
Swansea University

Master of Science Thesis

Numerical Modelling of
Membrane filtration using Lattice

Boltzmann and Finite Volume
Methods

Author:

Mahendra Paipuri

Supervisor:

Professor Oubay Hassan

A thesis submitted in partial fulfilment of the requirements

for the degree of Master of Science

in the

Zienkiewicz Centre for Computational Engineering (ZC2E)

College of Engineering

June 2014

http://www.swan.ac.uk
http://www.swansea.ac.uk/staff/academic/engineering/hassanoubay/
http://www.swansea.ac.uk/engineering/research/centres-and-projects/civil-and-computational-engineering/
http://www.swansea.ac.uk/engineering/


Declaration of Authorship

I, Mahendra Paipuri, declare that this thesis titled, ’Numerical Modelling of

Membrane filtration using Lattice Boltzmann and Finite Volume Methods’ and

the work presented in it are my own. I confirm that:

� A declaration that the work has not previously been accepted in substance

for any degree and is not being concurrently submitted in candidature for

any degree.

� A statement that the thesis is the result of your own investigations, except

where otherwise stated and that other sources are acknowledged by footnotes

giving explicit references and that a bibliography is appended.

� A statement that the student gives consent for the thesis, if accepted, to be

available for photocopying and for inter-library loan, and for the title and

summary to be made available to outside organisations.

Signed:

Date:

ii



Simulations are believed by no one except those who conducted them.

Experimental results are believed by everyone except those who conducted them.

Anonymous



SWANSEA UNIVERSITY

Abstract
College of Engineering

Master of Science

Numerical Modelling of Membrane filtration using Lattice Boltzmann

and Finite Volume Methods

by Mahendra Paipuri

The importance of simulations in membrane filtration is discussed. Various mod-

els in the literature to simulate different phenomena in membrane filtration like

cake formation, osmotic pressure and rejection of salts are briefly reviewed. The

origin of Lattice Boltzmann methods from kinetic theory is discussed along with

its implementation details. Implementing finite volume scheme to solve convection

diffusion equation is discussed in detail along with different differencing schemes

used to discretize convective terms on the faces of control volume. The idea of cou-

pling both fluid and solute particles to simulate the membrane filtration process is

discussed. Different approaches in implementing coupling between LB-LB and LB-

FV for solving fluid and solute particle respectively is discussed. DSPM-DE model

is briefly discussed in the context of salt rejection estimation for nano-filtration

membranes. Concentration polarisation is taken into account in the rejection mod-

elling by coupling DSPM-DE with solute distribution over the membrane surface.

Finally, results of various models are presented and compared to experimental

data wherever appropriate.
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Chapter 1

Introduction

1.1 Filtration and its importance

Filtration is one of the most important processes in the present industrial world.

According to the study conducted by Dr. E. Rabinowicz of M.I.T., presented at

the American Society of Lubrication Engineers, Bearing Workshop, in 1981, 70%

of components replacements are due to surface degradation. In hydraulic and

lubricating systems, 20% of these replacements result from corrosion, with 50%

resulting from mechanical wear. Proper filtration reduces the wear in a fluid sys-

tem, thereby extending machine parts lifetime. Also, minimising wear reduces the

maintenance costs of the plant and helps the system to achieve high performance

levels. Apart from this, filtration process is the backbone in several important

processes like waste-water management, treatment of drinking water etc. Scarcity

of fresh water in certain parts of the world driving people to look for alternative

sources. Desalination is one of the attractive techniques to produce fresh water

for human consumption and irrigation. Economically, it is expensive than the

conventional sources but it is one of the few rainfall-independent water sources.

The most common forms of desalination are distillation, ion exchange process and

membrane process. Distillation involves heating the salt water above its boiling

temperature, capturing the steam and condensing it. In ion exchange process,

cations and anions in the salt water are exchanged for carbonate cations and

calcium anions which can be precipitated leaving behind fresh water. Distillation

involves high energy consumption while ion exchange process is not suitable for

feed water with high salt concentration. Membrane filtration can be seen as a

1



Chapter 1. Introduction 2

process which can address these limitations. In the subsequent sections membrane

filtration is discussed in brief.

1.2 Membrane filtration

Membrane filtration involves the flow of feed over a semi-permeable membrane

where the solute particles bigger than the pore size of the membrane are trapped

allowing only clean water. There are two types of membrane filtration namely

dead end and cross flow membrane filtration. They are illustrated in the Fig. 1.1.

Cross-flow has the feed flow in the tangential direction to membrane surface while

the dead-end filtration has the flow normal to the membrane surface.

Figure 1.1: Dead end and cross-flow filtration

Cross-flow has the obvious benefit over dead end filtration in the performance of the

filtration process. Membrane filtration can also be classified based on the type of

solute particles the membrane surface retain. Microfiltration (MF), Ultrafiltration

(UF), Nanofiltration (NF) and Reverse Osmosis (RO) are common types. The

differences in operating conditions are tabulated in Table 1.1

RO can remove almost all of the dissolved salts, but the operating pressure is quite

high which involves high energy consumption. On the other hand, NF can remove

most of divalent ions and some of monovalent ions and can be operated at much

lower pressures. This makes NF an attractive option for desalination process.

It is also used in many other processes like waste-water management, ground

Mahendra Swansea University



Chapter 1. Introduction 3

Table 1.1: Characteristics of Membrane processes

Process Size of particles Operating Pressure Applications
(microns) (psi)

RO 0.0001-0.001 400-1200 Dewatering
NF 0.001-0.01 100-600 Desalination
UF 0.01-1 25-150 Purification of suspended

solids,macromolecules
MF 1-10 20-150 Bacteria removal

water treatment, removal of natural organic matter etc. Therefore, optimization

of membrane filtration process like NF is an active research area and at the same

time a huge challenge.

A major limiting factor in membrane filtration is formation of Concentration Po-

larisation (CP) and cake layer. Feed water passing through the membrane exerts

a drag force on the solute particles bringing them to the membrane surface. These

particles are rejected and retained near the membrane surface. As clean water is

passed through the membrane pores, the concentration of solute particles become

higher near the membrane surface as compared to the concentration in the bulk

solution as shown in Fig.1.2.

Figure 1.2: Concentration Polarisation and Cake Layer formation

The concentration of the solute particles is highest near the membrane surface and

decreases with the distance away from the surface. This concentration gradient

causes the solute to go back to the bulk solution based on the Fick’s law of diffu-

sion. The back transport of solute is an interesting phenomenon as it can be by

Mahendra Swansea University



Chapter 1. Introduction 4

several ways. Some of them are shear-induced diffusion, Brownian diffusion and

inertial lift. The way solute particles diffuse depends on its size. In addition to

diffusion, another transport mechanism is cross-flow. The feed cross-flow can take

the particles away from membrane by convection mechanism. Peclet number is an

important parameter quantifying the relative strength of convection and diffusion.

Cake layer can be formed near membrane surface in absence of sufficient diffusion

of solute particles. It severely deteriorates the flux through the membrane. Al-

though concentration polarisation decreases the performance of the membrane, it

is a temporary phenomenon and disappears when filtration stops. But this is not

the case with cake layer and it is a permanent phenomenon. Special treatments

of membrane surface is needed to get rid of cake layer.

Another important phenomenon in membrane filtration process is osmotic pres-

sure. Due to the development of polarized layer over the membrane surface, an

osmotic pressure is created due to difference of concentration of water on the op-

posite sides of membrane. Osmotic pressure acts opposite to applied pressure

and decreases the net flux coming out of the membrane. Song [1] developed a

parameter critical pressure which is determined solely from the thermodynamics

properties of the solution. This represents the maximum value of osmotic pressure

at a given critical filtration number (NFC) for non-interacting particles. If the

driving pressure was smaller than the critical pressure (∆P < ∆Pc) the colloidal

particles would not deposit and concentration polarization would be the dominat-

ing mechanism. On the other hand if the driving pressure were greater than the

critical pressure, cake formation would occur and the concentration polarization

layer above it would be at maximal value ∆Pc.

A lot of experiments are being conducted in membrane filtration to study the

phenomenon of concentration polarisation and cake layer and to optimize the pro-

cess. Experimental study of membrane characteristics is generally very complex

and time consuming procedure. A typical experimental procedure consists of de-

termining the size of solute particle, treating solute particles with an appropriate

solvent and treating membranes. This process usually takes long time and each

experiment with different input parameters needs a lot of work. Therefore, one

obvious replacement for this is development of computational models. In the fol-

lowing section, different models developed for membrane
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1.3 Membrane filtration models

Flux prediction and rejection prediction are two important parameters in mod-

elling a full-scale laboratory experiments. Flux prediction is important when the

organic and inorganic solute particles are involved. These particles tend to form

cake layer severely deteriorating flux through membrane. When the solute par-

ticles are ions, tendency of the cake layer formation is almost zero. This can be

attributed due to charge effects between ions and membrane surface and relatively

small size of ions when compared to pore size of the membrane. Rejection is

amount of solute particles that are retained by the membrane surface. This is one

of the important factors in studying the characteristics of different NF membranes.

There are different models developed to predict flux and rejection.

1.3.1 Membrane pore models

The performance of NF membranes depends on pore size (steric effect) and effec-

tive charge density (Donnan effect) of the semi-permeable membrane. The fun-

damental relationship governing the transport of ionic species through membrane

pores is the extended Nernst-Planck equation. Tsuru et al. [2] first proposed the

model based on extended Nernst-Planck equation to describe the transport of the

ions through membrane pores. This model included the convective, diffusive and

electrostatic effects of ions in solution. Bowen [3] developed a model to account for

steric effects along with charge effects. It uses the extended Nersnt-Planck equa-

tion at membrane surface and hindered nature of transport inside the membrane

pores. Later, Bowen et al. [4] developed Donnan-steric-pore model (DSPM) that

takes the hindrance effects for diffusion and convection flow inside the membrane

pores.

These models were successful in predicting the rejection of dissolved salts in NF to

a good accuracy. One apparent drawback of these models is inability to predict the

permeate flux. Permeate flux depends on the concentration on feed side and per-

meate side of the membrane by Vant Hoff equation. Several models assume that

the membrane wall concentration is same as the bulk concentration which is valid

only when the bulk concentration is very dilute. But when bulk concentration is

high, concentration polarisation should be taken into account. These models con-

sider the concentration of the ions is same all along the length of the membrane

surface. But in theory, due to the existence of concentration polarisation layer

the concentration varies over the length of the membrane. Another complication
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arises when multi-component salts where the rejection coefficient and concentra-

tion polarisation are coupled phenomenon. For instance, a mixture of monovalent

and bivalent salts in NF process will exhibit different rejection ratios. Therefore,

concentration polarisation models were developed to address this limitation.

1.3.2 Concentration polarisation models

Concentration polarisation models deal with predicting the concentration of so-

lute and permeate flux along the length of membrane in the polarised layer. This

model solves steady-state convection diffusion equation with appropriate bound-

ary conditions. The variation of the flux along the length is obtained by use of

either thermodynamic (osmotic pressure model) or hydrodynamic (filtration the-

ory) approaches. In the absence of cake layer, the above mentioned approaches

yield same result.

Bhattacharjee et al. [5] coupled concentration polarisation model with membrane

pore model to predict both permeate flux and ion rejection in NF membranes.

They could predict axial dependence of ion rejection and flux along the membrane

length. The analytical and semi-analytical models available in literature are for-

mulated by simplifying governing equations which makes them easy to study the

effects of different parameters on the performance of membrane systems.

Kim et al. [6] developed an analytical model which predicts the flux taking into

account the solute-solute interactions. Their model is cell based which depends

on the distance between the solute particles at the balance of different interaction

forces. This model assumes a fixed structure for concentration polarisation while

computing interactions. The model developed by Bhattacharjee et al. [7] over-

come this limitation. In this model they incorporated the interaction forces into

diffusion coefficient and osmotic pressure by use of statistical mechanics. None

of these models take cake layer into consideration and hence valid for only dilute

solutions. Another limitation of these models is they do not account the hydro-

dynamic effects of feed flow. Concentration polarisation and cake layer formation

affects the crossflow which influences permeate flux. Some of the above mentioned

limitations can be addressed by using CFD models. Most of the above stated

models uses a simplified form of convection-diffusion equation (CDE). The simpli-

fication are made upon some assumptions that made possible to obtain a closed

form of solution to CDE. Therefore, these models are not robust and cannot be

applied to every filtration process.
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1.3.3 CFD models

Development of a model with widespread applicability to membrane systems re-

quires robust techniques like CFD. There have been few attempts at modelling

membrane systems in CFD. This is due to the complexity of the problem and the

fact that empirical approaches described previously are computationally very effi-

cient. However, CFD models are needed if the flow in complex geometries, which

include recirculation, are to be studied.

Huang and Morrissey [8] used the finite element technique to solve for the con-

centration field with an approximate solution to velocity field while Lee [9] did a

similar analysis using finite difference scheme. Hansen et al. [10] used a spectral

method to solve Navier-Stokes equation for cross-flow and it can be applied to

complex geometries easily. Geraldes et al. [11] used finite volume simulations for

crossflow for a simple channel flow. They solved both flow and concentration fields

but they needed very fine mesh to get grid independent solution.

The main advantage of doing a CFD analysis is able to predict the permeate flux

for complex geometries and optimize the design to achieve higher flux. Empirical

models assume a fixed structure for cake formation and concentration polarisation.

CFD techniques can be used to predict the shape of cake layer and its thickness

which could be an important parameter in studying the fouling. The apparent

drawback in these models is the computational cost. Extremely refined meshes are

needed near membrane surfaces as cake layer and concentration polarisation layer

are thin compared to filter dimensions. Modelling of solute-solute interactions,

Donnan and steric effects is quite difficult with the CFD approach.

Kromkamp et al. [12] developed a model for micro-filtration using Lattice Boltz-

mann methods (LBM) which is based on kinetic theory of gases to predict both

hydrodynamics of crossflow and concentration polarisation. This model solves

Navier-Stokes equation for crossflow hydrodynamics and convection-diffusion equa-

tion for solute back-transport mechanism.The method has the added advantage of

dealing with complex geometries and multiphase flow. LB schemes can be imple-

mented on a parallel computer relatively easily which increases the computational

efficiency.
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1.4 Objectives of the research

The objective of this study is to model the membrane filtration process using ap-

propriate numerical techniques. After doing an extensive study of above stated

models, LBM model proposed by Kromkamp et al. is chosen. The reason for this

choice is the simplicity of LBM formulation and its robustness. This model simu-

lates the filtration process by solving solute and fluid in a coupled manner . The

details of this coupling will be explained in the subsequent chapters. Therefore,

this model can be considered as the extension of Kromkamp’s micro-filtration

model to nano-filtration making appropriate changes. The development of this

framework can be split into following components:

• Validate the implemented LBM code for micro-filtration with the results of

Kromkamp et al.

• Implement a osmotic pressure governed model for interacting solute particles

in nano-filtration

• Validate the implemented osmotic pressure NF model with the results avail-

able in the literature.

• Implement a cake predicting model for nano-filtration using coupled Lattice

Boltzmann methods and finite volume techniques.

• Validate the cake model for nano-filtration with some experimental data

available in the literature

• Implement a rejection prediction model in nano-filtration for ionic salts using

DSPM-DE model

• Validate the results of DSPM-DE model with experimental results by fitting

necessary parameters from experimental data

1.4.1 Thesis layout

This thesis is divided into 6 chapters. The description of each chapter is given

below

Chapter 1 deals with some of important phenomena governing cross-flow mem-

brane filtration process. Various models to simulate the filtration process are

discussed in a brief literature review followed by objectives of the research.

Mahendra Swansea University



Chapter 1. Introduction 9

Chapter 2 discusses the theory of Lattice Boltzmann methods. It starts with a

very brief introduction to various techniques in CFD and briefs about the kinetic

theory of gases. Evolution of Lattice Boltzmann methods from kinetic theory of

gases is given. The implementation procedure of LBM is discussed in detail along

with implementation of different types of boundary conditions in LBM.

Chapter 3 gives the theory of finite volume methods and the implementation details

of finite volume schemes for solving convection diffusion equation. Different types

of differencing schemes for convective term are discussed.

Chapter 4 discusses the different implementation strategies using LB schemes and

finite volume techniques to model different cases in micro-filtration and nano-

filtration given in the objectives of the research.

Chapter 5 discusses the results of the implemented models. The chapter starts

with results of benchmark problems used to validate the both LB and finite volume

solvers followed by results of different cases in micro-filtration and nano-filtration.

Chapter 6 discusses the remarks that can be made on the different models in

terms of their versatility, applicability and shortcomings. The scope for additional

research and further development are given.
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Chapter 2

Theory of Lattice Boltzmann

methods

2.1 Computational fluid dynamics (CFD)

Computational fluid dynamics is the study of transport phenomenon by solving

the partial differential equations (PDEs) using appropriate numerical methods.

