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Abstract

The present work describes the dynamics of beams undergoing sliding con-
tact conditions. The physics of such systems lead to non-linearities in the result-
ing model of equations. When aiming to approximate numerically a solution,
within the context of the finite element method, three topics are considered the
most challenging: the kinematic description of the beams, the time-integration
schemes and the treatment of the sliding contact. Each of them are relevant
enough to be studied as separate subjects. However, when these subjects are
brought together to attempt the system solution, their behavior is no longer in-
dependent. Two particular examples of the previous can be: the interpolation
chosen for the beam kinematics will affect the contact performance, or an ap-
proach for the contact description will have consequences on the time-integration
conserving properties.

The beam model presented further on is 2D and based on the geometrically
exact (also known as Reissner-Simo) theory. This is particularly suitable to de-
scribe the presence of large displacements and rotations 1. It is worth to notice
here that the 2D context allows the beam rotational field to be interpolated in
the same way as displacements for the variational formulation. Nevertheless,
when conservative time-integration is developed, incremental rotations are in-
terpolated instead and special treatment has to be done. Regarding contact
formulation, non constraint equations are added to the equations of motion
as the master-slave approach is used to model the sliding conditions. This is
an important advantage, together with the fact that non additional degrees of
freedom are added to the system equations.

It is intended to show in the present work, an important contribution to the
discrete solution of sliding contact in beams. The discretization of the slideline
is proof to play a key role in the convergence of the method. Following this
direction, B -Spline is introduced to interpolate the beam variables. This allows
a smooth transition between finite beam elements and improves performance in
the numerical simulation compare to the most popular interpolation used, the
standard Lagrangian polynomials. In this context, the master-slave method is
extended to model flexible beam mechanisms whereas the conserving properties
of the underlying time-integration schemes are mantained. It is consider as well
that the work presented here can be extended to 3D geometrically exact beam
formulations without any theoretical difficulty.

1Let remark the term rotations in a 2D context is used to refer to the finite beam dis-
cretization
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Chapter 1

Introduction

1.1 Motivation

The modelling of flexible mechanisms have interesting Engineering applications
in a broad fields such as Aerospace, Automotive and Robotics. Recently, po-
tential applications in the field of Bio-mechanics have appear at reserach stage
[CPF07]. The most natural choice for the structural analysis of the system in
hand is to model beam elements. Moreover, in the analysis also contact me-
chanics and inertial forces has to be taken into account, as the mechanism joints
and dynamics play an important role. In this work, the intention is focused on
modelling beams under 2D sliding contact conditions together with conservative
strategies for time-integration.

The master-slave method has been developed in the recent past years, and
research has been done so as to model numerically with this approach more
general contact conditions without the use of constraint equations, such as it is
need when Lagrange multipliers or Penalty methods are used. The advantages of
the previous are that as well as keeping the minimum set of degrees of freedom,
the resulting system do not couple differential with algebraic equations, which
avoids the complexities associated with the solution in the last case. However,
when sliding conditions are intend to model with the master-slave method, the
chosen beam interpolation particularly affects the computation of contact loads
at element transitions. In this work the stability of the numerical model is
improved by the introduction of B -Splines for the beam spatial discretization.

With respect to the system dynamics, let state that energy and momentum
conserving algorithms (in non dissipative problems and in absence of external
loads respectively) has been developed for geometrically exact beams during
the last decade. However, the desired conserving properties are not carried over
straightforward to constrained systems such as the ones in question. In the
present work, it is shown the development and implementation of an algorithm
that conserves energy and momenta.

1
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1.2 Thesis Scope

As stated before, in the present attempt three different key topics are identified:
the beam formulation, the chosen scheme to integrate dynamic equations in
time and the way that sliding contact is treated. Let remark again that these
topics do not behave independly but are studied separately to get a better
understanding in each of them.

