp
la

ce
m

en
t

20 Snapshots −−− 1 control point −−− Ma 1.3

(d) Mach 1.3

Figure 11: Percentage error on the POD reconstruction at each snapshot, with the corners
Green: less than 10% - Red: more than 10%

which corresponds to two parameters: the x-displacement (−0.1 ≤ x ≤ 0.1) and the

y-displacement (−0.3 ≤ y ≤ 0.3) of the point at the top of the entrance of the duct.

3.2.2 Influence of the interpolation function

To be able to use an interpolation on the PO coefficients for a high number of pa-

rameters / dimensions, a radial-basis function (RBF) has been used.

However, the choice of the RBF, as well as its own coefficients, is quite delicate, as

the whole optimisation process depends on the good quality of the interpolation of

the PO coefficients.

36

Automatic optimisation of the Bloodhound SSC air intake duct

Here, a multiquadric RBF, based on Hardy’s theory, has been used:

φ(r) =
√
r2 + c d2

where d is the mean distance between all the (known) points used for the interpola-

tion, and c a coefficient which should be varied.

A series of values for the coefficient c, as well as another RBF (Gaussian: φ(r) =
1
c d2 e

− r2
c d2) have been tested, and figure 12 shows the reconstruction of the PO co-

efficients for a particular case with different RBFs, as well as the theoretical ones

(computed using the solution obtained from the solver).

0 2 4 6 8 10 12 14 16 18 20
−900

−800

−700

−600

−500

−400

−300

−200

−100

0

100

phi(r)=|r|

phi(r)=sqrt(r2+0.665*d2)

phi(r)=sqrt(r2+0.1*d2)

phi(r)=sqrt(r2+d2)

phi(r)=sqrt(r2+10*d2)

phi(r)=1/(0.25*d2)*exp(−r2/(0.25*d2))

Figure 12: Original and reconstructed coefficients for a particular design

It seems from this study that the chosen RBFs all seem enough to get a good

quality reconstruction of the PO coefficients, and then of the solution for the con-

sidered new configuration.

Then, the RBF that has been chosen for the continuation of the optimisation process

was the simple φ(r) =
√
r2 = |r|.

37

Automatic optimisation of the Bloodhound SSC air intake duct

As the first mode seems to have the higher importance (as shown in figure 13,

with the normalized energy of each mode, the total being equal to 1), a plot of

the surface of the first coefficient, with respect to the two parameters (x and y dis-

placement of the top of the duct entrance), might be interesting in this study. The

resulting surface is shown in figure 14.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 13: Normalized energy of each PO mode

−0.1

−0.05

0

0.05

0.1

−0.2
−0.1

0
0.1

0.2
0.3

−870

−860

−850

x

sum(coeffRBF arrayfun(φ,sqrt(sum((ones(NoSnap,1) [x,y]−NestI)2,2))))

y

Figure 14: First PO coefficient with respect to the two design parameters

The surface fits the known points (snapshots) as expected, but ‘falls’ in the ar-

38

Automatic optimisation of the Bloodhound SSC air intake duct

eas where there are no given points. Thus, the reconstruction could be very poor

in these areas, particularly in the corners (and the whole boundary of the domain),

which explains the difference observed for the error on POD reconstruction in figures

10 and 11.

To solve this problem, the four corners of the design space have then also been com-

puted with the solver, and inserted in the PO decomposition.

The surface obtained with the initial twenty cases, plus these four additional corners,

plotting the first coefficient with respect to the two design parameters, is given in

figure 15.

−0.1

−0.05

0

0.05

0.1

−0.2
−0.1

0
0.1

0.2
0.3

−860

−855

−850

−845

x

sum(coeffRBF arrayfun(φ,sqrt(sum((ones(NoSnap,1) [x,y]−NestI)2,2))))

y

Figure 15: First PO coefficient with respect to the two design parameters, reconstructed adding
the four corners to the initial snapshots

This new surface seems much more valid. It even seems that the x-displacement

of the control node does not have an important impact on this first PO coefficient,

but some more study should be performed on that subject.

For the continuation, this particular sampling, with twenty initial snapshots cho-

sen with a Latin-Hypercube sampling, plus the four corners of the design space

39

Automatic optimisation of the Bloodhound SSC air intake duct

((x, y) = (−0.1;−0.3), (−0.1; 0.3), (0.1; 0.3), (0.1;−0.3)), has been kept.

However, this particular sampling can only be possible for a small number of

dimensions (like here, with two dimensions). As soon as the number of control

points increases, to be able to obtain almost ‘random’ geometries for the duct, the

number of snapshots will have to increase inside the design space, but also on the

‘corners’ of that domain.

If we use five control points to move the geometry, ten parameters will be needed.

If the corners were all taken as the only snapshots, it would mean that we would

need to run 210 = 1024 different geometries, which is absolutely irrelevant.

For this purpose, new types of sampling could be considered, as described in the

following part.

3.3 Influence of the initial sampling

Several methods are available to get a ‘smart’ sampling of the design domain:

• Full Factorial (figure 16): a grid is created, and the sampling points are the

grid points ; the size of the grid can be adjusted

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Full Factorial 2× 3
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Full Factorial 5× 8
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Full Factorial 11× 11

Figure 16: Full Factorial sampling

• Latin Hypercube (figure 17): for the number of samplings n stated, each di-

mension is divided into n equal segments ; the sampling points are then picked

40

Automatic optimisation of the Bloodhound SSC air intake duct

randomly so that there is one and only one point in each column and line (in

2D)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Latin Hypercube - n = 3
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Latin Hypercube - n = 5

Figure 17: Latin Hypercube sampling in 2D

• Box-Behnken (figure 18): incomplete but equilibrated full factorial sampling

with two levels for each variable, plus the central point

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Figure 18: Box-Behnken sampling in 3D

• Central Composite (figure 19): incomplete but equilibrated full factorial sam-

pling with two levels for each variable, plus some ‘axial’ points, plus the central

point

Here, the Latin Hypercube sampling has been used, coupled with the ‘corners’

of the design space (2 dimensions, so four corners).