Over the past five decades several methods have been proposed to solve Navier-

Stokes (NS) equations in discrete space and time. A brief overview of traditional

CFD is discussed.

For Newtonian fluids, the NS equations in Einstein notation are given as follows:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (2.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τ sij
∂xj

+ ρbi (2.2)

∂(ρe)

∂t
+ (ρe+ p)

∂ui
∂xi

=
∂(τijuj)

∂xi
+ ρbiui +

∂(q̇i)

∂xi
(2.3)

where ρ is density of fluid, ui is the velcoity in ith direction, τ sij is stress tensor, bi

is body force, e is internal energy, q̇ is heat source. Eq. 2.1 is mass conservation,

Eq. 2.2 is conservation of momentum and Eq. 2.3 is energy conservation. Eq. 2.2

11
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is obtained by using Newton’s second law which is conservation of momentum to

a control volume. When combined with conservation of mass and energy, these

equations describe the bulk transport of the macroscopic properties of a fluid.

Finite difference methods (FDM), finite element methods (FEM) and finite vol-

ume methods are most popular in numerical discretization techniques. The idea

of FDM is to approximate derivatives using Taylor’s series. Forward difference,

backward difference and central difference being most common. FDM works best

with a regular grid when the geometry is highly structured. In FEM the solution

is calculated in all the elements in the domain using basis functions. The accuracy

of the solution is highly dependent on the basis functions. However, FEM are not

locally conservative and also have stability issues in compressible flows. The most

popular and successful technique in CFD is finite volume method (FVM). In this

method, the whole domain is subdivided into control volumes. By applying diver-

gence theorem to transport equations yields the discretised equation which is the

flux balance equation. It can applied to unstructured geometries and various kinds

of PDEs. But the limitation is implementation of higher order schemes (higher

than second order) is difficult in FVM.

All these techniques use NS equations which are considered as macroscopic view

of fluid flow. Unlike the above methods, there exits microscopic methods like

Molecular Dynamics (MD) simulations, Dissipative Particle Dynamics method

(DPD), Smoothed Particle Hydrodynamics (SPH) and Lattice Boltzmann methods

(LBM) etc.

2.2 Lattice Boltzmann methods (LBM)

In the last two decades, the Lattice Boltzmann methods (LBM) have emerged as

a promising tool for modelling fluid flow problems. It is fundamentally based on

kinetic theory of gases which is explained in detail in subsequent sections.

2.2.1 Kinetic Theory of Gases

In a dilute gas where particles are moving at high velocity, it would be possible

to know the dynamic state of the system by knowing the position vector (x) and

momentum (p) of each individual particle at some instant in time. By using clas-

sical mechanics principles, using the present state of the system future states can

be predicted. A system can be described by a distribution function fN(xN ,pN , t)
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where N is the number of particles. The function f is the distribution function

of a particle occupying the space with co-ordinates given by x at time t with a

momentum of (p). This level of description is not practical as there will be as

many as 1023 molecules in a litre of any gas at atmospheric conditions. Also, the

interactions at the microscopic level are not of much practical importance when

considering the bulk effect.

To overcome the above stated shortcomings, concept of ensemble is used in first

order distribution functions. The distribution f 1(x,p, t) gives the probability of

finding a particle with a given position and momentum and the positions and

momenta of the remaining molecules need not be specified. This is the single

particle distribution function.

The probability of number of molecules with positions between x ± dx and mo-

mentum p± dp is given by f 1(x,p, t)dxdp. Let an external force F that is small

relative to intermolecular forces is applied to the system. At time t+ dt, the new

positions of molecules starting at x are x + dx and the new momenta are p +

dp. Thus, when the positions and momenta are known at a particular time t,

incrementing them allows us to determine f 1 at a future time t+ dt.

f 1(x + dx,p + dp, t+ dt)dxdp = f 1(x,p, t)dxdp (2.4)

There are however collisions that result in some points starting at (x, p) not

arriving at (x + dx, p+ dp) and some not starting at (x, p) arriving there too.

We set Γ(−)dxdpdt equal to the number of molecules that do not arrive in the

expected portion of phase space due to collisions during time dt. Similarly, we set

Γ(+)dxdpdt equal to the number of molecules that start somewhere other than (x,

p) and arrive in that portion of phase space due to collisions during time dt. If

we start with Eq. 2.4 and add the changes in f 1 due to these collisions we obtain

f 1(x + dx,p + dp, t+ dt)dxdp = f 1(x,p, t)dxdp + [Γ(+) − Γ(−)]dxdpdt (2.5)

Using Taylor series expansion for LHS in Eq. 2.5 gives the Boltzmann equation.

The velocity vector is denoted by ξ in Eq. 2.6.

ξ · ∇x + F · ∇pf
1 +

∂f 1

∂t
= Γ(+) − Γ(−) (2.6)
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2.2.2 Discretization of the Boltzmann Equation

A brief overview of time and space discretization of the Boltzmann equation is

given here. For detailed explanation, Li-Shi [13] work can be referred.

In the Boltzmann equation, Eq. 2.6, the collision operator on the RHS is complex.

By appropriate choice of collision operator in Boltzmann equation, Navier-Stokes

equations can be recovered. One of the most frequently used simplifications for

collision operator is linearisation which was first proposed by Bhatnagar, Gross

and Krook (BGK) [14]. The BGK approximation assumes that the effect of the

collision between particles is to drive the fluid in a linear fashion towards a local

equilibrium state, f eq. This approximation simplifies Boltzmann equation to

ξ · ∇x + F · ∇pf +
∂f

∂t
= −1

τ
(f − f eq) (2.7)

where τ in Eq. 2.7 is relaxation time and equilibrium distribution function (EDF),

f eq can be described by the Maxwell-Boltzmann distribution

f eq(x, ξ, t) =
ρ(x, t)

(2πkT (x, t))Dm/2
exp [

−(u(x, t)− ξ)2

2kT (x, t)
] (2.8)

where in Eq. 2.8, k is the Boltzmann constant, Dm is the dimension of the space,

and ρ, u and T are the microscopic density of mass, velocity and temperature re-

spectively. Macroscopic variables can be expressed as moments of the distribution

function, f

ρ =

∫
fdξ =

∫
f eqξ (2.9a)

ρu =

∫
ξfdξ =

∫
ξf eqξ (2.9b)

ρe =
1

2

∫
(ξ − u)2fdξ =

∫
(ξ − u)2f eqξ (2.9c)

2.2.2.1 Discretization in time

Eq. 2.7 can be rewritten in the form of an ordinary differential equation

df

dt
+

1

λ
f =

1

λ
f eq (2.10)
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where d
dt

= ∂
∂t

+ ξ · ∇ is the time derivative in the characteristic line ξ. Eq. 2.10

can be integrated over the time step of ∆t and simplifying the resulting equation

using the Taylor series yields

f(x + ξ∆t, ξ, t+ ∆t)− f(x, ξ, t) = −1

τ
[f(x, ξ, t)− f eq(x, ξ, t)] (2.11)

where τ in Eq. 2.11 is dimensionless relaxation time. Eq. 2.11 is obtained by

neglecting the terms of order O(∆t2) and is therefore first order accurate.

The evaluation of moments in Eq. 2.9 needs appropriate discretization in momen-

tum space. They can be calculated numerically using quadrature upto a certain

degree of accuracy.

2.2.2.2 Discretization in space

The equilibrium distribution function can be obtained by using Taylor’s series and

truncating it to low velocities (i.e. Low Mach number approximation) is given in

Eq. 2.12.

f eq(x, ξ, t) =
ρ(x, t)

(2πRT (x, t))Dm/2
exp [−ξ2/2RT (x, t)]{1+

(ξ · u)

RT
+

(ξ · u)2

2(RT )2
− (u)2

2RT
}+O(u3)

(2.12)

The space discretization is governed by important considerations. The discretiza-

tion should result in a lattice structure and quadrature used in evaluating the

moments should be accurate enough to conserve mass, momentum and energy.

Calculating the hydrodynamic moments of f eq is equivalent to evaluating the fol-

lowing integral

I =

∫
Ψ(ξ)f eqdξ (2.13)

where Ψ(ξ) is a polynomial of ξ. The above integral can be evaluated by using

Guassian-type quadrature. The choice of space discretization depends on choice

of Ψ(ξ). Some popular choices are as follows

Two dimensional 6-bit and 7-bit triangular lattice

Ψm,n(ξ) = (
√

2RT )m+nζm+ncosmθsinnθ (2.14)

Mahendra Swansea University



Chapter 2. LBM 16

where in Eq.2.14, ζ = ξ/
√

2RT

Two dimensional 5-bit and 9-bit Square lattice

Ψm,n(ξ) = ξmx ξ
n
y (2.15)

where in Eq. 2.15, ξx and ξy are the components of ξ and m and n are the degree

of polynomial in x and y directions respectively.

By employing appropriate weights, in a 9-bit square lattice the equilibrium distri-

bution function can be simplified as follows:

f eqα = wαρ{1 +
3(eα · u)

c2
+

9(eα · u)

2c4
− 3u2

2c2
} (2.16)

where in Eq. 2.16, w is weight in each direction, e referred as ξ in Eq. 2.6 is

velocity vector in each direction and c is the speed of sound i.e.
√

3RT whereas

subscript α denotes the different directions in the lattice.

The direction vectors and weights in a 9-bit square lattice are as follows

eα =


(0, 0), α = 0

(cosθα, sinθα)c, θα = (α− 1)π/2, α = 1, 2, 3, 4
√

2(cosθα, sinθα)c, θα = (α− 5)π/2 + π/4, α = 5, 6, 7, 8

(2.17)

wα =


4/9, α = 0

1/9, α = 1, 2, 3, 4

1/36, α = 5, 6, 7, 8

(2.18)

The arrangement of 9-bit square lattice is shown schematically in Fig. 2.1.

The next step is to correlate the LBM with traditional CFD in which Navier-Stokes

equations are solved. This correlation is done using Chapman-Enskog theory which

is discussed in next section.
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Figure 2.1: Two Dimensional 9-bit model

2.3 Chapman-Enskog Theory

As it is stated earlier, Lattice Boltzmann schemes describe in the mesoscopic scale

while the Navier-Stokes equations in macroscopic scale. In order to connect these

scales, Chapman-Enskog expansion can be used to recover Navier-Stokes equation

from the Lattice Boltzmann equation in continuum limit. This can be done by the

introduction of a new dimensionless number called Knudsen number. It is defined

as the ratio of mesoscopic (L) length scale and macroscopic length scale (Lh).

ε =
L

Lh
(2.19)

An asymptotic analysis is carried out to show the coupling between Navier-Stokes

and Lattice Boltzmann equations. Consider Eq.2.7 and expand LHS in Taylor

series around (x, t). The distribution function is expanded in an asymptotic series

near equilibrium as following

f = f eq + εf (1) +O(ε2) (2.20)

The RHS of the Eq. 2.7 is also expanded similar to Eq. 2.20. The macroscopic

and mesoscopic scaling for time and space is established using Knudsen number.

Now both LHS and RHS of Eq. 2.7 expanded in terms of ε. Using asymptotic

theory, it follows that all terms of same order in ε have to be equal. Now equating

the corresponding coefficients and taking the moments will give the macroscopic

conservation of mass and momentum Eq. 2.9. Now comparing them with Navier-

Stokes equations gives
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p = c2
sρ (2.21a)

ν = ρc2
s∆t(τ −

1

2
) (2.21b)

In the Eq. 2.21, cs is speed of sound and is equal to c/3, ρ is density and p is

pressure. Also, it gives the relation between kinematic viscosity of Navier-Stokes

and relaxation time of lattice Boltzmann methods. It is obvious from the relation

that the relaxation time should be more than 0.5 to avoid negative viscosity which

is non-physical.

2.4 Implementation of LBM

This section focuses on how to implement the Lattice Boltzmann schemes to solve

the flow problems. Going back to Lattice Boltzmann equation with BGK approx-

imation, Eq. 2.7, the whole equation can be seen in two different stages. The LHS

term in the equation is commonly referred as ’streaming’ step while the RHS term

is called ’collision step’. Thus, algorithmically, LBM can be implemented in two

different stages. They can be represented as follows

CollisionStep : f(x, t+) = f(x, t)− 1

τ
[f(x, t)− f eq(x, t)] (2.22)

followed by streaming step

StreamingStep : f(x + eαδt, t) = f(x, t+) (2.23)

where t+ is the imaginary intermediate time step. Schematically, it can be shown

as in Fig. 2.2.

The macroscopic fluid density and velocities are computed by taking the moments

of the particle distribution function. They are as follows

ρ(x, t) =
8∑
i=0

fi(x, t) (2.24)
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Figure 2.2: Streaming step in LBM

u(x, t) =
1

ρ

8∑
i=0

eifi(x, t) (2.25)

This process of collision and streaming is applied to all lattice points in the domain

for every time step. The simplicity of the algorithm lies in the streaming step

which is the non-linear advection term in Navier-Stokes equation. Also, pressure

is computed using ideal gas equation in LBM while it is calculated using pressure-

poisson equation in traditional finite volume techniques which involves iterative

strategy. The whole algorithm is shown in Algorithm 1.

input : Lattice points, Initilization of ρ, u, f
output: ρ, u, p

for i← 1 to nx do
for j ← 1 to ny do

Compute f eq from Eq. 2.16
Collision Step from Eq. 2.22
Streaming step from Eq.2.23
Compute macroscpic ρ,u from f̂ from Eq. 2.24, 2.25

end

end
Algorithm 1: Lattice Boltzmann Algorithm

During the streaming and collision step, the boundary nodes need special treat-

ment on the distribution functions in order to satisfy the imposed macroscopic

boundary conditions.
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2.5 Boundary conditions

The two most widely used boundary conditions are no slip boundary conditions

and velocity or pressure boundary conditions. No slip BC is referred as bounce-

back BC in LBM literature.

2.5.1 Bounce-back BCs

The no-slip boundary condition occurs at the interface of the fluid and the station-

ary solid wall. The no-slip boundary condition can be implemented by the bounce

back method which reflects the particle distribution functions at boundary nodes

in the direction of incidence. However the bounce-back boundary condition is only

first order accurate in most of the situations. It can be applied in two steps which

gives second order accuracy. It is called second order bounce back BC.

2.5.1.1 First order Bounce back BC

The nodes lying within the wall region are called solid nodes and the nodes in the

fluid region are fluid nodes. The single step bounce back method is applied at the

fluid nodes just before the solid nodes. The post collision distribution functions

ready to be streamed to the solid nodes are redirected in the opposite direction

instead being streamed. The single step bounce back procedure is shown in Fig.

2.3

Figure 2.3: First order Bounce back BC

Mahendra Swansea University



Chapter 2. LBM 21

2.5.1.2 Second order Bounce back BC

The two step bounce back boundary condition is implemented in two time steps

and at the solid nodes placed just adjacent to the boundary. As indicated in Fig.

2.4 the particle distribution function at fluid nodes are relaxed at time t resulting

in three particle distributions pointing towards the respective solid nodes. They

are propagated to the solid nodes during the streaming process. The bounce-

back condition is then enforced on all the solid nodes by modifying the relaxation

process by reversing the direction of each of the distributions at these nodes. Then

the standard streaming process is performed so that the functions pointing in the

direction of the fluid are streamed back to the fluid node. Thus at time t+ 2 the

reflected particle distribution functions are at the fluid nodes where they started

ready to be relaxed. The advantage of the two step approach is that it is not

required to define the fluid boundary nodes. As the physical boundary is assumed

to lie halfway between the fluid node and the solid node the two step bounce back

condition is found to be second order accurate.

Figure 2.4: Second order Bounce back BC

2.5.2 Pressure and velocity BCs

The pressure and velocity BCs discussed here are proposed by Zou and He [15].

Same as in the case of bounce back BCs, particle distribution functions are cal-

culated from the macroscopic variables on the boundary nodes. It is explained in

the case of inflow for both velocity and pressure.

2.5.2.1 Velocity BCs

Consider the velocity ux and uy are prescribed on the inlet side of the domain as

shown in Fig. 2.5. After streaming, the distributed functions which are coming

inside the domain are unknown namely, f1, f5, f8 along with ρ.
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Figure 2.5: Velocity BC on the left side

Mass and momentum conservation equations can be written as follows

f1 + f5 + f8 = ρ− (f0 + f2 + f4 + f3 + f6 + f7) (2.26a)

f1 + f5 + f8 = ρux + (f3 + f6 + f7) (2.26b)

f5 − f8 = ρuy − f2 + f4 − f6 + f7 (2.26c)

From Eqs. 2.26a and 2.26b, by eliminating f1, f5, f8, density ρ can be calculated.