1.2.1 Beam formulation

In order to achieve a reallistic description of sliding joints, the beam kinematics
must consider finite deformations [Muñ04]. The theory chosen for that pur-
pose is knonw as geometrically exact (or Reissner-Simo beam theory [Rei81,
Sim85]). The formulation describes not only large displacements but also ro-
tations [SVQ86a, SVQ88]. For the present work, the study is focused in a
2D context, which simplify the complexity of dealing with large 3D rotations
[SVQ86b]. Nevertheless, it is beleived that the contributions achieved can be
extended to a 3D model without any other theoretical restriction.

For the spatial discretization of the beam’s displacements and rotations, B -
Splines are proposed as an alternative to the standard procedure, done through
Lagrangian polynomials [ZT00]. In the context of isogeometric analysis and
contact mechanics, this approach has already been tested with succesful results
[HCB05, Muñ08, TWH11]. However, let remark that to the author’s knowledge,
this has not been explored in the literature of structural elements such as beams.

1.2.2 Time-integration

For the integration in time of the dynamic equations, two different group of
algorithms shall be distinguished. Some of them are specially designed to pre-
serve the conservative properties in mechanics, the energy and momenta. On the
other hand, the non-conservative schemes do not deal strictly with that matter.
Conservative schemes are derived from an incremental form of the equilibrium
equations, whereas the latter are followed straighforward from the variational
form.

The well known Newmark method [New59] is the non-conservative method
implemented and it’s performance is compared against an energy-momentum
conserving scheme. The latter is developed using an incremental form of the
equilibrium equations which ends up solving a modified mid point gradient. This
technique is shown to be energy conserving [SS96], and in addition, interpolation
of tangent scaled rotations is included to conserve the angular momenta. Indeed,
the same energy-momentum method was originally presented in [STD95] for 3D
geometrically exact beams.

The extension of the conserving properties of the described time-integration
scheme is not straightforward in systems with contact constrains. Nevertheless,
it will be described further on that special care has been taken in order to model
sliding contact without spoiling the conservative time-integration features.
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1.2.3 The sliding contact approach

Contact constrains can be either imposed through the use of Lagrange multipli-
ers, a Penalty method or the master-slave formulation (also called the minimum
set method). The latter approach will be the one described in the present work,
and the idea behind is to relate the kinematics of a slave node through the
displacements of a master element. This method has been presented in previ-
ous work in the context of general elastodynamics, and 3D geometrically exact
beams with joints (see [MJ04, MJ06]). The main advantage of the master-slave
method compare with the other two techniques named before is that in the
former case non algebraic equations are added to the system of ODE. In conse-
quence, the solution is done using the same methods developed for displacement
based finite element formulations.

For the model of sliding contact using the master-slave method, first the
beam equilibrium equations are obtained for the complete system considering
no kinematic constrains. In the finite element implementation this means that
each of the beam’s equations are obtained by independent assembling. The
second step is done by modifying the resulting equations in such a way that
the work associated to the released displacements is taken into account in the
Virtual Work Principle.

With the chosen method to model sliding contact, the resulting equilibrium
equations can be integrated in time using the schemes described in the previous
sub-section. In order to retain the conserving properties, an incremental form
of the master-slave can be derived [MJ06]. Moreover, in this thesis there is
a contribution to the method’s performance at the contact transition between
the set of aligned elements. It is also a novelty that energy and momentum
conservation has been achieved for the constrained system with a relaxed sliding
condition [SM11].

1.3 Outline of this Work

The thesis will be organized from now on in four chapters and a set of Appendices
derived from the former ones. There will be one different chapter to deal with
each of the topics presented in the previous sub-section and a final one that
recopilates a series of numerical examples.

In Chapter 2, the beam 2D theory is fully presented, as well as a complete de-
scription of the finite element implementation. The beam equilibrium equations
are first derived for the static case. For that purpose, the simplest constitutive
model is chosen, which assumes a linear relation between strain and stresses.
Finally, the equations are discretized using finite element interpolation. In ad-
dition, the last part of the chapter will introduce B -Spline interpolation and
describe how is it implemented in the beam discretization.