However, for much more parameters, the use of a Box-Behnken or a Central Com-

posite sampling could be the only viable solution. Indeed, for ten dimensions, there

41

Automatic optimisation of the Bloodhound SSC air intake duct

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

(a) 2 dimensions

−1

0

1

−1
0

1

−1.5

−1

−0.5

0

0.5

1

1.5

(b) 3 dimensions

Figure 19: Central Composite sampling

are 210 = 1024 corners to compute, while the Box-Behnken sampling would give

only 161 cases, and the Central Composite, 149 cases.

Unfortunately, there has not been enough time to investigate on that subject. It

could be studied in a future work.

3.4 Optimisation algorithm

3.4.1 Modified Cuckoo Search with POD

Simple MCS The process described in figure 8 is now run, with the following

characteristics:

• design parameters: x and y displacement of the top of the duct mouth ;

−0.1 ≤ x ≤ 0.1 and −0.3 ≤ y ≤ 0.3

• 20 initial nests, chosen by Latin Hypercube sampling, plus the four corners of

the design space: (x, y) = (−0.1;−0.3), (−0.1; 0.3), (0.1; 0.3), (0.1;−0.3)

−→ see figure 20

• 100 MCS generations

• Re = 6.5 106 ; CFL = 1.0 ; (artificial 2D) engine front mass flow = 1.0

A first study at Mach 0.5 is performed. Several simple MCS are launched one

after the other, and the ‘optimal’ solutions for each test are listed in table 5, with

42

Automatic optimisation of the Bloodhound SSC air intake duct

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x−displacement

y−
di

sp
la

ce
m

en
t

Initial Nests for MCS

Figure 20: Initial nests for MCS

the optimal parameters and the corresponding distortion obtained with the POD.

Figure 21 also shows the graphics obtained for each of these tests, with the final

position of the nests, and the evolution of the distortion of the best nest (computed

with the solver at the first generation, and with the POD for the following ones)

with the generations.

Test x-displacement y-displacement Distortion
(a) 0.1000 -0.1355 0.0995072
(b) 0.0870 -0.1173 0.0996158
(c) 0.0871 -0.1164 0.0995839
(d) 0.0643 -0.0768 0.100465

Table 5: Optimal solutions obtained with simple MCS at Mach 0.5

We can see from figure 21 that these four tests show different behaviours:

• Test (a) shows the distortion decreasing quite regularly, and then stopping at

a certain value, which should mean that a convergence has been reached, and

that the position obtained is the minimal one.

• Tests (b) and (c) show the distortion decreasing regularly too, but the MCS

is stopped before the convergence ; here, a convergence criterion could be

43

Automatic optimisation of the Bloodhound SSC air intake duct

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
0.0995

0.1

0.1005

0.101

(a) Test (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
0.0995

0.1

0.1005

0.101

(b) Test (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
0.0995

0.1

0.1005

0.101

(c) Test (c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
0.1

0.105

0.11

(d) Test (d)

Figure 21: Simple MCS at Mach 0.5 — Several tests
Top: blue crosses = initial nests ; red circles = final nests

(except for case (d): only final nests, in blue circles)
Bottom: best nest POD distortion evolution with the generations

used, to stop the MCS when it comes to the same optimal point at successive

generations.

• Test (d) shows the distortion dropping at the second generation, and then

decreasing regularly, but with a much lower slope ; the distortion computed

at the final optimal point with the solver is 0.0942534, and not 0.100465 as

predicted by the POD, which leads to an error of 6.5%. The big gap between

the minimal distortion at generations 1 and 2 can be explained by the fact

that the reconstruction with the POD is not good enough, and then gives an

imprecise evaluation of the distortion. Then, once the distortion is not well

reconstructed, the MCS could lead to a solution which may not be optimal,

44

Automatic optimisation of the Bloodhound SSC air intake duct

where the distortion has been under-evaluated.

Multiple MCS To avoid this sort of problem, where the reconstruction of the

distortion could well lead to a ‘false’ optimal solution, a new approach has been

used.

This time, several MCS schemes (called ‘cycles’ in what follows) are applied.

The ‘optimal’ solution found at the end of each of these cycles is recomputed with

the solver, to have the exact corresponding distortion, and is then added to the

initial snapshots for the POD (and to the initial nests for the next MCS cycle).

This method enables to add more snapshots in the area where the optimal solution

seems to be, to be able to compute the distortion at the new configurations more

accurately.

This process, called ‘multiple MCS’ (MMCS) in what follows, is summed up in

figure 22.

The MMCS cycles are repeated until the optimal solution found at the end of

each cycle is the same five consecutive times (and if the distortion computed with

the POD is similar to the one from the solver). The number of cycles has been

limited to 20, and the number of generations inside each cycle to 50.

This process is run for Mach 0.5, 0.8, 1.1 and 1.3 (maximal Mach number for the

Bloodhound SSC).