ρ =
1

1− ux
[f0 + f2 + f4 + 2(f3 + f6 + f7)] (2.27)

There are 4 unknowns and only 3 equations. This system of equations is closed

using the fourth equation that is obtained by the assumption that the bounce back

rule holds for the non-equilibrium part of the particle distribution function normal

to the boundary. The equation is

f1 − f eq1 = f3 − f eq3 (2.28)

Using Eqs. 2.28 and 2.26 and also expressions for equilibrium parts of f eq1 and f eq3

rest of unknowns can be determined.

f1 = f3 +
2

3
ρuy (2.29a)

f5 = f7 −
1

2
(f2 − f4) +

1

6
ρux +

1

2
ρuy (2.29b)

f8 = f6 −
1

2
(f2 − f4) +

1

6
ρux −

1

2
ρuy (2.29c)
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2.5.2.2 Pressure BCs

As stated earlier, the pressure is related to density through ideal gas equation

in LBM. Therefore, specifying pressure is equivalent to specifying density at the

boundaries. Following the same steps as in the case of velocity BCs, the unknown

particle distributions on left hand side along with velocity ux can be obtained.

They are

ux = 1− [f0 + f2 + f4 + 2(f3 + f6 + f7)]

ρin
(2.30a)

f1 = f3 +
2

3
ρinux (2.30b)

f5 = f7 −
1

2
(f2 − f4) +

1

6
ρinux (2.30c)

f8 = f6 +
1

2
(f2 − f4) +

1

6
ρinux (2.30d)

The BCs discussed above suit well for structured and straight boundaries. But in

reality, the geometries are very complicated and it is practically impossible to go

to a scale that will result in lattice points on the boundary of domain. Therefore,

there is a necessity to treat the curved boundaries separately in LBM. This is

briefed in next section.

2.6 Curved boundary conditions

There are two main difficulties in dealing with curved boundaries. Firstly, lattice

site is not necessarily located on boundary and it can be arbitrarily anywhere

between fluid and solid lattice. Secondly, density or velocity cannot be obtained

from conservation laws like in the case of straight boundaries as there are too

many unknowns and not enough equations to solve.

There are two different approaches in treating curved boundary conditions. The

first one is analagous to bounce back scheme, first proposed by Lallemand et al.

[16] which is the modification of bounce back by Junk [17] and reflection back

scheme with modification of velocity gradient to the non-equilibrium distribution

by Chen [18]. The second approach is based on the fitting of the distribution

function at the boundary nodes of the curved boundary. This was first proposed

by Filippova [19].
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2.6.1 Boundary fitting by Filippova-Hanel

Fig. 2.6 is adopted from Mei’s [20] paper illustrates boundary fitting concept by

Filippova [19]. The subscripts f denotes fluid lattice, w denotes wall and b stands

for boundary node. The important parameter to be defined in this context is ∆.

It is defined as

Figure 2.6: Curved boundary condition treatment

∆ =
|xf − xw|
|xf − xb|

(2.31)

After collision step, the distributed function in the direction from the solid to fluid

at the boundary node is interpolated from the post collision distribution function

in the opposite direction at the first fluid node and a fictitious distribution function

similar to equilibrium distribution function.

f̂α(t,xb) = (1− χ)f̂α(t,xf ) + χf̂ ?α(t,xb) + 2wαρ(t,xf )
u(t, f̂(t,xw)) · eα

c2
s

(2.32)

When the wall velocity u(t,xw) is zero, final term in Eq. 2.32 goes zero. The

fictitious distribution function is given as
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f ?α(t,xf ) = wαρ(t,xf )(1 +
eα · u(t,xb)

c2
s

+
(eα · u(t,xf ))

2

2c4
s

− u2(t,xf )

2c2
s

) (2.33)

where u(t,xb) is given as follows

u(t,xb) =

u(t,xf ), ∆ < 1/2

∆−1
∆

u(t,xf ) + 1
∆

u(t,xw), ∆ ≥ 1/2
(2.34)

The weight χ is determined by set of assumptions and using Taylor expansion.

The result obtained is as follows

χ =

2∆−1
τ−1

, ∆ < 1/2

2∆−1
τ
, ∆ ≥ 1/2

(2.35)

One of the obvious stability problem by above concept occurs when τ is close to 1.

This is addressed by Mei [20] by using u(t,xff ) instead of u(t,xf ) when ∆ < 1/2.

2.7 Porous media modelling in LBM

The method used in the present study is adopted from Freed [21] which is an

improvement on the model of Spaid and Phelan [22]. The idea is to include the

external forces into the fluid by changing velocities during collision step.

If F is the external body force and u is the pre-collision velocity, then new pre-

collision velocity including the force effect is

un = u +
F

2ρ
(2.36)

In the case of porous media, external force depends on the resistance of the mem-

brane. If Rm is the resistance of porous media, the new velocity field can be

expressed as

un = (1− 1

2τ
)u +

1

2τ
ù (2.37)
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where ù is defined as G·u where G is called velocity adjustment vector. It depends

on resistance and τ . It is given by Eq. 2.38

G =
1− (τ − 1/2)Rα

1 + 1/2Rα

(2.38)

where Rα is Rmν and ν is kinematic viscosity.
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Chapter 3

Finite Volume Methods for

Convection Diffusion Problems

The distribution of suspended particles in the membrane filtration process is gov-

erned by two different phenomena namely convection and diffusion. Convection is

the transport of particle due to bulk motion of the fluid whereas diffusion is the

movement of the particle due to concentration difference. Both phenomena are

collectively described by convection diffusion equation.

∂φ

∂t
+∇ · (uφ) = ∇ · (D∇φ) (3.1)

In Eq. 3.1, φ is the conserved quantity and it could be concentration, volume

fraction or mass fraction. u is the velocity vector and D is diffusion coefficient.

3.1 Basics of finite volume methods

In a finite volume scheme the domain is divided into small parts (the control

volumes) and governing equations are integrated inside the control volumes. The

most basic and simplest way is to divide a structured domain into finite number

of rectangular sub domains. Nodal points are used within these control volumes

for interpolating the field variable and usually, a single node at the centre of the

control volume is used for each control volume. By application of the Gauss-

divergence and integrating over each control volume will result the conservation

equations into flux balance equation.
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d

dt

∫
δV

φdV +

∫
δS

n · uφdV =

∫
δS

n ·D∇φdV (3.2)

Eq. 3.2 can be interpreted as flux balance inside the control volume where V is

the volume and A is the area of the face. The rate of change of the φ in δV is

equal to the rate of transport of φ through δS by convective flux and diffusive

flux. Eq. 3.2 is for any arbitrary shape for the control volume. If the rectangular

control volume is chosen, the equation simplifies even further resulting in algebraic

equation. This is explained in subsequent sections.

3.2 Finite volume discretization

Consider a rectangular domain divided into rectangular finite volumes as shown

in Fig. 3.1. The conservative field variable is calculated at the center of each finite

volume i.e. at P and hence it is cell centered.

Figure 3.1: Finite volume discretization

Let ∆x and ∆y be the grid spacing in x and y direction respectively. W,E,N and

S corresponds to west, east, north and south of the point P where the variable is

being calculated. Similarly, w, e, n, s corresponds to the faces in different directions

to point P . Now, taking the steady state convection-diffusion equation in 2-D and

then integrating through the control volume gives

∫
A

n · φudA =

∫
A

n · (D∇φ)dA (3.3)
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Eq. 3.3 represents the flux balance in a control volume. The left hand side gives

the net convective flux and the right hand side contains the net diffusive flux.

The principle problem in the discretization of the convective terms is the calcu-

lation of the value of transported variable at the control volume faces and its

convective flux across these boundaries. There are several methods available for

discretizing convective terms like central difference, hybrid scheme, flux limiting

schemes etc. An important point to mention here is diffusion process affects the

distribution of a transported quantity along its gradient in all directions, whereas

convection spreads influence only in the flow direction. This crucial difference

limits the grid size and the limit depends on relative strength of convection and

diffusion.

Eq. 3.3 can be simplified into a algebraic equation by replacing the integral with

flux terms.

(uxAφ)e−(uxAφ)w+(uyAφ)n−(uyAφ)s = (DA
dφ

dx
)e−(DA

dφ

dx
)w+(DA

dφ

dy
)n−(DA

dφ

dy
)s

(3.4)

where in Eq. 3.4 the terms in the parenthesis are flux in convection and diffusion

and subscripts refer to the walls in different directions with respect to point P .

It is convenient to two different variables F and Γ to represent convective and

diffusive fluxes.

F = Au (3.5a)

Γ = A
D

∆x
(3.5b)

Throughout, these symbols are used with appropriate subscripts to indicate dif-

ferent directions. Eq. 3.4 can be further simplified into the following

Feφe−Fwφw+Fnφn−Fsφs = Γe(φE−φP )−Γw(φP−φW )+Γn(φN−φP )−Γs(φP−φS)

(3.6)

As the field variable is calculated at cell centers, φE, φW , φN , φS are well defined.

As stated earlier, different strategies are possible in calculating φe, φw, φn, φs.
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3.2.1 Central difference scheme

One of the simplest way to compute the face values for the convective terms is to

linearly interpolate the cell center values on each side of the face. For a uniform

grid considered,

φe =
φP + φE

2
(3.7a)

φw =
φW + φP

2
(3.7b)

φn =
φP + φN

2
(3.7c)

φs =
φS + φP

2
(3.7d)

Substituting Eq. 3.7 into Eq. 3.6 and rearranging results in the following equation.

[(
Γw −

Fw
2

)
+

(
Γe +

Fe
2

)
+

(
Γs −

Fs
2

)
+

(
Γn +

Fn
2

)]
φP =(

Γw +
Fw
2

)
φW +

(
Γe −

Fe
2

)
φE +

(
Γs +

Fs
2

)
φS +

(
Γn −

Fn
2

)
φN (3.8)

Eq. 3.8 can be further simplified into the following simple algebraic equation.

aPφP = aWφW + aEφE + aSφS + aNφN (3.9)

where coefficients in Eq. 3.9 are defined as

aW = Γw +
Fw
2

(3.10a)

aE = Γe −
Fe
2

(3.10b)

aS = Γs +
Fs
2

(3.10c)

aN = Γn +
Fn
2

(3.10d)

aP = aW + aE + aS + aN + (Fe − Fw) + (Fn − Fs) (3.10e)
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When the velocity field is known in the entire domain, Eq. 3.10 can be applied

to each control volume which will result in the system of equations. The matrix

equations upon assembling are sparse and can be solved using suitable numerical

methods like LU decomposition methods.

3.2.1.1 Limitations of Central difference scheme

The fundamental properties any discretization scheme should posses are conserva-

tiveness, boundedness and transportiveness. In order to ensure the field variable

is conserved in the entire domain, the flux leaving the face of one control volume

should be same as the flux entering the adjacent control volume. This can be

achieved only through consistent flux interpolation formulae. The central differ-

ence scheme satisfies the conservativeness while the quadratic interpolation would

not result in conservative interpolation.

The field variable being solved should be bound within the boundary values of

the domain. This can be ensured by having the diagonal dominance in the matrix

system of equations. If the condition of diagonal dominance is not satisfied, the

calculated solution will have overshoots and undershoots around the physical re-

sult. In the case of central difference scheme, boundedness is satisfied when Peclet

number, Pe = F/Γ is less than 2. When Pe > 2, east coefficient become negative

and violates boundedness requirement.

When the flow is from left to right, the point P is solely influenced by its west

neighbour. Similarly, when flow is from right to left, P is influenced by east

neighbour. Ability of the interpolation scheme to identify the flow direction is

an important requirement to get physically realistic results. In central difference

scheme, the point P has its influence from both east and west neighbouring points.

Hence it cannot recognise the direction of flow and may fail at high Pe number.

Some of the above limitations of central difference scheme are addressed in Upwind

scheme which is discussed.

3.2.2 Upwind differencing scheme

One of the main drawback of the central differencing scheme is its inability to

identify the direction of flow. In a strongly convective flow from left to right,

the point P should get more influence from W then E. In upwind scheme, the

direction of flow is taken into account when computing the value at the cell face.
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This is done by making the value of field variable φ at a cell face to be equal to

the value at the upstream cell center. Mathematically, it is done in 1-D as follows

When the flow is in positive direction in both x and y directions, Fw > 0, Fe >

0, Fn > 0, Fs > 0, upwind scheme sets to

φw = φW (3.11a)

φe = φP (3.11b)

φs = φS (3.11c)

φn = φP (3.11d)

and the discretized equation becomes

FeφP − FwφW + FnφP − FsφS =

Γe(φE − φP )− Γw(φP − φW ) + Γn(φN − φP )− Γs(φP − φS) (3.12)

and upon rearranging to write in standard form gives

aPφP = aWφW + aEφE + aSφS + aNφN (3.13a)

aW = Γw +max(Fw, 0) (3.13b)

aE = Γe +max(0,−Fe) (3.13c)

aS = Γs +max(Fs, 0) (3.13d)

aN = Γn +max(0,−Fn) (3.13e)

aP = aW + aE + aN + aS + (Fe − Fw) + (Fn − Fs) (3.13f)

Upwind scheme uses consistent formulae to compute fluxes through faces and

hence is conservative. As long as the flow field is conservative, the scheme re-

sults in diagonally dominant matrix. This property satisfies the requirement of

boundedness. As the scheme accounts the direction of flow, it ensures the trans-

portiveness property is satisfied. The main drawback of the scheme is only being

a first-order accurate on the basis of Taylor’s series truncation error. Another

drawback can be observed when the flow is not aligned with the axis. The field

variable will get smeared in that situation which is commonly termed as ’artificial
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diffusion’. At higher Reynolds number, this artificial diffusion is high enough to

give physically unrealistic results.

3.2.3 Hybrid differencing scheme

Hybrid differencing scheme is the combination of central and upwind differencing

schemes. When the Peclet number is small, Pe < 2, central differencing scheme is

used and when Pe > 2, upwind scheme is used. Mathematically, it can expressed

as

aPφP = aWφW + aEφE + aSφS + aNφN (3.14a)

aW = max

[
Fw,

(
Γw +

Fw
2

)
, 0

]
(3.14b)

aE = max

[
−Fe,

(
Γe −

Fe
2

)
, 0

]
(3.14c)

aS = max

[
Fs,

(
Γs +

Fs
2

)
, 0

]
(3.14d)

aN = max

[
−Fn,

(
Γn −

Fn
2

)
, 0

]
(3.14e)

aP = aW + aE + aN + aS + (Fe − Fw) + (Fn − Fs) (3.14f)

Hybrid differencing scheme posses the favourable properties of the upwind and

central differencing schemes. The scheme is fully conservative, unconditionally

bounded and also has the transportiveness property. Hybrid scheme is chosen over

central difference scheme in the present work. Even though there are several higher

order methods like QUICK, flux limiting schemes (TVD) etc., hybrid scheme is

chosen because of its relative simplicity and implementation and computational

costs.

3.3 Boundary conditions

The two widely used boundary conditions in the case of solving convection diffusion

equation is fixed value of field variable i.e. Dirichlet boundary condition and free

outflow which is Neumann boundary condition. These BCs are incorporated into

the systems of equations as an external source term which goes on right hand side

of the system.
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3.3.1 Dirichlet BC

Consider the left side of the domain have a prescribed value of φA. Therefore,

there is no need to interpolate the face value of west side of the control volumes

sharing the left boundary as shown in Fig. 3.2. In this example, central difference

scheme is used to demonstrate the implementation of BC.

Figure 3.2: Boundary condition implementation in FV

Now going back to discretized Eq. 3.6 and applying the BC yields

Fe
2

(φP + φE)− FAφA +
Fn
2

(φP + φN)− Fs
2

(φP + φS) =

Γe(φE − φP )− 2Γw(φP − φA) + Γn(φN − φP )− Γs(φP − φS) (3.15)

From Eq. 3.15 it is clear that the west face convective flux term is FAφA. The

diffusive flux on the west face has a factor of 2. This can be explained from Fig. 3.2

that the distance from node P to other nodes N,E, S is ∆x and ∆y respectively,

while distance from P to west face, w is only ∆x/2. Now rearranging this equation

into standard form gives

aPφP = aWφW + aEφE + aSφS + aNφN + Su (3.16a)

aP = aW + aE + aN + aS + (Fe − Fw) + (Fn − Fs)− SP (3.16b)

Su = (2Γ + F )φA (3.16c)

SP = −(2Γ− F ) (3.16d)
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in Eq. 3.16 rest of the coefficients have their usual meaning. The same procedure

can be applied to any boundary and deduce the discretized equation in form of

Eq. 3.16.

3.3.2 Neumann BC

When the condition at the outlet is not known before, Neumann BC can be applied.

Mathematically, it can be written ∂φ
∂x

= 0. Using Taylor’s series, derivative of φ

can be approximated as

∂φ

∂x
=
φn − φn−1

h
(3.17)

Consider the right part of the domain is applied with free flow boundary condition.