Chapter 3 will introduce the beam dynamics and different approaches to
perform time-integration of the equations of motion. The Newmark method
is described first and will be the non-conservative scheme used in numerical
examples. Although the purpose of the present work is to perform conservative
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time-integration, the Newmark method will be used to compare and demostrate
the robustness of the former schemes. The conservative scheme will then be
introduced, together with a discussion about the link between the choice of the
rotational interpolated variables and the algorithm properties.

Chapter 4 presents a complete description of the master-slave method im-
plemented for 2D sliding contact in beams. First, a variational formulation is
developed, which will usefull together with the Newmark method. On the other
hand, an incremental form of the method has to be described in order to be
used with the conservative time-integration scheme. Three different strategies
are finally presented in the family of conserving algorithms. This arises from
the compromise that exists between the fullfilment of the sliding conditions and
the requirements of the angular momemtum conservation. In this way, a conser-
vative algorithm that preserves the sliding condition and conserve energy is the
first case studied. Furthermore, an angular momentum conserving algorithm
with a relaxed sliding condition which fails to conserve energy is the second
strategy. Last but not least, an energy and momentum conservative scheme
with a relaxed contact condition is the novel approach presented.

The last chapter will present in detail different numerical examples, start-
ing with a simple static case of beam modelling and finally including a set of
dynamic problems with sliding contact. Some of the examples are taken from
literature, and are specially chosen to show the algorithms’ features and perfor-
mance comparisson. All of them have been coded in MATLAB as well as the
post-processing of results that is shown.



Chapter 2

The beam theory and
implementation

The first attempt to describe large displacements and shear deformations in
beams was done by Reissner, who obtained the strain measures for the planar
[Rei72] and the three-dimensional case [Rei73]. After that, much work was devel-
oped by Simo and others in order to obtain a proper definition of the discretized
equations of motion in time and space in the 3D case [Sim85, SVQ86a, SVQ88].
The complexity in the 3D case is given by the fact that large rotations belong to
a special orthogonal group SO(3), space which is a non-linear differential mani-
fold [SVQ86a]. The beam theory is usually known as the geometrically exact or
Reissner-Simo beam theory. The description in the present chapter is restricted
to the planar beam case without accounting any inertial terms (equations in
statics).

The kinematics of the planar beam is stated in Section 2.1. This is the
basis of the definition of the strain measures, which are described in Section
2.2. Providing this knowledge, the variational form of the equilibrium equa-
tions is obtained in Section 2.3 through the application of the Virtual Work
Principle and a standard finite element interpolation. For this purpose, a linear
stress-strain relationship is assumed as the constitutive model. The remaining
ingredient needed for the numerical implementation of the beam theory is the
linearization of the variational form. This is also included in Section 2.3 and a
detailed description is presented in Appendix B.

The last section of the present chapter introduces the B -Spline interpolation,
(see Section 2.4). A general description of this technique and the application for
the interpolation of the beam variables is also covered. The latter includes some
modifications compared to standard finite element procedures such as element
assembly and Gaussian numerical integration.

5
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Figure 2.1: Finite motion of a planar beam

2.1 The beam kinematics

The kinematics of the geometrically exact beam is based on the idea that all
the admissible deformed configurations can be described through a position vec-
tor r and a moving frame ti attached to a typical beam cross-section [SVQ86a]
(with vector t1 always normal to it, see Figure 2.1). The vector r maps the
beam’s line of centroids to its current position. The orientation of the moving
frame ti it is defined by a matrix Λ ∈ SO(3). In fact, by stating that the beam
is fully defined by the position and orientation of the cross-sections, the theory
assumes implicitly that these planes remain undeformed (Bernoulli hypothesis).
Since t1 (see Figure 2.1) is not limited to take the orientation tangent to the
beam’s line of centroids, the formulation does account for shear deformations.

Let us assume the planar beam configuration depicted in Figure 2.1. There is
a fixed material basis denoted by {EI}I=1,2 and a fixed spatial basis {ei}i=1,2,
which are assumed to be coincident. Material quantities are referred to the
former, while spatial quantities are referred to the latter.