Figures 23 to 26 show, for each Mach number listed above, the MMCS process,

with the position of the final nests (top) and the evolution of the distortion with the

MMCS cycles (bottom), as well as the geometry obtained from the optimal param-

45

Automatic optimisation of the Bloodhound SSC air intake duct

Sampling
(Latin-Hypercube)

Proper Orthogonal
Decomposition

Initial
Snapshots

User
Inputs

CFD Solver

Solutions
-> Distortions

Proper Orthogonal
Modes & Coefficients

Modified Cuckoo
Search Generation

New
Configurations

Proper Orthogonal
Reconstruction

Solutions
-> Distortions

+ Optimal Solution

1 MCS generation

1 MMCS cycle

Figure 22: Multiple MCS (MMCS) / POD process

eters found, on which the velocity (computed with the solver) is plotted.

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.2

−0.1

0

0.1

0.2

123456

Ma 0.5

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.09

0.095

0.1

0.105

Number of iteration

D
is

to
rt

io
n

Obtained from POD

Obtained from solver

(a) MMCS Process (b) Optimal solution — Velocity

Figure 23: MMCS at Mach 0.5 — Optimal solution: (0.0643 ; -0.0770)

These MMCS processes were run on one processor each, with a required 1 Gb

memory, a mesh of 82868 nodes and 163419 triangular elements, and with a conver-

46

Automatic optimisation of the Bloodhound SSC air intake duct

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.2

−0.1

0

0.1

0.2

 1 2

 3 4 5 6 7 8 91011121314

Ma 0.8

0 2 4 6 8 10 12 14
0.045

0.05

0.055

0.06

Number of iteration

D
is

to
rt

io
n

Obtained from POD

Obtained from solver

(a) MMCS Process (b) Optimal solution — Velocity

Figure 24: MMCS at Mach 0.8 — Optimal solution: (-0.0255 ; -0.1350)

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.2

−0.1

0

0.1

0.2

 1 2

 3

 4

 5

 6

 7
 8 9

10 11 121314 1516
17

18

1920

Ma 1.1

0 2 4 6 8 10 12 14 16 18 20
0.03

0.04

0.05

0.06

Number of iteration

D
is

to
rt

io
n

Obtained from POD

Obtained from solver

(a) MMCS Process (b) Optimal solution — Velocity

Figure 25: MMCS at Mach 1.1 — Optimal solution: (0.0550 ; -0.1950)

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.2

−0.1

0

0.1

0.2

123456
Ma 1.3

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.064

0.066

0.068

0.07

0.072

Number of iteration

D
is

to
rt

io
n

Obtained from POD

Obtained from solver

(a) MMCS Process (b) Optimal solution — Velocity

Figure 26: MMCS at Mach 1.3 — Optimal solution: (0.1000 ; 0.2999)

gence criterion of -2 (ratio of the current residual with the initial one).

The computation requirements for each run (at each Mach number) are listed in

table 6.

47

Automatic optimisation of the Bloodhound SSC air intake duct

Mach number Number of cycles Walltime Memory used (Mb)
0.5 6 06:46 395
0.8 14 16:16 460
1.1 20 28:03 495
1.3 6 04:53 409

Table 6: Computational requirements of the MMCS at different Mach numbers

The MMCS process for Mach 0.5, 0.8 and 1.3 seems quite good, contrary to

Mach 1.1.

At this Mach number (1.1), the MMCS does not seem to find an optimal solution.

Worse, when a new optimal solution is found at the same position than a previous

one (that has then been added to the initial snapshots), the value obtained for the

distortion from the POD is not the same as from the solver.

The optimal solution at Mach 1.3 could also be discussed: indeed, it is located

on the boundary of the design domain, which is not really well represented by the

POD. Moreover, it could mean that the design space may need to be extended, to

get an ‘improved’ optimal solution.

If we only concentrate on the y-displacement, it seems that lowering the top of

the duct can be beneficial for Mach numbers from 0.5 to 1.1. At Mach 1.3 however,

the optimal solution would be to open the ‘mouth’ of the duct as much as possible.

As the distortion is a value which is extremely difficult to predict (variations of

the total pressure at the engine inlet) a direct physical analysis of the optimality of

the solutions found with the MMCS/POD approach is not obvious.

However, some other techniques can be used alternatively to check the quality of

48

Automatic optimisation of the Bloodhound SSC air intake duct

the optimal solution, but also to compare the computational requirements and thus

highlight the high interest of the MMCS/POD method in this type of applications.

3.4.2 Modified Cuckoo Search without POD

A first alternative approach to the MMCS/POD would be the use of the (simple)

MCS optimisation algorithm, but without the POD. Instead of trying to ‘guess’ the

distortion for the new configurations, these configurations are run with the solver

to get an exact value of the distortion. This can ensure there is no computational

mistake when calculating the distortion.

For this purpose, a Python script has been written. Indeed, it is not possible

to submit a job from one of the node of the cluster used in Swansea University

(cvcluster), so the previous Matlab code for MCS, modified to run each of the new

configurations with the solver, could not be used directly.

The Python code is the main script: it has to be run on the master node, and

must thus consume as little CPU (and memory) as possible.

Here, this main Python code only consists in submitting some Matlab jobs on the

cluster.

To enable some ‘communication’ between all the Matlab codes (run separately), the

user inputs, such as the range of the displacements, the number of nests to consider,

the Mach number, etc., have been listed in a file. The data computed by each of the

Matlab scripts have been recorded in a Matlab .mat file.