Then according to the approximation in Eq. 3.17, φB = φP where φB is the

boundary value of field variable and φP is the value of the node of control volume

sharing its east face with the domain boundary. Using the same approach as in

the case of Dirichelet BC, the flux balance equation becomes,

FBφB −
Fw
2

(φP + φW ) +
Fn
2

(φP + φN)− Fs
2

(φP + φS) =

2Γe(φB − φP )− Γw(φP − φA) + Γn(φN − φP )− Γs(φP − φS) (3.18)

Now replacing φB with φP and rearranging the equation gives the following

aPφP = aWφW + aEφE + aSφS + aNφN + Su (3.19a)

aP = aW + aE + aN + aS + (Fe − Fw) + (Fn − Fs)− SP (3.19b)

aE = 0 (3.19c)

Su = 0 (3.19d)

SP = 0 (3.19e)

3.3.3 Robin BC

Combination of Dirichlet and Neumann BCs constitute Robin BC. In the case of

convection diffusion equation it can be expressed as
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αuxφ+
∂φ

∂x
= β (3.20)

where in Eq. 3.20, α and β are scalar constants. If α = 1 and β = 0, then

the boundary condition represents wall boundary condition. Physically, it can

explained as the convective flux coming to the wall is equal to the diffusive flux

and there by no particle accumulation on the wall. This particular BC is used as

membrane BC in the present work and its implementation is given below for any

arbitrary α and β = 0.

Lets consider φm is the field variable value at the boundary and φP is the node

center value of control volume sharing its face with the boundary. Now, rewriting

Eq. 3.20 in semi discretized form yields

φm =
2ΓφP

2Γ− αF
(3.21)

Now, Eq. 3.21 can be used in the discretized equation of control volume and

replacing the wall field value with the above expression.

3.4 Time discretization

Integration of transient convection diffusion equation in a control volume over a

time interval from t to t+ ∆t gives

t+∆t∫
t

∫
CV

∂φ

∂t
dV dt+

t+∆t∫
t

∫
CV

∇ · (uφ)dV dt =

t+∆t∫
t

∫
CV

∇ · (D∇φ)dV dt (3.22)

The unsteady term in LHS in Eq. 3.22 can be discretized as follows

∫
CV

 t+∆t∫
t

∂φ

∂t
dt

 dV = (φ− φ0)∆V (3.23)

where in Eq. 3.23, φ and φ0 are the field variables at time t and t+∆t respectively.

This is first-order backward differencing scheme obtained from Taylor’s expansion.

Higher order differencing schemes can be used to discretize the unsteady term. The

more general time discretization expressed is given as follows
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IT =

t+∆t∫
t

∂φ

∂t
dt =

[
θφ0 + (1− θ)φ

]
∆t (3.24)

where θ is weighting parameter. Different values of integrals IT for different values

of θ are tabulated below

Table 3.1: Time discretization for convection diffusion equation using finite
volume

θ 0 1/2 1
IT φ0∆t 1

2
(φ+ φ0)∆t φ∆t

In Table 3.1, when θ is 0 it is explicit time integration scheme where only field

variable at old time step is needed to know to compute the new value at present

time step. When θ = 1 the method is implicit and when θ = 1/2, the method is

called Crank-Nicolson scheme. Both implicit and Crank-Nicolson schemes needs

information at the present time step to compute the field variable. Hence they

result in a system of equations which has to be solved using numerical techniques.

This is discussed in next section. Explicit time stepping is relatively simple to

implement and computationally less expensive when compared to implicit and

Crank-Nicolson schemes. But explicit scheme is conditionally stable where as

implicit and Crank-Nicolson schemes are unconditionally stable. In the present

work, implicit time stepping is used.

3.5 System of equations

The final stage in solving any physical problem using numerical techniques is

solving the system of equations resulting from application of any discretization

technique. As outlined in previous sections, application of finite volume techniques

results in a algebraic equation for each control volume in the following form

aPφP +
∑
c

aCφC = Su (3.25)

where in Eq. 3.25, c represents the directions of neighbouring control volumes.

Globally, i.e., for all control volumes CVi(i = 1, ..., N) of the problem domain, this

gives a linear system of N equations.
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ai,jP φ
i,j
P +

∑
c

ai,jC φ
i,j
C = Si,ju (3.26)

for the N unknown nodal values of φi,j in the CV centers. Consider there are N

CVs in the direction of x and M in the direction of y as shown in Fig. 3.3.

Figure 3.3: Arrangement of CVs and nodes in 2-D

By numbering the CVs columnwise, the arrangement of unknown field variables

φi,j results in the system matrix A as follows



a1,1
P −a1,1

N · · · 0 · · · −a1,1
E · · · · · · 0

−a1,2
S

. . . . . . . . . · · · ...
...

. . . . . . . . . . . .

0
. . . . . . . . . −aN−1,M

E

−a1,2
W

. . . . . . . . .
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . −aN,M−1

N

0 · · · · · · −aN,MW 0 · · · −aN,MS −aN,MP



(3.27)

Linear solution methods can broadly be classified into two categories, direct or

iterative. Direct methods, such as Gauss elimination, LU decomposition etc. If

there are N CVs, then direct methods need N2 entries to be stored while only

5N of them are non-zero. They also do not take advantage of any initial guess

of the solution. Iterative methods on the other hand, can easily be formulated to

take advantage of the matrix sparsity. Since these methods successively improve

the solution by the application of a fixed number of operations, we can stop the

process when the solution at any given outer iteration has been obtained to a
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sufficient level of accuracy. As the outer iterations progress and we have better

initial guesses for the iterations of the linear solver, the effort required during the

linear solution also decreases.

The above formulation results in a sparse unsymmetric matrix. HSL [23] library

subroutines are used to solve the resulting matrix A. MA41 is used in the present

work. The method in the subroutine is based on Gaussian elimination. It uses

multifrontal approach and is discussed in detail by Duff [24].
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Chapter 4

Methodology

This chapter focuses on the implementation of LBM and FV techniques to simulate

the cross-flow membrane filtration process. The present work deals with 3 different

models. They are

• Model based on cake formation phenomenon in cross-flow micro- and nano-

filtration process

• Concentration polarisation model for inorganic and interacting solute parti-

cles in nano-filtration

• Rejection prediction model in cross-flow nano-filtration process

Different strategies were employed to implement the above models. Thereafter,

water in the filtration process is referred to as solvent and the particles to be

filtered are referred to as solute particles. In the case of cake formation, solute

particles are suspended substances in the water where as in the case of rejection

models solute particles are dissolved salts. Solvent is simulated by solving Navier-

Stokes equation and solute movements in the solvent are simulated by solving

convection-diffusion equation.

4.1 LBM solute-solvent model

In this model both NS equations and convection-diffusion are solved using LB

schemes. Both set of equations are solved coupled in each time step. The coupling
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is done through viscosity in NS equations and velocity vector used in convection

diffusion equation. The implementation details of LBM for NS equations is dis-

cussed in Chapter 2. The implementation details for convection diffusion equation

similar to the case of NS.

4.1.1 LBM for convection diffusion equation

Just like in the case of NS equations, the particle distribution function represents

field variable in the case of convection diffusion equation. If f is the particle

distribution function, then

φ =
∑
i

fi (4.1)

Similarly second moment of distribution function gives convective flux, uφ. The

relaxation time in the case of convection diffusion depends on diffusion coefficient,

D.

D = c2
s

(
τ − 1

2

)
∆t (4.2)

where in Eq. 4.2, cs is the speed of sound and ∆t is the time step. The lattice

models used for NS implementation can be used for convection diffusion too. Most

common are D2Q5, D2Q9, D3Q27. In the present work, D2Q5 model is used. The

equilibrium distribution function in the case of convection diffusion equation is as

follows

f eqα (x, t) = wαφ (1 + 3u · eα) (4.3)

where in Eq. 4.3, u is the velocity, eα is the direction vector of the lattice. Solving

the equation is as same as in the case of NS equations where streaming step is

followed by collision step with the distribution function given in Eq. 4.3.

Boundary conditions are applied in the same way as NS scheme of LBM. Com-

mon BCs in convection diffusion equation is constant field variable, flux boundary

condition. In the case of constant φ BC at the left boundary, only one particle

distribution function going out of domain is unknown and rest of the them are

known post streaming. If f0, f2, f3, f4 are known post streaming and φin is the

boundary field variable, then using Eq. 4.1
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Figure 4.1: D2Q5 lattice structure

f1 = φin − (f0 + f2 + f3 + f4) (4.4)

Similarly, flux boundary condition can be applied. Taking the first moment of

particle distribution function gives

uxφ = f1 − f3 (4.5a)

uyφ = f2 − f4 (4.5b)

If the flux is specified at the boundary, using Eq. 4.5 there is only one unknown

particle distribution function. It can be computed by using flux value and known

particle distribution function.

4.1.2 Implementation of model

As stated in earlier sections, the coupling from NS to convection diffusion is done

by using velocity vector obtained by NS at each lattice point. The coupling from

convection diffusion to NS is achieved by viscosity which depends on the field

variable, φ at each lattice point.

ν(φ) = ν0

[
1 + 1.5

φ(
1− φ

0.6

)]2

(4.6)
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where in Eq. 4.6, ν0 is the kinematic viscosity of pure solvent, φ is volume fraction

of solute. This is first proposed by Romero and Davis [25].

Typically, in one time step, first NS equations are solved using LBM at all lattice

points. Then the computed velocity is used in solving convection diffusion equation

to compute the volume fraction. The new volume fraction is used to update the

viscosity using Eq. 4.6 for the next time step. Diffusion coefficient depends on the

filtration process and is discussed in detail in further chapters.

input : Lattice points, Initilization of ρ, u, f , g, D, ν
output: ρ, u, p, φ

for ∆t← ntimesteps do
for i← 1 to nx do

for j ← 1 to ny do

Solve NS equations for solvent
↓

Compute macroscopic variables
↓

Solve CD equation using velocity field obtained from NS
↓

Compute volume fraction φ
↓

Update viscosity for next time step using Eq. 4.6 compute the
additional resistance offered by cake using Eq. 4.7

end

end

end
Algorithm 2: Coupling of solvent and solute using LBM

4.1.3 Cake predicting model

The above model needs special treatment for cake predicting model. As discussed

in Chapter 1, cake layer formation is inevitable when the suspended particles

cannot diffuse back to bulk solution fast enough. In this present model when the

volume fraction at the membrane surface reaches 0.6, it is assumed that cake layer

is formed. This assumption is in agreement with the maximum random packing

fraction which is around 0.64 for hard spheres. As the suspended particles are not

perfectly spherical a value of 0.6 is used in present computations.

When the volume fraction at a lattice node exceeds 0.6, the node is treated as wall

while solving for solute and it is treated as porous media while solving for solvent.

Mathematically, first order bounce back is applied for convection diffusion solver
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and hydraulic resistance is added to NS solver. The value of resistance is obtained

through Carman-Kozeny relation.

Rc =
C(1− εc)2S2

c

ε3c
(4.7)

In Eq. 4.7, constant C = 5, Sc is specific surface, Sc = 3/a where a is the radius

of the suspended particle and εc is the porosity of randomly packed cake layer and

is assumed to be 0.4.

Another important parameter in implementing the model is diffusion coefficient.

Choosing the appropriate diffusion coefficient is the key to the effective implemen-

tation of the model. As stated in Chapter 1, type of diffusion depends on the

size of the suspended particles. Shear induced diffusion and Brownian motion are

two important types considered in this work. Cho [26] determined the cross over

size of the particle where Brownian motion dominates over shear induced diffu-

sion. When the particle size is less than 0.1µm, Brownian motion dominates while

shear induced diffusion dominates when size is more than 0.1µm. Therefore, in

this present work shear induced diffusion is used in micro-filtration modelling as

the size of particles is around 5µm and Brownian diffusion is used in the case of

nano-filtration when size of particles is in the scale of nm. Shear induced diffusion

coefficient can be obtained by the knowledge of particle size and shear rate in the

filtration device.

D = 0.33γ̇a2φ2(1 + 0.5e8.8φ) (4.8)

In Eq. 4.8, a is the radius of the particle, φ is the volume fraction of the solute

and γ̇ is the shear rate. The shear rate is computed at each time step from the

velocity field inside the domain and is used in computing diffusion coefficient.

Brownian diffusion comes from the Brownian motion of the particles and this can

be quantified by Stokes-Einstein equation.

D =
kT

6πηa
(4.9)

where in Eq. 4.9, k is the Boltzmann constant, T is the absolute temperature, η

is the solvent viscosity and a is the particle radius. This relation quantifies the

diffusion of a single particle. But in this work volume fraction is being used and
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therefore the variation of diffusion with volume fraction, φ needs to be established.

This is discussed in the next section.

4.1.4 Concentration polarisation of interacting solute par-

ticles model

Solute-solute interactions are prominent in nano-filtration (NF) and relatively neg-

ligible in micro-filtration (MF). The interactions at nanoscale are more prominent

than microscale. In the present model non-ionic particles are considered.

The two important phenomenon in this model are osmotic pressure and diffu-

sion coefficient. Osmotic pressure (∆Π) acts in the opposite direction of applied

pressure (∆P ) due to the difference in particle concentration on either side of the

membrane. When the polarized layer exists, the permeate flux vw can be expressed

as

vw =
∆P − σ0∆Π

ηRm

(4.10)

In Eq. 4.10, σ0 is the reflection coefficient and is assumed to be 1, η (ρν) is

the dynamic viscosity of solvent and Rm is the resistance of the membrane. Os-

motic pressure can be obtained from Vant-Hoff equation for ionic solute particles,

but for non-ionic particles it is complex non-linear function of membrane solute

concentration. It can be calculated by virial equation of state [27].

Π = nkT − 2

3
πn2

∞∫
0

r3g(r)
dE

dr
dr (4.11)

where in Eq. 4.11, k is Boltzmann constant, T is the temperature, r is the radial

position, g(r) is the radial distribution function and E(r) is the pair interaction

energy of the solute particles and n is the number density of particles (3φ/4πr3
p).

g(r) and E(r) has to be determined to compute osmotic pressure of the solute from

Eq. 4.11. Radial distribution function can be obtained using Ornstein-Zernike

(OZ) integral equation.

Ornstein-Zernike (OZ) integral equation is solved with hypernetted chain (HNC)

closure for solute particles to obtain radial distribution function. The radial distri-

bution function is probability of finding particles as a function of distance measure

from the particle itself. Therefore, radial distribution function tends to zero at very
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low distances as two particles cannot occupy same space and at larger distances it

tends to one as it represents bulk solution. OZ integral solves for total correlation

function which is related to radial distribution function. Total correlation function

is the influence of one particle on another particle in the solution. This influence

can be divided into direct influence characterised by direct correlation function

and indirect influence characterised by indirect correlation function. Integrating

this correlation function for whole solution gives the positions of particles relative

to each other which is radial distribution function.This integral equation has two

unknowns and need another closure to solve. Commonly used closures are Percus-

Yevick approximation (PY), well adapted for particles with an impenetrable core,

and the hypernetted-chain equation (HNC), widely used for softer potentials. The

interaction potential used in the closures gives the equilibrium solution structure.

This integral is convolution in nature and is solved using Fourier sine transforms.

4.1.4.1 Solution to OZ integral equation

The present work uses integral equation method to solve for the radial distribution

function using OZ equation.

h(r) = c(r) + n

∫
h(r′)c(r − r′)dr′ (4.12)

where in Eq. 4.12, h(r) = g(r)− 1 is the total correlation function and c(r) is the

direct correlation function. Eq. 4.12 has two unknowns and therefore it needs one

more equation to close it. HNC closure is chosen in present work.

c(r) = exp[−βE(r) + γ(r)]− γ(r)− 1 (4.13)

where in Eq. 4.13, E(r) is the pair potential between solute particles. The two

important forces acting between the particles are van der Waals forces and electro-

static double layer forces. Therefore, E(r) can be expressed as sum of the above

two potentials

E(r) = − A
12

[
1

R2
+

1

R2 − 1
+ 2ln

(
1− 1

R2

)]
+

z2
pe

2

4πε0εr

exp(−κ(r − σ))

r(1 + κσ/2)2
(4.14)
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where in Eq. 4.14, R is the dimensionless center to center distance (r/σ) and σ is

diameter of the particle, A is Hamaker constant, zp is the charge number on the

solute particle, e is the electronic charge, εr is the dielectric constant of the solvent,

ε0 is the dielectric constant of vacuum and κ is the inverse Debye screening length.

Debye screening length can be determined from following relation.

κ−1 =

(
ε0εrkT

2000NAe2z2CEL

)1/2

(4.15)

where in Eq. 4.15, NA is the Avagadro number and CEL is the molar concentration

of the electrolyte. The numerical solution to OZ integral equation is discussed in

Appendix.B.