The main Python script (given in appendix C) starts by submitting a Matlab

code which gets a sample of the design space, and record the values in the .mat file.

Then, an iteration loop submits the following Matlab scripts, for each generation,

from a set of positions in the design space:

49

Automatic optimisation of the Bloodhound SSC air intake duct

• create the mesh files (.dat)

• preprocess

• solve (parallel solve, one case on one processor)

• from the distortions obtained with the solver, find new configurations using

the (simple) MCS process

Here, each job must wait for the previous one to finish, which can be done with

the PBS system (using afterany or afterok in the submission command).

This whole code has been implemented and tested, and it has been run on the

master node. For 163419 triangular elements and a convergence criterion of -3 (ratio

between current and initial residuals), each generation was running in three hours,

which would have surely given a good approximation of the optimal solution after

50× 3 = 150 hours, or 6 days and 6 hours (after 50 generations).

However, because of the lack of time as well as some issues with the cluster, the

process had to be stopped after only 20 generations.

The comparison with the MMCS/POD approach can only be made on the compu-

tational requirements (summed up in table 7), and not on the final optimal solution.

For 163419 triangular elements and a convergence criterion of -3:

• the MMCS/POD asks for the same number of processors as the number of

initial nests (24 here), but only during 3 hours (it can take longer if this number

of processors is not available) ; after this step, it only requires one processor,

and each cycle is run in three or four hours (mainly for the computation of the

optimal solution with the solver at the end of each cycle)

• the first step is the same for the MCS without POD ; the second one requires 3

hours for each generation, but using again as many processors as initial nests.

50

Automatic optimisation of the Bloodhound SSC air intake duct

Computation of the n initial nests Optimisation process

MMCS/POD 3 hours 3 hours / cycle
n processors 1 processor

MCS without POD 3 hours 3 hours / generation
n processors n processor

Table 7: Compared computational requirements of the MMCS/POD and the MCS without POD
approaches (best configuration)

The MMCS/POD has then a real interest on the simple MCS without POD,

particularly when the number of initial nests / snapshots is high (as it can easily

happen if the number of geometrical parameters is increased).

3.4.3 Design Of Experiment (DoE) and direct distortion interpolation

Another approach to this optimisation is to make a smart sampling of the design

space, interpolate the distortion and get directly its minimum on the design space,

without using a genetic optimisation method.

In fact, the aim here is to get an analytical description of the distortion on the design

space under the form of a function, and then use a non-linear optimiser to get the

optimal solution.

Initial sampling The choice of the sampling used to get the configurations that

will be run with the solver is crucial. Indeed, as it has been seen in the previous

sections, some ‘holes’ in the sampling of the design domain may lead to badly re-

constructed function, and then artificial optima.

In this case, with a 2-dimensional space (parameters: x- and y-displacements), the

Central Composite design does not have any interest (there is no need to decrease

the number of sampling points), and the Box-Behnken design does not even exist in

2D. They could however reveal extremely efficient for higher number of dimensions

(4 and more).

51

Automatic optimisation of the Bloodhound SSC air intake duct

Here, the sampling previously introduced (20 snapshots chosen with Latin Hy-

percube sampling, plus the four corners of the design space) has been kept for the

direct interpolation of the distortion.

Interpolation of the distortion The interpolation from the points where the

distortion is known is performed using an RBF approach, as explained in part2.3.3.

Here, the multiquadric RBF (φ(r) =
√
r2 + δ2) has also been used, and a brief study

on the shape parameter δ has been carried out at Mach 0.5, as shown in figure 27.

−0.1

−0.05

0

0.05

0.1
−0.2 −0.1 0 0.1 0.2 0.3

0.102

0.104

0.106

0.108

0.11

0.112

sum(coeff arrayfun(φ,sqrt(sum((ones(NoRuns,1) [x,y]−NestI)2,2))))

y

x

(a) φ(r) =
√
r2 = |r|

−0.1

−0.05

0

0.05

0.1 −0.2 −0.1 0 0.1 0.2 0.3

0.1

0.105

0.11

sum(coeff arrayfun(φ,sqrt(sum((ones(NoRuns,1) [x,y]−NestI)2,2))))

y

x

(b) φ(r) =
√
r2 + 0.1 d2

−0.1

−0.05

0

0.05

0.1 −0.2
−0.1

0
0.1

0.2
0.3

0.1

0.105

0.11

y

sum(coeff arrayfun(φ,sqrt(sum((ones(NoRuns,1) [x,y]−NestI)2,2))))

x

(c) φ(r) =
√
r2 + d2

−0.1

−0.05

0

0.05

0.1 −0.2 −0.1 0 0.1 0.2 0.3

0.1

0.11

0.12

sum(coeff arrayfun(φ,sqrt(sum((ones(NoRuns,1) [x,y]−NestI)2,2))))

y

x

(d) φ(r) =
√
r2 + 10 d2

Figure 27: Direct interpolation on the distortion with multiquadric RBF at Ma 0.5
(d: mean distance between interpolation points)

It can first be noticed that the choice of the shape parameters here is crucial,

unlike the one needed for the interpolation of the PO coefficients (see figure 12).

The interpolation using δ2 = 0 (figure 27a) and δ2 = 10 d2 (figure 27d) does not

52

Automatic optimisation of the Bloodhound SSC air intake duct

seem to be the best ones, contrary to the ones with δ2 = 0.1 d2 (figure 27b) and

δ2 = d2 (figure 27c).

However, they all show a ‘valley’ in the distortion surface, near the line y = −0.08,

where the optimal value could be located. It is in accordance with the optimal

position found at Mach 0.5 with the MMCS/POD approach: (0.0643 ; -0.0770).

Now that the distortion has been reconstructed under the form of a function on the

design space, a minimization process can be carried out.

Minimization of the reconstructed distortion function To minimize the

function of the reconstructed distortion, Matlab optimisation tool fmincon has been

used.

fmincon function enables to find the minimum of a nonlinear function on a con-

strained domain, using a gradient-based method (three different algorithms avail-

able).

The user just needs to enter the function, the boundaries of the domain, a start-

ing point (here, the center of the domain), and some options (tolerances, maximum

number of iterations and evaluations, . . .), and the function returns a position in

the domain where the function is minimal.

Here, for the two ‘good-quality’ interpolations (δ2 = 0.1 d2 and δ2 = d2), two

different solutions have been returned by fmincon at Mach 0.5:

• for δ2 = 0.1 d2: (-0.0635 ; -0.0669), with a distortion of 0.1011

• for δ2 = d2: (-0.1000 ; -0.0484), with a distortion of 0.0995

Here, the optimal solutions are in the same area, but not quite similar.

It would not be easy to state which one is nearest to the ‘real’ optimal solution, as

both of the interpolated surfaces seem quite relevant.

However, even if this method does not indicate clearly an optimal design, it helps

53

Automatic optimisation of the Bloodhound SSC air intake duct

understand were it could be located ; in this case, at Mach 0.5, a valley is observed

near y = −0.08.

The same process has been applied to other Mach numbers:

• Mach 0.8 (see figure 28): the optimal position found is near (0 ; -0.02), which

is one of the minima, but not the global one ; the ‘global’ minimum observed

near (-0.1 ; 0.02) may be only artificial and due to the lack of interpolation

points in this area and to the choice of the shape parameter. The MMCS/POD

was giving an optimal position at (-0.0255 ; -0.1350), for a distortion of 0.0477.

−0.1

0

0.1

−0.2−0.100.10.20.3

0.045

0.05

0.055

0.06

sum(coeff arrayfun(φ,sqrt(sum((ones(NoRuns,1) [x,y]−NestI)2,2))))

y
x

(a) φ(r) =
√
r2 + 0.1 d2

Minimum: (-0.0058 ; -0.0178) for
0.0496

−0.1

−0.05

0

0.05

0.1

−0.2−0.100.10.20.3

0.04

0.045

0.05

0.055

0.06

0.065

sum(coeff arrayfun(φ,sqrt(sum((ones(NoRuns,1) [x,y]−NestI)2,2))))

y

x

(b) φ(r) =
√
r2 + d2

Minimum: (0.0076 ; -0.0269) for
0.0500

Figure 28: Direct interpolation on the distortion with multiquadric RBF at Ma 0.8
(d: mean distance between interpolation points)

• Mach 1.1 (see figure 29): the two optimal positions found are near the corners

(0.1 ; 0.3) and (0.1 ; -0.3) ; from the plot of the surfaces (and also from the

distortion at those two points), it seems that the global minimum is located

in (0.1 ; -0.3). Two valleys are also observed near y=-0.3 and 0.3. The MMC-

S/POD was giving an optimal position at (0.0550 ; -0.1950), for a distortion

of 0.0476 (with the solver ; POD: 0.0336).

• Mach 1.3 (see figure 30): the optimal position found is near (0.08 ; 0.29), which

seems to be, from the plots, a local minimum, and which also corresponds to

54

Automatic optimisation of the Bloodhound SSC air intake duct

−0.1

−0.05

0

0.05

0.1
−0.2

−0.1
0

0.1
0.2

0.3

0.03

0.04

0.05

y

sum(coeff arrayfun(φ,sqrt(sum((ones(NoRuns,1) [x,y]−NestI)2,2))))

x

(a) φ(r) =
√
r2 + 0.1 d2

Minimum: (0.0988 ; 0.3000) for
0.0349

−0.1

−0.05

0

0.05

0.1
−0.2

−0.1
0

0.1
0.2

0.3

0.03

0.04

0.05

0.06

y

sum(coeff arrayfun(φ,sqrt(sum((ones(NoRuns,1) [x,y]−NestI)2,2))))

x

(b) φ(r) =
√
r2 + d2

Minimum: (0.1000 ; -0.2790) for
0.0336

Figure 29: Direct interpolation on the distortion with multiquadric RBF at Ma 1.1
(d: mean distance between interpolation points)

the value found with the MMCS/POD ((0.1 ; 0.3) for a distortion of 0.0647).

However, the value near (-0.05 ; -0.25) could be the global minimum on the

design domain.

−0.1

0

0.1 −0.2 −0.1 0 0.1 0.2 0.3

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

y

sum(coeff arrayfun(φ,sqrt(sum((ones(NoRuns,1) [x,y]−NestI)2,2))))

x

(a) φ(r) =
√
r2 + 0.1 d2

Minimum: (0.0833 ; 0.2944) for
0.0691

−0.1

−0.05

0

0.05

0.1
−0.2

−0.1
0

0.1
0.2

0.3

0

0.02

0.04

0.06

0.08

0.1

0.12

y

sum(coeff arrayfun(φ,sqrt(sum((ones(NoRuns,1) [x,y]−NestI)2,2))))

x

(b) φ(r) =
√
r2 + d2

Minimum: (0.0703 ; 0.2938) for
0.0678

Figure 30: Direct interpolation on the distortion with multiquadric RBF at Ma 1.3
(d: mean distance between interpolation points)

So, this method seems more useful to find an area were the minimum distortion

could be, by plotting the function of the interpolated distortion, rather than getting

an automatic optimal solution.