4.1.4.2 Gradient diffusion coefficient

Osmotic pressure can be obtained for any solute concentration once OZ integral

is solved numerically for radial distribution function. As stated earlier that in

the case of NF, Brownian diffusion is the dominant phenomenon and there is

a necessity to build a concentration dependence of the diffusion coefficient. This

can be computed by the theory of batch sedimentation process. The concentration

dependence can be expressed as follows

D(φ) = D∞K(φ)
d[φZ(φ)]

dφ
(4.16)

where in Eq. 4.16, D∞ is the diffusion coefficient of single solute particle and can

be obtained from Eq. 4.9, K(φ) is the sedimentation coefficient and Z(φ) is the

osmotic compressibility (Π/nkT ).

Sedimentation coefficient can be expressed as a function of the solute volume

fraction.

K(φ) = (1− φ)α (4.17)

and coefficient α in Eq. 4.17 is expressed as follows

α = 5 + 3

∞∫
2

[1− gss]sds−
∞∫

2

[A11 +A12 + 2(B11 +B12)− 3(1 + 1/s)gsss
2ds] (4.18)
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The coefficients in Eq. 4.18 are as follows

gss(r) = exp

(
−E(r)

kT

)
(4.19a)

A11 = 1− 60

16s4
(4.19b)

A12 =
3

2s
− 1

s3
(4.19c)

B11 = 1 (4.19d)

B12 =
3

4s
+

1

2s3
(4.19e)

s =
r

rp
(4.19f)

Substituting Eq. 4.19 in Eq. 4.18 and integrating gives α. Note that the function

gss depends of the radial distribution function, so sedimentation coefficient depends

on g(r). Once K(φ) and Z(φ) are computed, D(φ) can be calculated numerically

and can be fitted to curve to obtain a polynomial function.

4.1.4.3 Implementation of model

The implementation of model is pretty much the same as given in Algorithm

2. The only difference being updating the applied pressure after each time step

depending on the concentration on the membrane surface. Hence, the model is

solved as a transient problem and solved till it reaches a pseudo steady state where

the change in the concentration in the domain is very small. The implementation

is given in Algorithm 3.

The residual used in this work is L2 norm and a tolerance of 10−5 is specified.

Both Π(φ) and D(φ) are fitted into polynomial curves using MATLABTM.

This model is only valid for non-ionic solute particles and cannot be used for ionic

solutes. Osmotic pressure depends directly on the radius of solute particle and

becomes negligible when the particle radius is few hundereds nanometer. In that

case, osmotic pressure can be safely ignored without losing significant accuracy.
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input : Lattice points, Initilization of ρ, u, f , g, D(φ), ν, Π(φ)
output: ρ, u, p, φ

while iter ← maxiterandres > tolerance do
for i← 1 to nx do

for j ← 1 to ny do

Solve NS equations for solvent
↓

Compute macroscopic variables
↓

Solve CD equation using velocity field obtained from NS
↓

Compute volume fraction φ
↓

Update viscosity using Eq.4.6 and flux using Eq.4.10 for next time step
↓

Calculate Residual, res =
∑
i,j

(φn − φn+1)2

end

end

end
Algorithm 3: Coupling of solvent and solute using LBM for Osmotic pressure
model

4.2 LBM - FV model

One obvious limitation of solving convection diffusion equation using LB schemes

is when diffusion coefficient is low. For example, when particle radius is around

50nm, diffusion coefficient is in the order of 10−12. Eq. 4.2 gives a relaxation time

of close to 0.5 for such a low diffusion coefficient which makes the model unstable.

A typical filtration set up will be around 1cm in channel height and the thickness

of cake formed will be around 1µm. Therefore, to capture the cake formation

process, it is necessary to go to very fine scale which demands high computational

costs. Also, another disadvantage in LBM is the time step depends on grid spacing

unlike other numerical techniques. A grid spacing of 10−5 will result in a time step

of uconv10−5 where ucon is the conversion factor for velocity. An experiment lasting

for 100min of engineering time will need approximately 6x106 time steps which is

impractical.

To address the above limitation for the nano-filtration cake model, LBM solver for

solvent is coupled with a finite volume technique to solve for solute particles. An

implicit time stepping scheme is used to march forward in time in bigger steps.
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4.2.1 Cake predicting model for nano-filtration

As stated earlier, the thickness of the cake formed during the experiments is in

the order of few tenths of µm. It can be assumed that such a thin layer of

cake will not disturb the cross-flow hydrodynamics. Solvent is solved using LB

solver over the entire domain and velocity field is obtained. Instead of solving for

solute over whole domain, only a small part in the vicinity of membrane is solved

for solute concentration and the rest of the domain is assumed to have the bulk

concentration.

The domain height considered for solving solute is taken as 10% of the filtration

cell height. The sub domain is solved for distribution of solute using finite volume

techniques explained in the Chapter 3. This will result in more than one control

volumes to solve for solute inside one lattice of LBM solvent solver. Therefore,

there is a need to interpolate the velocity field inside each lattice of LBM solver

to use in finite volume solver for solute.

A linear interpolation for velocity field is used for both x− and y− directions.

Even though linear interpolation in both directions is not mass conservative, the

residuals are observed to be in the order of 10−8 which is assumed to be sufficient.

Another important assumption made in this model is cross flow hydrodynamics

are assumed to be remain unchanged inside 1 min of engineering time. So, time

stepping is governed by solute finite volume solver and after every 1 min of engi-

neering time LBM solver is used to obtain new velocity field as build up of cake

reduces the flux through membrane and hence the cross flow hydrodynamics. The

implementation details is given in Algorithm 4.

4.2.2 Rejection model for nano-filtration with ionic solutes

When the solute particles involved are sea salts, rejection model is more important

than concentration polarisation phenomenon. The size of sea salts are in the order

of few tenths of nanometer and they cannot be retained fully by membranes. There

is always certain amount of solute passing through the membrane based on its size

and membrane characteristics. If Cp is the concentration of solute passing through

the membrane and Cw is the concentration of solute on the membrane surface, then

rejection is defined as

R = 1− Cp
Cw

(4.20)
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input : Lattice points, Initilization of ρ, u, f , g, D, ν
output: ρ, u, p, φ

while ∆t← t+ ∆t do
if rem(t/60)=0 then

while res < tolerance do
for i← 1 to nx do

for j ← 1 to ny do

Solve NS equations for solvent using LBM
↓

Compute macroscopic variables
↓

Compute Residual, res =
∑
i,j

(un − un+1)2

end

end

end

end
Interpolate the velocity field inside the finite volume grid

↓
Solve CD equation using velocity field obtained by FV technique

↓
Compute volume fraction φ

↓
Update viscosity using Eq.4.6 and compute the additional resistance offered by
cake using Eq.4.7

end
Algorithm 4: Coupling of LBM solver for solvent and FV solver for solute in
nano-filtration

The above relation for rejection is termed true or real rejection. Rejections ob-

served during the experiments are generally termed as observed rejection (Robs)

which is

Robs = 1− Cp
Cb

(4.21)

where in Eq. 4.21, Cb is the bulk concentration of the solute. The difference in

the true rejection and experimental rejection values comes from the fact that the

concentration on the membrane wall is not the bulk concentration because of the

concentration polarisation phenomenon.

The performance of any membrane is characterised by the rejection of different

salts. Prediction of rejection is quite a complicated process. This process has lot of
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phenomenon involved in it. This is generally done using extended Nersnt Planck

equation along with equilibrium partition equations.

4.2.2.1 DSPM-DE model

DSPM-DE is the extension of DSPM (Donnan steric partitioning pore model)

originally proposed by Bowen [3] and is based on extended Nernst Planck equa-

tion. This equation describes the variation of concentration inside the pores of

membrane.

dci
dx

=
Jv
Di

[Kici − Cpi]−
ziciF

RT

dψ

dx
(4.22)

In Eq. 4.22, F is Faraday constant, ci is the concentration of species i inside

the pore, Jv is the flux through the pores, Cpi is the concentration going out of

membrane which is called as permeate concentration, zi is the valency of ion and
dψ
dx

is the potential gradient which is given as

dψ

dx
=

n∑
i=1

zi
Jv
Di

[Kici − Cpi]

(F/RT )
n∑
i=1

z2
i ci

(4.23)

The smaller pore sizes of nano-filtration membranes decreases the convective and

diffusive mobility of ions through the membrane. The effects are incorporated in

Eq. 4.22 through hindrance factors Ki and Di. They are expressed as follows

Ki = −0.301λi + 1.022 (4.24a)

Di = −1.705λi + 0.946 (4.24b)

λi =
ri,s
rp

(4.24c)

where in Eq. 4.24, λi is the steric hindrance factor of ion i which is the ratio of

ion radius (ri,s) to pore radius (rp).
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The concentration of ions inside the pore and outside the pore is correlated through

equilibrium partition equation. The main difference between DSPM and DSPM-

DE model is due to inclusion of dielectric exclusion effect in the partition coeffi-

cients. The equilibrium partition equation is as follows with ci as pore concentra-

tion and Ci is the bulk concentration

ci
Ci

= φi exp

(
−ziF
RT

∆ψD

)
exp

(
−∆Wi

kT

)
(4.25)

Eq. 4.25 can be seen as three different phenomenon. φi represents steric (sieving)

effect, ∆ψD gives Donnan exclusion effect and ∆Wi gives dielectric exclusion effect.

The dielectric exclusion effect can be expressed by Born solvation energy barrier

by

∆Wi =
z2
i e

2

8πε0rs

(
1

εp
− 1

εb

)
(4.26)

where in Eq. 4.26 εp and εb are dielectric constants of pore and bulk solution re-

spectively. The bulk dielectric constant is taken as 80 and choice of pore dielectric

constant is debatable. It can be calculated by assuming there is a single layer

of water molecules attached to the walls of pore. But this assumption might not

always give the accurate results. In this work this is used as a fitting parameter

to match the experimental results. Along with Eq. 4.25, 4.23, 4.22, there are two

more equations to completely describe the rejection model. They are electroneu-

trality condition inside and in bulk solution.

n∑
i=1

ziCi = 0 (4.27a)

n∑
i=1

zici +Xd = 0 (4.27b)

Eq. 4.27 represents bulk and inside pore electro-neutrality respectively. Xd is

the membrane charge density acquired by the membrane and it depends type of

the membrane, bulk concentration and type of salt. It can be calculated by the

experimentally by measuring the streaming potential at different concentrations

and pressures. The membrane charge density directly dependent on zeta potential

acquired by the membrane. pH and concentration are two main properties that

influences the zeta potential of the membrane.
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Another important phenomenon governing rejection of the membrane is the os-

motic pressure developed during filtration process. As stated in earlier sections,

osmotic pressure in the case of ionic solutes can be found out using Vant Hoff

equation which can be expressed as

∆Π = RT (Ci,w − Ci,p) (4.28)

where in Eq. 4.28, Ci,w is the wall concentration and Ci,p is the permeate concen-

tration. Therefore, flux depends on the concentration of solute on either side of

the membrane.

Modelling of rejection involves solving Eq. 4.27, 4.25, 4.22 together. But Eq.

4.22 needs the knowledge of permeate flux, Cp which is not known beforehand.

Therefore, a iterative strategy is used to compute rejection coefficient. The imple-

mentation of the model is given in Algorithm 5.

input : Cp, u, ∆t, maxiterp, maxiterw ,tolp, tolw
output: Cp, Cw, vw

while iter ← maxiterp and resp > tolerancep do

Permeate concentration Cn+1
p = Cn

p + ωp(C
n+1
p − Cn

p )
↓

while iter ← maxiterw and resw > tolerancew do

Compute the osmotic pressure and update the flux using the net applied
pressure

↓
Solve unsteady convection diffusion equation using FV

↓
Compute L2 norm for φ, resw =

∑
i,j

(φn − φn+1)2

end
Solve Donnan equilibrium partition equation on feed side using for pore
concentration Eq.4.25,4.27

↓
Solve extended extended Nernst Planck equation using Runge Kutta method,
Eq.4.22

↓
Solve Donnan equilibrium partition equation on permeate side using
Eq.4.25,4.27 for the permeate concentration

↓
Calculate Residual, resp =

∑
i

(Cn+1
p − Cn

p )2

end
Algorithm 5: Coupling of concentration polarisation with DSPM-DE model

Mahendra Swansea University



Chapter 4. Methodology 56

Solving for solvent part is omitted in this model. It is assumed that the cross-

flow hydrodynamics will not have any significant effects on the either the rejection

mechanism nor the flux. In addition, the solute is solved only in the boundary

layer of the membrane where concentration polarisation effects are observed. The

velocity profile is given by assuming a constant shear rate along the length of

domain.

The solution procedure is started with a guessed value for permeate concentration,

Cp. The osmotic pressure is calculated based on Cp and Cw using Vant Hoff equa-

tion 4.28. The flux is calculated based on new net pressure applied using osmotic

pressure. The convection diffusion is solved for the first time step with permeate

concentration as one of the boundary conditions. L2 norm for the concentration

is computed and the solution loop is continued until the change in concentra-

tion in the domain is small enough. Hence, the loop is continued until a pseudo

equilibrium is obtained.

Once the convection diffusion solver is converged, the wall concentration is known.

Pore concentration on the feed side of the membrane is computed by solving

Donnan equilibrium partition equation, Eq. 4.25 and electro-neutrality condition

inside the pore, Eq. 4.27. The pore concentration throughout the length of pore

is obtained solving extended Nernst Planck equation. This initial value problem is

solved using fourth order Runge Kutta method to compute the pore concentration

on the permeate side. Once again Donnan equilibrium partition equation, Eq.

4.25 is used along with electro-neutrality condition of bulk solution to compute

the bulk permeate concentration. This is done until the permeate concentration

converges to the specified tolerance.

Ideally, this has to be done for every ionic species present in the solution. For

example, a solution of NaCl has Na+ and Cl− ions in it. The concentration

distribution of Na+ ions and Cl− ions has to be determined based on the diffusivity

coefficients of respective ions. Both ions have different diffusivity coefficients and

when solved convection diffusion equation for both ions separately, the resulting

concentration in the bulk might not satisfy electro-neutrality condition, Eq. 4.27.

To avoid this difficulty, the convection diffusion equation is solved for concentration

of NaCl as whole rather than solving for Na+ and Cl−. The diffusion coefficient

of different salts is taken from work of Geraldes et al. [28]. Osmotic pressure is

also calculated from the Geraldes work instead of using Vant Hoff equation.
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Chapter 5

Results and Discussion

This chapter deals with results of different models discussed in Chapter 4. It

starts with the results of benchmark problems for LBM solver and finite volume

solver. The next section deals with the results of cake formation in micro-filtration.

The kinetics of cake formation is discussed at different applied pressures. Later,

concentration polarisation model with solute particle interactions is given. The

results for osmotic pressure, gradient diffusion coefficient and particle distribution

are discussed in detail. This is followed by the results of nano-filtration. First

model discussed is the cake formation in nano-filtration and the final sets of results

briefs about the rejection phenomenon in nano-filtration.

5.1 Validation of solvers

The developed LB and FV code are validated with standard benchmark problems.

LB solver is validated with Poiseuille flow problem and lid driven cavity flow

problem whereas FV solver for convection diffusion is validated with rotating pulse

problem and problem demonstrating artificial diffusion using hybrid differencing

scheme.

5.1.1 LB solver

The LB solver with D2Q9 lattice model is implemented with second order bounce

back boundary conditions for wall. The pressure and velocity boundary conditions
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are implemented according to Zou and He [15]. The solver is validated with the

following benchmark problems.

5.1.1.1 Poiseuille flow

Poiseuille flow results when an incompressible fluid flows between two parallel

plates. The analytical solution can be obtained from Navier-Stokes equation and

is given by

ux(y) =
−G
2ν

[(
h

2

)2

− |y|2
]

(5.1)

where in Eq. 5.1, G is the body force that is driving the fluid and h is the channel

height. The geometry is shown in Fig. 5.1.

Figure 5.1: Domain geometry of Poiseuille flow

The problem is solved by a domain having 1 m in length and 0.24 m in height.

Accordingly, 100 lattice units are made in x− direction and 24 lattice units are

made in y− direction. The domain is filled with fluid and a body force, G of

0.00011 is given for the flow to develop. Periodic boundary conditions are used at

inlet and outlet.

No-slip i.e. second order bounce back boundary condition is used for top and

bottom walls. As discussed Chapter 2, second order bounce back assumes wall to

be present in between fluid and solid nodes. Therefore, the effective height between

the parallel plates in only 23 lattice units instead of 24. An initial condition of ρ

= 1 and zero velocity condition is used all over the domain.