It enabled to check the results obtained with the MMCS/POD, and, for some cases,

to have a rough idea of the influence of the parameters on the distortion.

55

Automatic optimisation of the Bloodhound SSC air intake duct

4 Conclusion

4.1 Brief summary of the work done

The following points have then been covered during this work:

1. Implement the MCS coupled with the POD into Matlab

2. Run this code for different configurations (changing the number of snapshots,

the number of control points / parameters, the Mach number . . .) and study

the results to have a better understanding of the influence of the various op-

timisation parameters on the POD reconstruction and on the optimisation

process

3. From this study, propose solutions to improve the optimisation process, and

implement them (or part of them): MMCS/POD

4. Compare this optimisation process to other usual approaches (genetic algo-

rithm without reduction order methods, and direct interpolation over the ob-

jective function) in terms of optimal solution found and computational require-

ments

In this report, the quality of the POD reconstruction has been studied first.

The influence of the number of snapshots, the number of control points and parame-

ters, the range of each design parameter and the Mach number have been understood,

as well as the way to reconstruct new configurations from the initial snapshots.

From this initial work, it has been decided to restrict the movement of the duct to

the displacement of the top of its inlet, on x and y directions. The twenty initial

snapshots, obtained from a Latin Hypercube sampling, have also been completed

with the four corners of the design domain, to have a better understanding of the

values on the boundaries of the domain.

56

Automatic optimisation of the Bloodhound SSC air intake duct

The aim was then to try to obtain an optimal solution at various Mach numbers.

For this purpose, a new method has been applied: the MCS/POD was run several

times, and the optimal solution at the end of each run was added to the snapshots,

to improve the quality of the reconstruction in the areas where the optimal solution

was supposed to be located. This new approach was called Multiple MCS/POD

(MMCS/POD).

To ensure the quality of the optimal solution found, two alternative techniques

have been used. The first one was the MCS without POD, which was implemented

and tested, but which unfortunately was developed too late to be run properly. It

would have certainly given a more accurate optimal solution in fewer generations

than the MMCS/POD, but would have also taken much more time and resources.

The second one consisted in a minimization using the direct interpolation of the dis-

tortion on the design domain. This method is of course the quickest, and only needs

a good initial sampling with the corresponding cases solved. However, it requires a

deeper study of the RBF used than for the interpolation of the PO coefficients. The

second problem is that, when the function representing the distortion on the domain

is minimized using a gradient-based method, it is very difficult to ensure the result

returned is the global minimum. This method should then be seen more as a way

to visualize (only for 1 or 2 parameters) the distortion in the design space than a

method to get the optimal solution for a problem.

The MMCS/POD approach thus seems to be a smart method to get an optimal

solution for a defined objective function, at least for a small number of parameters.

Some future work could then be carried out in the continuation of this 1-year

project ; some suggestions are listed in this last part.

57

Automatic optimisation of the Bloodhound SSC air intake duct

4.2 Future scopes

The following studies could be carried out in the continuation of this work:

• improvement of the MMCS/POD: it has been indeed noticed that the

final solution seemed to be really close in most cases to an initial nest ; this

behaviour may be due to the reconstruction of the PO coefficients ;

• addition of some geometry control points, extension of the range of

the parameters and addition of the position of the control nodes into

the parameters: this would enable a real flexibility in the movement of the

geometry, but it can be limited by the quality of the deformed mesh ;

• influence of the type of sampling: Latin-Hypercube was enough for two

parameters, but if the number of control points is increased, a sampling like

Central Composite or Box-Behnken would be much more sensible ;

• launch and study of the MCS without POD: the code for this method

is already implemented and working ; it should require at least one week of

computation on a parallelized cluster, with as many processors as initial nests,

to run 50 generations with a convergence criterion for the solver of -3 ;

• extension to 3D: once the 2D case will be working for a large number of

parameters, the 3D optimisation process will be very similar to the one in 2D

; the real obstacle there should be the very high number of parameters, which

the MCS manages with no difficulty, but may require more work on the POD

part.

58

Automatic optimisation of the Bloodhound SSC air intake duct

Appendices

A Mesh Movement Method

In this project, the initial connectivity must be kept whatever the configuration. To
achieve this, a mesh movement technique has been developed by Caner Kara (MSc.
in Computational Mechanics 2010-2012).

The mesh movement technique is based on an initial mesh that will then be
deformed by the displacement of some control points (selected boundary nodes).
The technique employed here can be split into two parts.

• First, on the initial mesh, in a ‘neutral’ position (figure 31):

0 5 10 15

−1

0

1

2

3

Figure 31: Initial mesh and control point (red)

1. Define the boundaries with the boundary nodes (figure 32)

0 50 100 150
−150

−100

−50

0

50

100

150

(a) Whole
domain

0 5 10 15

−1

0

1

2

3

(b) Zoom on the car

Figure 32: Boundary nodes
2. Create a Delaunay graph from the boundary nodes (figure 33)

• Then, construct the new deformed mesh:

1. Displace the control nodes as prescribed

59

Automatic optimisation of the Bloodhound SSC air intake duct

−5 0 5 10 15

−8

−6

−4

−2

0

2

4

6

8

10

(a) Whole domain
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b) Zoom on the car

Figure 33: Delaunay graph on boundary nodes

2. Displace the boundary nodes using on Radial Basis Function (RBF) ap-
proach. This is the main part of the mesh-movement work done by Caner
Kara: defining the ranges and calculating the proper RBF coefficient and
moving the control point with it.

3. Displace the internal nodes using the barycentric coordinates (Fast Dy-
namic Grid Deformation Based on Delaunay Graph Mapping, detailed in
[7]), as shown in figure 34

Figure 34: Internal nodes displacement using barycentric coordinates

The new deformed mesh is then obtained (figure 35).

0 5 10 15

−1

0

1

2

3

Figure 35: Deformated mesh (top of the mouth displaced of (0.3;0.5)

For more information about this mesh movement technique, the reader may refer
to Caner Kara’s Master thesis report ([4]) and to [7].

60

Automatic optimisation of the Bloodhound SSC air intake duct

B Main code

Clear all

I. Generate an initial set of eggs

↪→ Data given by user:
- number of dimensions (NoDim)
- domain for each parameter (vardef)
- number of nests/eggs (NoNests)
- number of iterations for the solver (NoIter)
- Mach number (Ma), for the solver
- engine front mass flow (engFMF), for the solver
- path to the executables (pathexec)
- nodes (identifiers and coordinates) defining the plane to compute distortion
- (if needed: whether or not the solver will be run on cluster (runOnCluster))

1. Generate random sets of parameters
NestI = LHC(vardef, NoNests)

2. Generate corresponding .dat files
@meshfunc(del, mesh, Nest(i,:), rect, fnames{i}) , for i=1 . . . NoNests
Names of .dat files: duct‘i’.dat ; all contained in cell fnames

3. Preprocess (Flite2D preprocessor)
preproFlite2D(fnames, pathexec)
Creates unformatted ‘.sol’ files

4. Solve (Flite2D solver)

- On a PC:
solveFlite2D(runOnCluster,fnames,NoIter,Ma,engFMF,pathexec)

Creates .inp files, and solves each case

- On the cluster:
solveFlite2Dc(fnames, NoIter, Ma, engFMF,pathexec)

Creates .inp files, writes a file batchSolv, which contains all the ‘qsub’
commands, and should be executed by the user on the master

5. Get fitness for initial nests
F(i,1) = getDistortion([fnames{i} ‘.resp’], engInl)
(only for nests inside the domain, if needed)

61

Automatic optimisation of the Bloodhound SSC air intake duct

6. Get PO modes and coefficients for initial nests
[modes, coeff] = pod_imodes(NestI, fnames,NoNodes)
Does a proper orthogonal decomposition (POD), using singular value decom-
position

II. Cuckoo Search iterations

↪→ Data given by user:
- number of generations (K)
- maximum number of steps for a random walk (MaxNoSteps)
- maximum distance for a random walk (A)
- fraction of discarded eggs (pa)
- constrained to domain (constrain)

Here, the coordinates (parameters) are sealed between 0 and 1.

For each generation G:

1. Sort nests by fitness

2. For each discarded egg:

- Do a Lévy flight with step α = A√
G

- Replace position and fitness (evaluated with function evalFitness, de-
scribed below) if inside the domain (if needed, ie constrained= 1)

3. For each ‘top’ egg:

- Pick a random egg among ‘top’ eggs

* if same egg: do a Lévy flight with step α = A
G2

* if different eggs: move from worst (xw) to best (xb) egg with distance
‖xw−xb‖

φ
where φ = 1+

√
5

2 (golden ratio) ; if same fitness, move half
way

- Replace position and fitness (evaluated with function evalFitness), if
inside the domain (if needed, ie constrained= 1), and if better fitness
than a random nest.

62

Automatic optimisation of the Bloodhound SSC air intake duct

Function evalFitness(pos, del, mesh, NestI, modes, coeff)

Returns fitness F for given position pos

• (Create geometry and mesh from position pos: [xy, connec] = ductsnap3b(del,
mesh, pos)) → useless if the plane to compute distortion is fixed (here, con-
tained in engInl)

• Reconstruct results with POD (j=1. . . 5):

- interpolate coefficients in function of position:
newcoeff = interpol(NestI, coeff’, pos)’

- find results: pressField = modes * newcoeff

• Get fitness: F = getDistortion2(pressField,engInl)

III. Final solution
Take the best nest at the end of the final generation

63

Automatic optimisation of the Bloodhound SSC air intake duct

C Main Python script for MCS without POD

totalMCS.py
#!/ usr / bin / python
−∗−coding : u t f−8 −∗

import os , time , s t r i n g , subproces s

#−−−#
Function ’ waitJob ’ , to wait f o r job ’ idJob ’ to f i n i s h
de f waitJob (idJob) :

whi l e True :
p = subproces s . Popen (["qstat" , idJob] , s tdout=subproces s . PIPE ,

s t d e r r=subproces s . PIPE)
i f p . wait () !=0 :

break
time . s l e e p (10)

#−−−#

User Inputs
s t a r t S c r a t c h = "n"
NoGen = 50

Choose : use i n i t i a l n e s t s or compute new ones
i f s t a r t S c r a t c h == "y" :

p r i n t "Starting␣from␣scratch"
i s t a r t = 1
p r i n t "Creating␣a␣random␣sampling"
Sampling
p = subproces s . Popen (["qsub" , "batchSampl"] , s tdout=subproces s . PIPE)
p . wait ()
IDSAMPL = p . communicate () [0]
IDSAMPL = IDSAMPL[0 : −1]
Wait f o r the end o f sampling
waitJob (IDSAMPL)

e l i f s t a r t S c r a t c h == "n" :
p r i n t "Starting␣from␣initial␣nests"
p r i n t "Generation␣1"
F i r s t genera t ion o f MCS
p = subproces s . Popen (["qsub" , "batchMCSGen1"] , s tdout=subproces s . PIPE)
p . wait ()
IDMCS = p . communicate () [0]
IDMCS = IDMCS[0 : −1]
i s t a r t = 2