The flow is allowed to reach a steady state by setting a suitable tolerance for

velocity in x− direction. Different parameters used in the simulation are given in

Table 5.1.
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Table 5.1: Different Parameters used in Poiseuille flow problem

Parameters

Lattice units in x-direction 100
Lattice units in y-direction 24
Viscosity, ν 0.016667
Relaxation parameter, τ 0.55
Body force, G 0.00011

Boundary conditions

Inlet Periodic BC
Outlet Periodic BC
Walls Second order bounce back

Initial conditions

x-Velocity, ux 0
y-Velocity, uy 0
Density, ρ0 1

The velocity profile obtained at various times before reaching steady state is shown

in Fig. 5.2 .

Figure 5.2: Development of Velocity profile at the middle section of channel
along y-axis

At steady state the profile remains the same at any position in the x−direction.

The contours of velocity in x−direction is also shown in Fig. 5.3. From the

contours, the maximum velocity is 0.438 m/s which is at the center of the channel.

The maximum velocity can be computed analytically from the Eq. 5.1 by using
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Figure 5.3: Contours of x-Velocity in Poiseuille flow

the values given in the Table 5.1 which gives a value of 0.436 m/s and is in very

good agreement with the numerical solution.

5.1.1.2 Lid-driven cavity flow

Lid driven cavity problem is one of the standard benchmark problems in CFD.

Ghia et al. [29] had done extensive work in the analysis of this problem. Even

though there is no analytical solution is available, numerical results obtained are

generally compared with that of Ghia et al.

The problem consists of a square cavity having 129 lattice units in both directions.

The cavity is filled with a fluid of uniform density. No-slip boundary conditions

are applied to two vertical sides and bottom side whereas the top side is given a

horizontal velocity of 1 m/s. The geometry of the problem is shown in Fig. 5.4a

and Table 5.2 has the different parameters used in the simulation.

The problem is solved at Re = 100. The velocity contours are shown in Fig. 5.4b

The velocity in x−direction is plotted along the y−axis through the geometric

center of the domain and compared to that of Ghia et al. results. Similarly,

velocity in y−direction is plotted along x−axis through the geometric center. It

can be seen from the Fig. 5.5 that the results are in good agreement with Ghia et

al. results.

This concludes the validation results for LB solver. The next section deals with

the results of validation test of finite volume convection diffusion solver.
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(a) Geomtery of the domain for lid
driven cavity flow

(b) Contours of the x−velocity in lid driven cav-
ity flow

Figure 5.4: Geometry and results of Lid driven cavity problem

Table 5.2: Different Parameters used in Lid driven cavity flow problem

Parameters

Lattice units in x-direction 129
Lattice units in y-direction 129
Viscosity, ν 0.01
Relaxation parameter, τ 0.53
Reynolds number, Re 100

Boundary conditions

Left boundary Second order bounce back
Right boundary Second order bounce back
Bottom boundary Second order bounce back
Top boundary Velocity BC, ux = 1, uy = 0

Initial conditions

x-Velocity, ux 0
y-Velocity, uy 0
Density, ρ0 1

5.1.2 FV solver

The finite volume solver for convection diffusion equation is validated with rotating

pulse problem and the problem illustrating false diffusion.

5.1.2.1 Rotating pulse problem

This problem validates the transient convection diffusion equation which uses a hy-

brid differencing scheme and implicit time stepping. A square domain (0, 1)x(0, 1)
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(a) Horizontal velocity taken along vertical
axis through geometric center

(b) Vertical velocity taken along horizontal
axis through geometric center

Figure 5.5: Velocity plots taken along different axis

is considered with Dirichlet boundary conditions on all four edges. An initial

condition for the field variable is given by

φ(x, y, 0) = exp
[
−((x− 0.25)2 + y2)/2σ2

]
(5.2)

In Eq. 5.2, σ is a constant and it governs the radius of the cone and it results

in a cone with amplitude 1 centered around (0.25, 0). The velocity field used is

proportional to (−y, x) with x and y are co-ordinates of the point. This gives a

rotating convective field through which the cone rotates. The problem is solved

for one complete rotation at two different grid spacing and a constant time step

of 0.01. The contours of the initial condition of field variable is ahown in Fig.5.6.

The parameters used are given in Table 5.3.

Figure 5.6: Initial condition of φ with the cone centered around (0.25, 0)
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Table 5.3: Different Parameters used in rotating pulse problem

Parameters

Divisions in x-direction 144,288
Divisions in y-direction 144,288
Diffusion coefficient, ν 0.0
Constant, σ 0.04
Velocity, uc 1
Time step, ∆t 0.01

Boundary conditions

All boundaries Dirichlet BC, φ = 0

Initial conditions

x-Velocity, ux −yuc
y-Velocity, uy xuc
Field variable, φ0 Eq.5.2

(a) Contours of field variable φ for 144x144
mesh

(b) Contours of field variable φ for 288x288
mesh

Figure 5.7: Contours of field variable

The contours of field variable, φ is shown in Fig. 5.7. for 144x144 and 288x288

space discretzations. Even though the diffusion is set to zero, it can be observed

from the contours that the peak of the cone is decreased after one complete rev-

olution. This is due to time stepping scheme in this which is implicit and is only

first order accurate. When 144x144 discretization is used with a time step of 0.01,

CFL number is 1.44 and it require more than 3000 time steps for one complete

revolution. The errors at each time step builds up which results in huge decrease

in the height of the cone. This can be observed from Fig. 5.7.

But the time stepping used is implicit so the solution is stable. When the space

discretization is 288x288, CFL number becomes 0.72 but still the peak amplitude

reduces after one revolution. This shows that the solver is behaving as expected

and giving reasonable results.
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5.1.2.2 False diffusion problem

A square domain of (0, 1)x(0, 1) is considered. Dirichlet BC is applied to all

boundaries. The field variable, φ is 0 along south and east boundaries and 100

along the west and north boundaries. A uniform velocity field is given over the

whole domain where ux=uy=2 m/s and is parallel to the diagonal. The geometry

of the problem in shown in Fig. 5.8 and different parameters are given in Table

5.4.

Figure 5.8: Domain geometry and shock occurs along diagonal X-X

A pure convective problem is considered with zero diffusion. There is no source

term and therefore problem is solved for steady state. As the flow is parallel to the

diagonal the value of φ at all points above the diagonal should be 100 and below

the diagonal it should be zero. There should be a shock at the diagonal. But the

hybrid difference scheme produces considerable amount of artificial diffusion and

the shock get smeared. This can be illustrated by Fig. 5.9.

As shown in Fig. 5.9 the solution is smeared due to high artificial diffusion when

the mesh is relatively coarse and it approaches the actual profile as the mesh is

made finer. The smearing of the shock can be observed in the contours of φ shown

in Fig. 5.10 for mesh of 48x48 and 192x192. The variation of φ along diagonal is

more spread in the case of coarser 48x48 mesh and it is more sharp in the case of

192x192 mesh.
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Figure 5.9: Variation of φ along the diagonal for different meshes

Table 5.4: Different Parameters used in false diffusion problem

Parameters

Divisions in x-direction 48,96,144,192
Divisions in y-direction 48,96,144,192
Diffusion coefficient, ν 0.0
Velocity, uc 2

Boundary conditions

South and east boundaries Dirichlet BC, φ = 0
North and west boundaries Dirichlet BC, φ = 100

5.2 Micro-filtration results

This section describes the modelling of micro-filtration device and the different

results of the model. This particular model is more focussed on cake formation at

different applied transmembrane pressures. Different design modifications to the

existing model are studied in terms of the amount of flux coming out of membrane.

5.2.1 Model description

The geometry of the filtration device is shown in the Fig. 5.11. The rectangular

flow channel has a length, L of 90µm and a width, 2H0 of 36µm. A pressure

gradient of 3.0Pa/µm is used and it results in a cross flow with a aveage velocity of

0.32m/s. The thickness of the membrane δm is 1.2µm. The length of the membrane
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(a) Contours of field variable φ for 48x48
mesh

(b) Contours of field variable φ for 192x192
mesh

Figure 5.10: Contours of field variable

is 30µm and solid walls at inlet side and outlet side are of lengths 15µm and 45µm.

The suspended particles have a mean radius of 2.5µm and therefore specific cake

resistance can be calculated using Eq. 4.7. Pressure boundary conditions are

used at the inlet, outlet and the permeate side. The flow is assumed to be fully

developed when it enters the domain. Transmembrane pressure (TMP) is defined

as pressure difference between either side of membrane at its half way point (L0).

TMP = pin −
L0

L
(pin − pout)− pper (5.3)

Figure 5.11: Geometry of micro-filtration rectangular filtration cell

Bounce back BC is used for fluid for solid walls and body force is applied to fluid

for the membrane part as described in porous modelling in Chapter 2. In the case

of solute, fixed inlet concentration is used as inlet and outflow BC at the outlet.
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The top and bottom boundaries are treated as walls for solute and therefore it is

assumed that all the solute particles are retained during filtration process.

This model is solved using LBM for both solute and solvent discussed in chapter

4. Shear induced diffusion is used as the particles are larger than 0.1µm and 0.6

is the maximum volume fraction for the solute. The different parameters used in

the simulation are given in Table 5.5.

Table 5.5: Different Parameters used in micro-filtration

Parameters

Lattice points in x-direction 301
Lattice points in y-direction 133
Diffusion coefficient, D Eq.4.8
Kinematic viscosity of particle free
medium, ν0

10−5 m2/s

Average velocity, U0 0.324 m/s
Pressure difference , ∆P 270 Pa
Resistance of membrane, Rm 1.62x108 m−1

TMP 1180, 1780, 2980, 4180 Pa
Inlet volume fraction, φb 0.5
Specific cake resistance, Rc 4.05x1013 m−2 from Eq.4.7

Boundary conditions

Inlet for fluid Pressure BC, pin
Outlet for fluid Pressure BC, pout
Inlet for solute Fixed volume fraction , φb
Outlet for solute Outflow BC

Initial conditions

x-Velocity, ux Fully developed Poiseuille flow induced
by ∆P

y-Velocity, uy 0
Solute volume fraction, φ0 0.05

5.2.2 Results

5.2.2.1 Effect of transmembrane pressure on cake formation

The effect of transmembrane pressure on cake formation and flux kinetics is stud-

ied. The model is run at different TMPs of 1180, 1780, 2980, 4180 Pa. The model

is run at each TMP until steady state is reached. The permeate flux, vp is the

fluid velocity coming out of the membrane. In the simulations, the y−velocity at

the lattice points immediately preceding the membrane is taken as permeate flux.
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The length averaged flux < vw > is the average permeate flux over the length of

the membrane.

< vw >=

L∫
0

uy(x)dx (5.4)

The variation of length averaged flux with time at different TMP is shown in

Fig. 5.12 It can be observed from the plot that the variation of flux over time is

negligible when TMP is lower than 1780 Pa.

Figure 5.12: Flux decline with time at different TMPs in micro-filtration

At higher pressures initial flux is higher and then declines with time reaching a

steady state. It can be inferred from the plot that there is almost no cake formation

in the cases of TMP less than 1780 Pa. When TMP is 2980 Pa and 4180 Pa, there

is significant drop in initial flux and hence cake layer has build up. This can be

established by the concentration distribution contours which are shown in Fig.

5.13.

When TMP is 1180 Pa, it can be seen from Fig. 5.13a that there is no cake

layer formed over the membrane. There is only concentration build up near the

membrane vicinity which is termed as concentration polarisation. On the other

hand when TMP is 4180 Pa, there is thick layer of cake formed over the membrane.

In all the cases, concentration polarisation can be observed. The phenomenon of

cake formation can be explained from Fig. 5.13. The concentration polarisation

layer is always first stage of cake formation. When the applied pressure is high
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(a) TMP = 1180 Pa (b) TMP = 1780 Pa

(c) TMP = 2980 Pa (d) TMP = 4180 Pa

Figure 5.13: Concentration distribution at various TMPs in micro-filtration

enough, the concentration inside the polarised layer can go high enough to form

a immobile cake layer. Another important point to make in this context is the

formation of cake starts to form from right end of the membrane. This is due to

higher convective force by fluid on solute particles in cross-flow direction. This is

the possible reason for the cake layer thickness to be maximum towards the end

of the membrane which is about two-thirds of membrane length.

The steady state flux for TMP 2980 Pa and 4180 Pa is close. But there is a

significant difference between steady state flux for TMP 1780 Pa with that of 4180

Pa. This can be due to the cake free zone at the beginning of the membrane in

the case of 1780 Pa where the flux is higher.

5.2.2.2 Dependence of membrane length

The simulations are carried out for different membrane lengths of 90µm, 180µm,

270µm and 360µm at TMP of 1780 Pa. The model is run till steady state is

reached and the flux along the length of the membrane is plotted at steady state

in Fig. 5.14.

It can be observed from the plot that flux at the end of the membrane is highest

when length is 90µm and lowest when the length is 360µm. This is due to the

variation of TMP over the length of the membrane. From Eq. 5.3, TMP depends

on the pressure difference that establishes cross-flow. As the pressure drops along
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Figure 5.14: Variation of flux along the length at different membrane lengths
in micro-filtration

the length of membrane, TMP decreases with maximum TMP at beginning of

the membrane and lowest at the end of the membrane. This drop will be more

significant when the length of membrane is 360µm.

There is a small increase in the flux at the end of membrane and this can be due

to the dispersion of concentration polarisation in the wake of cake formed. The

length averaged steady state flux for different membrane lengths is shown in Fig.

5.15.

The length averaged flux decreases as the membrane length increases. This is be-

cause the pressure difference (pin−pout) is kept constant for all different membrane

lengths. For a constant pressure difference, increasing the length of the filtration

cell will decrease the cross-flow velocity of fluid according to Poisuelle law. There-

fore, effectively there is less mass flow coming in when the membrane length is

more which lowers the flux through the membrane at steady state.

5.2.2.3 Dependence of geometry of the filtration device

One particular advantage in this model is to be able to predict flux for any geom-

etry. The analytical and semi-analytical methods discussed in the literature are

only valid to standard filtration devices. This model can be used to optimize the

design of the device to increase the steady state flux. This is discussed here with
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Figure 5.15: Variation of length averaged steady state flux with different
membrane lengths in micro-filtration

some examples. Firstly, a model with the membrane length of 135µm is consid-

ered. It is stated in the earlier discussion that the flux at the end of membrane

becomes slightly higher before falling to zero due to dispersion of concentration.

Therefore, instead of having a single membrane, the membrane is divided into 3

parts of 33µm each with 2 solid walls of length 18µm separating them.

The flux along the length of the membrane is shown in Fig. 5.16 along with

the concentration distribution. This modified design model is compared with the

model having the continuous membrane of same length 135µm. It can be observed

that the steady state flux is improved with the case of discontinuous membrane

due to multiple beginning and ends that increase the dispersion of solute.

This idea of dispersion of solute in concentration polarisation can be used to mod-

ify the design further to increase the flux. One of the improvements can be using

obstacles in the filtration domain. Obstacles causes a slight turbulence that in-

creases mixing of the solute particles. This is implemented using the discontinuous

membrane design. Small triangular obstacles of height 2.7µm and length at base

of 9.9µm are placed on the solid walls in between the membrane. The results for

the steady state flux is shown in Fig. 5.17.

It can be seen from the variation of steady state flux with length of membrane

that it does not have a significant influence on the flux compared to the earlier

design. This can be due to increased resistance to flow. The barriers will narrow

the flow channel there by reducing the shear rate in the domain. As the dominant
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(a) Concentration distribution for the mem-
brane with interspaces along its length

which are separated by solid walls

(b) Steady state flux of membrane with
and without interspaces along the length of

membrane

Figure 5.16: Model with interspaces along the membrane and its correspond-
ing comparison with model of same length and without interspaces

diffusion mechanism in the case of micro-filtration is shear induced diffusion and

it directly related to shear rate in the flow channel by Eq. 4.8. The decreased

shear rate will decrease the back transport of the solute into the bulk and cake

formation is more formidable now. This is supported by the fact that the flux

obtained is slightly less than the earlier case.

Another possibility to improve flux is to use corrugated membranes. The corru-

gations are expected to increase the dispersion of the concentration polarisation

layer. In this example, corrugations are made on the membrane surface with

same material as the membrane. Because the membrane became thicker now the

model is run at higher TMP than 1780 Pa. The steady state flux is shown in Fig.

5.18 and it can be observed that flux is increased by significant amount at the

near end and the far end of each membrane. This indicates that the corrugations

are favourable with membrane interspaces. The flux at the center of membrane

is lower in the case of corrugated membranes when compared to the membrane

without corrugations. This is again due to the reduced shear rate at that point.
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(a) Concentration distribution for the mem-
brane with flow barriers along its length lo-
cated on the solid walls between membranes

(b) Steady state flux of membrane with and
without flow barriers along the length of

membrane

Figure 5.17: Model with flow barriers along the membrane and its corre-
sponding comparison with model of same length and without flow barriers in

micro-filtration

The length averaged flux is over the whole membrane is higher in the case of

corrugated membrane.

To conclude, this model could predict the cake formation for different types of

geometries and different operating conditions. The model completely resolves the

suspension flow and distribution of particles by shear induced diffusion producing

more realistic results than existing models. This can be used in design optimization

of filtrate systems to increase the flux through the membrane.
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(a) Concentration distribution for the mem-
brane with corrugated membranes along its

length

(b) Steady state flux of membrane with and
without corrugations of the membrane along

its length

Figure 5.18: Model with corrugated membrane and its corresponding com-
parison with model of same length and without corrugations in micro-filtration

5.3 Nano-filtration results with interacting so-

lute particles

As discussed in the earlier chapters, the governing phenomenon in this model is

osmotic pressure build up due to solute particles. Osmotic pressure in the case

of micro-filtration can be safely neglected due to the bigger size of the particles.

Results are presented for gradient diffusion coefficient, radial distribution function

and osmotic compressibility. Following this discussion, nano-filtration results are

presented for different concentrations and TMPs.
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(a) Radial distribution function at φ = 0.4(b) Radial distribution function at φ = 0.05

Figure 5.19: Radial distribution functions at different solute volume fractions
and a particle charge zp 0f -20 and concentration of 0.01M

5.3.1 Solution to OZ integral equation

The numerical procedure to solve OZ integral is briefed in the Appendix B. Long

range DLVO interaction potential is used as stated earlier which comprises of van

der Waals forces and electrostatic double layer forces. Different parameters used

to compute potentials are given in Table 5.6.

Table 5.6: Different Parameters used in DLVO interaction potentials

Parameters

Solute radius, r 3 nm
Charge number on particle, zp -20
Electrolyte concentration, CEL(M) 0.05
Hamaker constant, A(J) 1.65x10−21

Solute volume fraction, φ 0 - 0.4
Minimum equilibrium cut off distance
, d0(nm)

0.158 nm

Solvent dielectric constant, ε 78.54
Temperature,T (K) 298

The minimum cut off distance is used to prevent the divergence in van der Waals

potential. OZ integral equation is solved for radial distribution function for the

above parameters. The plot in shown in Fig. 5.19.

Fig. 5.19 shows the radial distribution function at two different solute volume

fractions. When the volume fraction, φ is 0.4, g(r) starts from very high value in-

dicating that the probability of finding another solute particle is high. Whereas in

the case of φ = 0.05, g(r) starts from almost zero because the solute concentration
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(a) Osmotic compressibility (b) Gradient diffusion equation

Figure 5.20: Osmotic pressure and gradient diffusion coefficient as function of
solute volume fraction at particle charge zp 0f -20 and concentration of 0.01M

is very low and probability of finding another solute particle in immediate vicinity

is low. Therefore, it can be established that the plots are in line with theoretical

predictions.

Once the radial distribution function is obtained, osmotic compressibility and gra-

dient diffusion coefficient can be computed using Eqs. 4.11, 4.16, 4.17. Variation

of osmotic pressure and diffusion coefficient with solute volume fraction is shown

in Fig. 5.20.

The obtained gradient diffusion function can be fitted into a polynomial function

using MATLABTM. The choice of the degree of polynomial can be made based

upon the accuracy needed in residuals.

5.3.2 Model description

The geometry of the domain is the same as in Section 5.2. Pressure BCs are used

for fluid whereas fixed inlet concentration BCs are used for solute. LB schemes

are used to resolve both fluid and solute as discussed in Chapter 4. Different

parameters used in the simulation are tabulated below

5.3.3 Results

The results of this model is mainly compared with that of Bhattacharjee et al.[7].

In their work, they solved the simplified convection diffusion equation with finite

difference method and assuming a constant shear rate for the fluid and, hence, a
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Table 5.7: Different Parameters used in osmotic pressure model in nano-
filtration

Parameters

Lattice points in x-direction 301
Lattice points in y-direction 133
Diffusion coefficient, D Eq.4.16,Eq.4.9
Kinematic viscosity of particle free
medium, ν0

10−5 m2/s

Peclet number, Pe 0.01
Shear rate, γ̇ 100
Resistance of membrane, Rm 1.67x1013 m−1

TMP 50-250 kPa
Inlet volume fraction, φb 0.01-0.05

Boundary conditions

Inlet for fluid Pressure BC, pin
Outlet for fluid Pressure BC, pout
Inlet for solute Fixed volume fraction , φb
Outlet for solute Outflow BC

Initial conditions

x-Velocity, ux Fully developed Poiseuille flow induced
by shear rate γ̇

y-Velocity, uy 0
Solute volume fraction, φ0 0.01,0.05

simplified cross flow velocity field. The present model uses LB schemes to solve

both fluid and solute. Results from both approaches are compared to see any

possible differences.

There are some assumptions made when comparing the results of Bhattacharjee et

al. with the present model. In their paper, certain details about domain geometry

are not provided. The membrane length they used is unity and no data is available

about the height of the domain. In the present work, the length of membrane

used is 45µm. This is chosen to have a more stable model and fundamentally the

hydrodynamics of the model do not depend on the length of the membrane to a

large extent. Therefore, all variables are non dimensionalised before comparing.

5.3.3.1 Variation of flux along the length of membrane

The simulations are run for parameters given in Tables 5.7,5.6. A TMP of 200kPa

is used along with solute volume fraction of 0.01. The variation of permeate flux

along the length of the membrane is shown in Fig. 5.21.
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Figure 5.21: Variation of flux along the length of membrane at different times
in osmotic nano-filtration model at charge density of −20mC/m2 and 0.05M

concentration os electrolyte and vw is flux without any solute.

It can be observed that there is quite a difference between the results of present

model and Bhattcharjee et al. The variation of flux in Bhattacharjee’s model

has approximately a quadratic trend. The slope of the curve is more steep at

the beginning of the membrane and it flattens out after one thirds distance from

beginning. The present model gives different trend of variation. On contrary,

the curve is more flattened at the beginning and has a steep slope after the half

way distance from the membrane. Also, it is worth noting that the flux increases

slightly at the end of membrane. But the minimum value of non-dimensionlised

flux obtained in both models is quite close which is 0.6.

The difference in the results can be due to several factors. Some of them are vari-

ation of TMP along the length of the membrane which is not considered in Bhat-

tacharjee’s model. In their paper it is stated that Peclet number in x−direction

is as low as 0.01 in all the simulations. This confirms that the diffusive force is

comparable with convective force in x−direction. But while solving convection

diffusion equation, Bhattacharjee neglected the diffusive flux term in x−direction.

This simplification is the possible reason for the flux variation trend. Due to the

cross flow, the concentration build up starts from the end of the membrane rather

than the beginning.

In the plot T is the time taken to reach steady state. At T/5, the flux variation is

more identical to one from Bhattacharjee’s work except for the end which increases

slightly due to dispersion of concentration profile as discussed in previous model.
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The lowest flux is obtained is around 0.75L. As the time goes on, the minimum

flux over the length decreases and at the same time shifts towards the end of

membrane. At steady state, the minimum obtained is just before 0.9L. The

convective force is always same but the diffusive force increases as concentration

builds up. This diffusive force will tend to move the peak concentration towards

the end of the membrane. The peak concentration is at the beginning of the

membrane in Bhattachrajee’s model whereas it is the end in the present model.

The variation of solute volume fraction over the length of the membrane is shown

in the Fig.5.22.

Figure 5.22: Variation of solute volume fraction along the length of mem-
brane at different times in osmotic nano-filtration model at charge density of
−20mC/m2 and 0.05M concentration os electrolyte and φb is bulk volume frac-

tion

The peak volume fraction is exactly at the same point as the minimum flux is

observed. Hence, the results obtained by the model are very much consistent. The

evolution of concentration profile at different times can be visualised as shown in

Fig. 5.23.

5.3.3.2 Dependence of flux with TMP

The variation of flux at different TMPs is studied with the present model and

compared with Bhattacharjee’s model. All the solute parameters are used as

in Table 5.6 except for particle charge. A surface charge density (zpe/4πr
2
p) of

−20mC/m2 is used in present simulations. Rest of the operating conditions and

parameters are kept the same. The variation plot is shown in Fig. 5.24.
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(a) T/6 (b) T/3

(c) T/2 (d) 2T/3

(e) 5T/6 (f) T

Figure 5.23: Evolution of concentration polarisation layer in osmotic pressure
governed model when TMP is 200kPa and bulk volume fraction is 0.01. Particle

charge is -20 and electrolyte concentration os 0.01M

Results from the both models are remarkably same with very small deviation.

Therefore, it can be inferred from the plot that the present model is very much

successful in predicting steady state flux. The TMP is kept below 250kPa to avoid

the formation of cake layer. The present model can deal with the cake formation

even when TMP is more than 250kPa whereas Bhattacharjee’s model falls short

of it.

Therefore, it can be concluded that the present model is more complete model

being able to resolve both fluid and solute and at the same time being able to

handle osmotic pressure and cake formation in one single model.

Mahendra Swansea University



Chapter 5. Results 81

Figure 5.24: Variation of steady state flux with TMP in osmotic nano-
filtration model at charge density of −20mC/m2 and 0.05M concentration os

electrolyte

5.4 Cake prediction in nano-filtration

When the size of solute particles is in the order of few tens of nanometer, the

osmotic pressure acting against the TMP is very low. This is because the osmotic

pressure is inversely proportional to cube of radius of the solute particle (Π ∝
1/r3

p). Therefore, when the TMP is high enough the formation of cake is inevitable.

5.4.1 Model description

The domain geometry considered here is taken from the work of Marion et al.[6].

Marion has done experimental study on the formation of cake with interacting

solute particles. In their work the experimental data is used to validate the model

they developed for predicting the kinetics of the cake formation. The experimental

data is taken from the work and the simulations are performed with present model.

The length of the filtration cell is 12.7cm and the height is approximately 1cm. In

the present work only 1/3rd of the length is considered to decrease the computa-

tional cost. Nevertheless, it proved to be a reasonable assumption in the results.

The radius of the solute particles is 60nm. The Brownian diffusion for the solute

particles is in the order of 10−12. The Peclet number in both x− and y−directions

is more than 1 on a grid spacing as low as 10−6. Hence, the back transport mech-

anism in the model is almost negligible and this is one of the important reasons
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for formation of cake. OZ integral is solved for the present solute particle with

the data available from paper [6] to compute the gradient diffusion coefficient.

The results showed that the variation of diffusion with particle volume fraction is

not significant. So, a constant diffusion model is used rather than using gradient

diffusion coefficient.

As stated in earlier Chapter 2 that LB scheme for convection diffusion becomes

unstable when the diffusion coefficient is low. The scaling of parameters in LB

scheme needs to run a stable model demands a high computational cost. Hence,

convection diffusion equation for the solute is solved using FV techniques described

in Chapter 3. Fluid is resolved using LB schemes. The algorithm used in coupling

both LB and FV techniques is given in Chapter 4. Operating conditions and

different parameters used in the model are given in Table 5.8.

Table 5.8: Different Parameters used in cake formation model in nano-
filtration

Parameters

Lattice points in x-direction 481
Lattice points in y-direction 89
Finite volume centers for FV CD solver
in y-direction

96

Diffusion coefficient, D 3.6x10−12 from Eq.4.9
Kinematic viscosity of particle free
medium, ν0

10−5 m2/s

Average cross flow velocity, U0 0.0001 m/s
Resistance of membrane, Rm 8.11x1011 m−1

Specific resistance of the cake layer, Rc 1.23x1017m−2

TMP 77 kPa
Inlet volume fraction, φb 4x10−5

Boundary conditions

Inlet for fluid Pressure BC, pin
Outlet for fluid Pressure BC, pout
Inlet for solute Fixed volume fraction , φb
Outlet for solute Outflow BC

Initial conditions

x-Velocity, ux Fully developed Poiseuille flow with
average velocity U0

y-Velocity, uy 0
Solute volume fraction, φ0 4x10−5

The cross flow velocity is calculated by computing the mass flow rate depending

on the Reynolds number reported by Marion by assuming the diameter of pipe

to be around 8mm. As the present simulations are in 2 − D, velocity per unit
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width of the filtration cell is computed and obtained as 10−4m/s. The specific cake

resistance is computed assuming the cake formation occurs at a volume fraction

of 0.63. The reason behind this assumption is the interactions of solute particles.

Because of different forces acting between the particles they rest in equilibrium

with certain distance which depends on relative strength of repulsive electrostatic

double layer forces and attractive van der Waals forces. This distance is assumed

to be 1nm and porosity is calculated using the relation.

εc = 1− φmax
(

2ap
2ap + heq

)3

(5.5)

where in Eq. 5.5, φmax is 0.64 which is maximum packing fraction for non inter-

acting particles and ap is the radius of solute particle and heq is the equilibrium

distance between solute particles.

5.4.2 Results

The model is run at an inlet volume fractions 4x10−5. The variables of interest

in the present case is decline of flux with time. The results from the model is

compared with that of experimental data. The plot of flux versus time is shown

in Fig. 5.25.

Figure 5.25: Flux decline with time in the case of 60nm particle size and bulk
volume fraction is 4x10−5 under TMP of 77kPa
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It can be observed that the model and experimental data is very much in agree-

ment. Other important variables in this study is fouling half life membrane (t1/2).

This time is defined as the time required for the permeate flux to reduced by half

of initial value. This fouling time is defined with another parameter which is 3τm

where τm is time required for flux to become v0/
√

2. The experimental values and

values obtained from the model are given in Table 5.9.

Table 5.9: Fouling life values of experiment and model

Variable Exp Data Model
τm 667 s 700 s
t1/2 2000 s 2800 s
v100/v0 0.31 0.35

Marion’s model is based on simplification done to convection diffusion equation by

using appropriate boundary conditions which ends up with a ordinary differential

equation (ODE) which can be integrated in time. The experimental values of

porosity are used to fit the model data to experimental data. Hence, a knowledge

of experiment is necessary beforehand in the model of Marion et al. In the present

model, no experimental data is used in modelling and still able to predict the

cake formation to a good accuracy. This is because of resolving all the possible

components in the filtration system. This shows the versatility of the present

model. This is confirmed by simulating another experiment with fairly different

operating conditions.

The experimental data considered here is extracted from the work of Hong et

al.[30]. The solute particle diameter in their experiments is 150nm and 300nm.

Because of the larger particles, the diffusion of the particles is even less compared

to previous model. The paper reported of almost zero interactions between solute

particles and hence a constant diffusion is used in simulations. The TMP is varied

between 61 − 20kPa. The filtration cell is cylindrical in their experiments but a

rectangular channel is used in the present study as a simplified 2−D model. The

height of the channel if 7mm and a length of 0.6cm is used to reduce computational

cost. It is also stated in the paper that cross flow velocity almost has no influence

of flux decline. Therefore cross flow velocity is chosen based on the stability limits

of the model. The inlet volume fraction is 10−4 in all cases. Membrane resistance

is around 1012m−1 and specific cake resistance is computed using a porosity (εc)

of 0.37 from Eq. 4.7.

The results of flux decline at three different TMPs is shown in Fig. 5.26a along

with the corresponding experimental data.
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(a) Flux decline with time in the case of
150nm particle size under TMP of 21-61kPa

(b) Flux decline with time in the case of
150nm and 300nm particle size under TMP

of 41 kPa

Figure 5.26: Results of flux decline for different TMPs and different particle
sizes and bulk volume fraction is 10−4. Experimental data of Hong et al.

The results of flux decline with time for different sizes of solute particles are shown

in Fig. 5.26b. As the size of the particle increases, specific cake resistance decreases

based on Eq. 4.7. Hence it can be observed in the results that the flux decline in

the case of 300nm diameter particles is not significant when compared to that of

100nm diameter particles.

It can be concluded from the plot that the model results are in a very good

agreement with the experimental data. In their paper, Hong et al. used a different

approach in modelling the flux decline compared to Marion et al. Both of their

approaches are formulated based upon the operating conditions of the experiments.

For instance, Marion’s model takes the account of interactions between the solute

particles and used the equilibrium distance (heq) at different conditions to compute

porosity and thereby varying the specific cake resistance with time. On the other

hand, Hong et al. also simplified the convection diffusion equation by applying

appropriate boundary conditions and then calculating the pressure drop across

cake layer by using cake resistance thickness and treating permeate flux as time

dependent variable. They used constant porosity in all calculations.

The present model could match the results of both experiments using same ap-

proach unlike the different approaches the authors took in [6] and [30]. Therefore,

it can be established that the present model is more generally in its approach and

can be applied to variety of operating conditions without any major changes to

the model.
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5.5 Nano-filtration rejection model

When the solute particles are ionic in nature or when the size of certain organic

solute particles is much smaller than the size of the pores of the membrane, rejec-

tion of the solute characterises the membrane. In the present model, rejection of

sea salts like NaCl and Na2SO4 are computed and compared with experimental

data.