Wait f o r the end o f MCS 1 s t genera t ion
waitJob (IDMCS)

General MCS process (i t e r a t i o n = genera t ion)
f o r i in range (i s t a r t , NoGen+1) :

p r i n t "Generation␣" , i

Meshing

64

Automatic optimisation of the Bloodhound SSC air intake duct

i f i !=1:
p = subproces s . Popen (["qsub" , "-W" , "depend=afterany:"+IDMCS, "batchMesh"] ,

s tdout=subproces s . PIPE)
e l s e :

p = subproces s . Popen (["qsub" , "batchMeshGen1"] , s tdout=subproces s . PIPE)
p . wait ()
IDMESH = p . communicate () [0]
IDMESH = IDMESH[0 : −1]

Preprocess ing
p = subproces s . Popen (["qsub" , "-W" , "depend=afterany:"+IDMESH, "batchPrepro"] ,

s tdout=subproces s . PIPE)
p . wait ()
IDPREPRO = p . communicate () [0]
IDPREPRO = IDPREPRO[0 : −1]

Prepare So l v ing
p = subproces s . Popen (["qsub" , "-W" , "depend=afterany:"+IDPREPRO, "batchPreSolv"] ,

s tdout=subproces s . PIPE)
p . wait ()
IDPRESOLV = p . communicate () [0]
IDPRESOLV = IDPRESOLV[0 : −1]

Wait f o r the end o f s o l v i n g prepara t ion
waitJob (IDPRESOLV)

So lv ing (1 qsub / case to s o l v e)
os . chd i r (’./Data’)
p = subproces s . Popen (["sh" , "./ batchSolv"] , s tdout=subproces s . PIPE)
os . chd i r (’..’)
p . wait ()
IDsSOLV = p . communicate () [0]
IDsSOLV = s t r i n g . r e p l a c e (IDsSOLV , ’\n’ , ’:’)
IDsSOLV = IDsSOLV[0 : −1]
p r i n t IDsSOLV

MCS Generation
i f i !=1:

p = subproces s . Popen (["qsub" , "-W" , "depend=afterany:"+IDsSOLV , "batchMCS"] ,
s tdout=subproces s . PIPE)

e l s e :
p =

subproces s . Popen (["qsub" , "-W" , "depend=afterany:"+IDsSOLV , "batchMCSGen1"] ,
s tdout=subproces s . PIPE)

p . wait ()
IDMCS = p . communicate () [0]
IDMCS = IDMCS[0 : −1]

65

Automatic optimisation of the Bloodhound SSC air intake duct

References

[1] AGARD (Advisory Group for Aerospace Research & Development), NATO. Air
intakes for high speed vehicles (AGARD advisory report 270). September 1991.

[2] L. Cordier and M. Bergmann. Proper orthogonal decomposition: an overview.
Lecture series 2003-04 on post-processing of experimental and numerical data,
February 2003.

[3] L. Cordier and M. Bergmann. Réduction de dynamique par décomposition or-
thogonale aux valeurs propres (POD). March 2006. in French.

[4] C. Kara. A generic mesh movement method via radial basis function. Master
thesis, Swansea University, June 2012.

[5] G. Kerschen, J.-C. Golinval, A. Vakakis, and L.A. Bergman. The method of
proper orthogonal decomposition for dynamical characterization and order re-
duction of mechanical systems: An overview. Nonlinear Dynamics, 41:141–170,
2005.

[6] S. Walton et al. Modified cuckoo search: A new gradient free optimisation
algorithm. Chaos, Solitons & Fractals, 2011.

[7] X. Liu et al. Fast dynamic grid deformation based on delaunay graph mapping.
Journal of Computational Physics, 211:405–423, 2006.

[8] X.-S. Yang and S. Deb. Engineering optimisation by cuckoo search. International
Journal of Mathematical Modelling and Numerical Optimisation, 1(4):330–343,
2010.

66

	Introduction
	Motivation: the `Bloodhound SSC'
	General observations about optimisation
	Aim of this project

	Theoretical aspects, and implementation
	Summary of the optimisation problem
	Optimisation Algorithm: Modified Cuckoo Search
	Reduction-Order Method: Proper Orthogonal Decomposition
	Prerequisite: Singular Value Decomposition (SVD)
	Decomposition of the known pressure fields using Proper Orthogonal Decomposition (POD)
	Reconstruction of a new pressure field

	Mesh movement
	Summary of the method

	Results and observations
	Some numerical aspects
	Computational aspects
	Flite2D Preprocessor and Solver
	Computation of the distortion
	Parallelization of the initial cases computations
	Main problems encountered

	Proper Orthogonal Decomposition and Reconstruction
	Influence of the user inputs
	Influence of the interpolation function

	Influence of the initial sampling
	Optimisation algorithm
	Modified Cuckoo Search with POD
	Modified Cuckoo Search without POD
	Design Of Experiment (DoE) and direct distortion interpolation

	Conclusion
	Brief summary of the work done
	Future scopes

	Appendices
	Mesh Movement Method
	Main code
	Main Python script for MCS without POD