The algorithm of the model is explained in Chapter 4. As mentioned earlier, in-

stead of solving for solute distribution of each ionic species, whole salt is treated as

one entity and solved based on diffusion coefficient and osmotic pressure provided

by Geraldes et al.[28]. Table 5.10 gives the different properties of different salts

considered in present work.

Table 5.10: Properties of salts provided by Geraldes

Salt Diffusion coefficient
(10−9m2/s)

Osmotic pressure
(105Pa)

NaCl 1.61(1 − 14ω) for ω <
0.006,1.45 for ω > 0.006

805.1ω

Na2SO4 1.23(1− 0.76ω0.4) 337.8ω0.95

The solution algorithm involves solving system of non-linear equations in each

iteration. Non-linear system of equations results from equilibrium partition equa-

tions and electro-neutrality equations Eqs. 4.25, 4.27. The equations are solved

using hybrd1 subroutine which is the part of minpack library [31]. The subrou-

tine uses modified Powell hybrid method [32] and Jacobian is calculated using

forward-difference approximation.

5.5.1 Model description

As stated earlier, solving for the fluid part is eliminated in rejection modelling.

Hence, only convection diffusion equation is solved for computing the distribu-

tion of concentration in the boundary layer of the membrane. This is followed by

DSPM-DE model to estimate the permeate concentration. The convection diffu-

sion equation is solved in the domain height approximately 10% of the filtration

domain. Two commercial membranes are used in the present work namely NF90

and NF270. Various properties of these membranes are given in Table 5.11.

The properties of individual ions that are necessary in DSPM-DE model are given

in Table 5.12.
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Table 5.11: Properties of nano-filtration membranes NF90 and NF270

Membrane Permeability
(m/s.bar)

Thickness
/Porosity

Pore size
(nm)

Zeta poten-
tial (mV) at
pH = 7

NF90 1.68x10−6 0.18 0.55 -26.2 - -30.3
NF270 4.18x10−6 0.157 0.71 -12.1 - -15.2

Table 5.12: Properties of different types of ions

Ion type Diffusion coeffi-
cient (m2/s)

Radius (nm) Valency

Na+ 1.33x10−9 0.184 +1
Cl− 2.03x10−9 0.120 -1
SO−2

4 1.06x10−9 0.231 -2

The rejection of different salts at different operating conditions are calculated and

compared with the experimental data. The results are presented in the following

section.

5.5.2 Results

The rejection model is first checked with the results available from literature. The

model is used to compute the rejection of NaCl at different bulk concentrations

and different TMPs. The experimental data is taken from the work of Mohammad

et al.[33]. The effective membrane charge density has to be computed experimen-

tally using streaming potential measurements. But in their work, Mohammad

et al. fitted the experimental salt rejection data to compute membrane charge

density. The obtained values are fitted through Freundlich isotherm form which

depends on the bulk concentration. The fits for both membranes are as follows

|Xd| = 3.259C0.6985
b (5.6a)

|Xd|/Cb = 1.107 exp(−0.0056Cb) (5.6b)

In Eq. 5.6, first one is for NF90 and second fit is for NF270 membrane respectively.

The charge density is computed at every concentration and is used in computation

of rejection coefficient.
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In the work of Mohammad et al. mass transfer of the solute ions is considered

and not the concentration polarisation. The wall concentration is calculated by

the following relation

Cw − Cb
Cp − Cb

= exp(
Jv
k

) (5.7)

where in Eq. 5.7, Jv is permeate flux and k is mass transfer coefficient. Mass trans-

fer coefficient depends on filtration cell domain and operating conditions of the

experiment. Unlike this approach, the wall concentration in present work is com-

puted by solved convection diffusion equation which makes more physical sense.

When the inlet concentration is high, the concentration polarisation phenomenon

is significant and has to be taken into account. Hence doing so, there are some

observations were made in two approaches.

Mohammad et al. computed the dielectric exclusion effect from Eq. 2.31 and pore

dielectric constant is estimated using the relation proposed by Bowen and Welfoot.

εp = 80− 2(80− ε?)
(
d

rp

)
+ (80− ε?)

(
d

rp

)2

(5.8)

In Eq. 5.8, ε? is taken as 6 and εb as bulk dielectric constant which is 80. DSPM-

DE model gave unrealistic results when this relation is used to estimates ∆Wi in

the present model. One possible reason might be the effective membrane charge

density which is fitted back from rejection results which uses the above relation

in computing dielectric exclusion effect. Therefore, pore dielectric constants are

chosen for each concentration to obtain the best fit for the rejection coefficient.

Table 5.13 gives the values of εp for different concentrations of NaCl for NF270

membrane.

Table 5.13: Fitted values of εp at different NaCl for NF270 membrane con-
centrations

Concentration (mol/m3) εp
427 35.6
342 38.9
256 43.6
171 45.7
85 45.9

The variation of εp is quite narrow compared to concentration, nut nevertheless

it takes values more than 33.1 which results from Eq. 5.8. As there are no
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(a) Flux at different TMP of NaCl with
NF270

(b) Rejection of NaCl in NF270 membrane

Figure 5.27: Flux and rejection data of NaCl at various concentrations and
TMPs in NF270 membrane. Dots represent experimental data by Mohammad

et al. and solid lines indicate model

streaming potential measurements from the work of Mohammad et al., it is quite

difficult to establish the obtained pore dielectric constants are correct. But the

combined effect of the membrane charge density and the above εp values produced

the reasonable rejection results.

The rejection and steady state flux of NaCl at different TMPs with NF270 mem-

brane is shown in Fig. 5.27.

The model predicts the rejection and flux at various pressures and concentration

to a good agreement with experimental data. This shows the fitting of εp is

reasonable and justified. The use of data given by Gerldes [28] for osmotic pressure

and diffusion coefficient is also well agreed. The rejection coefficients vary along

the length of the membrane and are calculated taking the mean of the entire

membrane. The variation and concentration polarisation plots are discussed in

next set of results where the experimental data is obtained from the collaborators

of present work.

The same procedure is followed for NF90 membrane for predicting flux. The pore

dielectric constant εp is chosen to fit the experimental rejection. The fitted values

of εp are given in Table 5.14.

The dielectric constant of pore in the case of NF90 membrane is higher than in

the case of NF270 membrane for same concentration of solute. This is due to

difference in membrane charge density between the both membranes. NF90 has

relatively higher membrane charge density values compared to NF270. Hence, the
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Table 5.14: Fitted values of εp at different NaCl for NF90 membrane concen-
trations

Concentration (mol/m3) εp
342 47.9
256 45.6
171 43.7
85 42.0

(a) Flux at different TMP of NaCl with
NF90

(b) Rejection of NaCl in NF90 membrane

Figure 5.28: Flux and rejection data of NaCl at various concentrations and
TMPs in NF90 membrane. Dots represent experimental data by Mohammad

et al. and solid lines indicate model

concentration of counter-ions (ions having opposite sign as membrane) decreases

on the membrane and eventually inside the pore. Lower counter ions inside the

pore lowers the interactions between co ions (ions having same sign of charge as

membrane) and counter ions decreases the interaction energy. The decrease in

interaction energy which is Born solvation energy in the present case is possible

when the pore dielectric constant is lower.

The flux and rejection of NF90 membrane for NaCl is shown in Fig. 5.28.

The experimental results provided by the collaborators of the present work are

discussed below. The membranes used by them are also NF90 and NF270. The

value of zeta potential is available in the for these membranes forNaCl. The values

are tabulated in Table 5.11. The membrane charge density is not available with

the experimental data and hence computed analytically assuming that the zeta

potential does not vary much with TMP. pH is kept constant in all cases through

out each experiment. Membrane charge density is related to zeta potential by
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(a) Flux at different TMP of NaCl with
NF270

(b) Rejection of NaCl in NF270 membrane

Figure 5.29: Flux and rejection data of NaCl at various concentrations and
TMPs in NF270 membrane. Dots represent experimental data and solid lines

indicate model

Xd = 2

[
2ε0εbkT

∑
i

CiNA

(
exp

(
−zieζ
kT

)
− 1

)]0.5

/rpF (5.9)

In Eq. 5.9, ζ is zeta potential, Ci is the concentration of ith ion, rp is radius of

pore.

The value of dielectric pore constant is kept fixed at 48 at all the concentrations.

The ionic concentrations involved in the present experiments are very dilute and

hence there will not be much interactions between co ions and counter ions inside

the pore. The results for flux and rejection are shown un Fig. 5.29.

In this case the variation of permeate concentration along the length of the mem-

brane is studied. Two cases with bulk concentration at 5g/L and 1g/L are pre-

sented here. The variation of CP is shown in Fig. 5.30.

The variation is as expected with lowest permeate concentration at the beginning

of the membrane and increasing along the length. The trend of permeate con-

centration is almost identical in both cases when bulk concentration is 5g/L and

1g/L. These plots proves that the concentration polarisation cannot be neglected

while modelling rejection phenomenon especially when the bulk concentration is

significant. In the case of dilute solutions, concentration polarisation can be safely

neglected.
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(a) Variation of CP along membrane length
when bulk concentration is 5g/L

(b) Variation of CP along membrane length
when bulk concentration is 1g/L

Figure 5.30: Variation of CP along membrane length for different bulk con-
centrations and different TMPs for NaCl in NF270 membrane
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Conclusions and Future work

The importance of filtration process is briefed along with the challenges faced in

simulating the process. Membrane filtration is discussed in detail and phenomena

like concentration polarisation and cake formation is explained in detail.

Lattice Boltzmann methods along with finite volume techniques are used to model

the membrane filtration process. The results of micro filtration in a micro sieve

are presented for different TMPs and possible design optimizations are studied.

Lattice Boltzmann schemes which are used to resolve both solute and fluid has

given a very good results and can be used in industrial applications to study the

membrane filtration more in detail. But one drawback with LB schemes is com-

plexity involved in using non-uniform lattice grids. The scaling necessary for the

LB schemes can be a bottleneck to implement them for different membrane filtra-

tion cases. For example, consider a micro-filtration model in practical filtration

cell which has dimensions of around 10cmx1cm. Because of high aspect ratio of

the filtration cell, the number of lattice points required to simulate the process

resolving the scales as low as µm is difficult. The simulations demands a lot of

computational resources and also results in stability issues. One solution to in-

crease the stability of LB schemes is to use multiple relaxation time schemes. In

the present work, only single relaxation time is used and some stability issues are

experienced. Another solution is to use turbulence model while solving for fluid.

Turbulence model increases the relaxation parameter above the stability limit of

0.5 giving more stable results. In this work,finite volume techniques are introduced

to address the shortcomings of the LB schemes.

A coupled LB finite volume solver for resolving fluid and solute particles respec-

tively is introduced in modelling cake formation in nano-filtration. This model uses
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LB implementation for fluid and finite volume techniques for solute and this im-

plementation could capture the cake formation resolving to a scale of few tenths

of micro meter without losing generality of the solution process. The model is

validated with experimental results from two different experiments. The results

from both simulations agreed with the corresponding experimental data within

20%. Therefore, this model can be regarded as more general model having a wide

applicability range.

Osmotic pressure governed model is also implemented with LB schemes for both

fluid and solute. There are no direct relations to compute the osmotic pressure

for non-ionic solute particles where as Vant Hoff equation can be used in the case

of ionic solutes. The numerical procedure to evaluate osmotic pressure using OZ

integral equation and virial equation of state is briefed. This solution will help in

the case when there is no or very less experimental data is available for osmotic

pressure of solute particles. Various results like variation of flux with TMP and

along the length of the membrane are discussed in detail and compared with other

models. There are some differences are observed in the results especially in the

case of concentration distribution over the membrane. But the computed flux at

various TMPs are in very good agreement with the models available in literature.

This shows that the assumptions such as constant shear rate, constant TMP over

the whole domain has some major influences on the results.

Another important model in membrane filtration is rejection modelling in nano-

filtration. DSPM-DE model is implemented in the present work to compute the

rejection coefficient. Only convection diffusion equation is solved assuming a con-

stant cross flow velocity. The assumption can be justified by the fact that the

rejection coefficient is membrane specific and salt specific property. An iterative

strategy is implemented to compute the permeate flux from convection diffusion

equation and DSPM-DE model. The rejection results for NF90 and NF270 mem-

branes are presented for NaCl salt at different TMPs and bulk concentrations. It

is observed that rejection of NaCl is more in the case of NF90 than in NF270.

This is due to the steric hindrance NF90 offering to ions because of its smaller

pore size. It is observed that rejection decreases as the solution becomes more

concentrated. The influence of pore dielectric constant on rejection is explained

with the example of NaCl for two different membranes.

All the different models implemented in present work namely cake formation in

micro-filtration, cake formation in nano-filtration, osmotic pressure model and re-

jection model fundamentally used same approach in solving the problem. Resolv-

ing fluid by Navier Stokes equations and solute by convection diffusion equation.

The techniques employed to do so are chosen to increase the applicability of the
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model. This approach of solving membrane filtration in a couple manner can be

used to develop the generic models with wide applicability and can be used as

black boxes in industry. The excellent results obtained for different cases shows

the vast range of applicability of the model and further research can be made to

look into the drawbacks stated.
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Appendix A

Scaling in LBM

The variables in the LB schemes are often scaled to lattice units. The relation

between two system for common variables used in LB simulation are outlined

below.

Table A.1: Relation between lattice units and physical units

Variables Physical units Lattice units Relationship
Density ρ = ρ0 ρ̄ = 1 ρ = ρ0ρ̄

Density function fi = ρ/wi f̄i = 1/wi fi = ρ0f̄i

Relaxation time τ τ̄ τ = τ̄∆t

Lattice spacing δx ∆̄x = 1 -

Time step δt ∆̄t = 1 -

Lattice speed c = ∆x
∆t

c̄ = 1 -

Viscosity ν = 1
3

(
τ̄ − 1

2

)
∆x2

∆t
ν̄ = 1

3

(
τ̄ − 1

2

)
ν = ν̄∆x2

∆t
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Appendix B

Numerical solution to OZ integral

equation

The three dimensional correlation functions can be treated as one dimensional

functions for radially symmetric interaction potentials. DLVO interaction poten-

tial is radially symmetric in nature and hence the symmetric function γ(r) can be

expressed as one dimensional sine transform

γ(r) =
1

2π2

∞∫
0

k2γ̃(k)
sin(kr)

kr
dk (B.1)

and its corresponding inverse is

γ̃(k) = 4π

∞∫
0

r2γ(r)
sin(kr)

kr
dr (B.2)

where tilde function denotes the Fourier transformed function. Now the numerical

techniqu to solve OZ integral equation using the Fourier transforms Eq.B.1, B.2

is discussed below

Let r be the real space and k be te Fourier space. The real space is discretized into

N intervals with ∆r as step size. The corresponding step size in Fourier space,

∆k will be
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∆k =
π

N∆r
(B.3)

The discrete Fourier transform pair corresponding to Eq.B.1 and B.2 are given by

F̃j = 4π∆r
N−1∑
i=1

Fisin

(
πij

N

)
, j = 1, 2, ...., N − 1 (B.4a)

Fi =
∆k

2π2

N−1∑
j=1

F̃jsin

(
πij

N

)
, i = 1, 2, ...., N − 1 (B.4b)

The Fourier transformations can be computed by fast Fourier transforms. In this

work, MATLABTMis used to compute fast Fourier transforms.

Different correlation functions are expressed as Ci = rici, Hi = rihi and Γi = riγi

where γi = hi − ci. Using HNC closure

Ci = ri

[
exp

(
−βE(r) +

Γi
ri

)
− Γi
ri
− 1

]
(B.5)

The Fourier transformation of the OZ integral yields the following relation

Γ̃j =
nC̃2

j

kj − nC̃j
(B.6)

In Eq.B.6, n is the number density of the solute particles. The solution procedure

starts with a guessed value for Γi and Ci can be computed using Eq.B.5 with

the knowledge of interaction potential E(r). The Fourier transformed function of

Ci is calculated using fast Fourier transforms and Γ̃j is calculated from Eq.B.6.

The computed Γ̃j in Fourier space is inverse transformed back to real space and

compared to the old estimate. This is done until convergence criterion is met at

every point in real space r. The new guess at the end of each iteration can be

under relaxed to obtain a faster convergence rate.

Γm+1
i = ωΓm−1

i + (1− ω)Γmi (B.7)

where in Eq.B.7, m is the iteration number and ω is the weight and its value should

be between 0 and 1. After the method has converged, γi and hi can be computed by
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Γi and Ci. The radial distribution function is related to pair correlation function

as follows

gi = 1 + hi (B.8)
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