The reference beam configuration is a straight line 1 of length L with perpen-
dicular cross-sections and it longitudinal axis aligned with E1 (see Figure 2.1).
The beam initial position and orientation is defined by r0 and Λ0 respectively.
Let define then a parametrization:

r(X, t) = < → <2 ,

where X ∈ [0, L] ⊂ < is the beam’s arc length parameter and t a time parameter.
Furthermore, the orthogonal transformation Λ is such that:

1Initially non-straight beams theory can be found in [Sim85, Ibr95].
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tI(X, t) = (Λ(X, t) Λ0(X))
T

EI , I = 1, 2 , (2.1)

where tI and EI are considered ∀ I vectors in column shape. This convection
will be used for vectors through all this thesis.

Usually the beam kinematics is described separately for what displacements
and rotations account. For practical reasons, and due to the simplicity of the
rotation field in 2D the following will be used in the present section:

r =

 r1

r2

r3

 = r0(X) + u(X, t) = Λ0

 X
0
0

+

 u0

v0

θ0

︸ ︷︷ ︸
r0

+

 u
v
θ

 , (2.2)

where the beam rotation θ(X, t) has been included as the third component of
the displacement vector u. Accordingly, the following definition will also be
used in this section:

Λ0 =

cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1

 ; Λ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (2.3)

2.2 Definition of the strain measure

The actual distinction between material and spatial quantities in the refer-
ence and current configurations respectively, together with the equivalence of
the stress power, are the base in the derivation of the strain measures for the
3D beam theory (see for instance [SVQ86a]).

We will first resort to the strain density function of an elastic body, defined
in terms of conjugate magnitudes of force and strain, which result for the planar
beam as follows:

Ψ =
1

2

∫
L

N · Γ dX , (2.4)

where N =

 Fu
Fv
M

 and Γ =

 Γu
Γv
Γθ

 . Let remark that N holds the material

stress and couple resultant (at a cross section of the beam), which therefore
refers to the reference configuration. On the other hand, n will hold the spatial
stress and couple resultant 2, and can be obtained transforming N to the current
configuration (push-forward):

2For the plane case, it is trivial to make a distinction between material and spatial stress
couple but here it is done for notation completeness.
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θ

Γv

Γu

v
′ γ
v

sin
θ

cos θ γu

1

1 + u
′

1

θ

e2

e1

t2

t1

Figure 2.2: Geometrical interpretation of Γ

n =

 fu
fv
m

 = Λ Λ0 N . (2.5)

Note that due to equations (2.5) and (2.1), the components of n in the
moving frame tI are identical to the components in the basis EI of N, which
contains the axial force, the shear force, and the bending moment at a cross-
section of the beam. This is important to remark because will make clear later
that Γ is energetic conjugate to N in (2.4), where the potential energy is defined
relative to the moving frame tI .

Let us define the strain field in the following way:

Γ = (Λ Λ0)
T

r
′ −E1 . (2.6)

where here and all through the rest of the work, the dash symbol (′) denotes
derivative with respect to X.

The geometric interpretation of Γ is depicted in Figure 2.2, where neither
translation nor rotation in the beam initial configuration is assumed for simplic-

ity (
{
u0 v0 θ0

}T
= 0). Following (2.2) and (2.6) then it is possible to write

that:
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Γ = ΛT
(
r
′ −Λ E1

)
= ΛT


1 + u

′ − cos θ

v
′ − sin θ

θ
′

︸ ︷︷ ︸
γ

= ΛT

γuγv
γθ

 . (2.7)

Equation 2.7 refers to the transformation of the strain field γ, measured with
respect to the fixed basis eI , to the moving basis tI . Noting this geometrical
interpretation and bearing in mind the correspondence detailed between N and
n in (2.5), the energetic conjugacy proposed in (2.4) is explained. Indeed,
the success of the present formulation resides in the invariance property of the
strain field, when measured with respect to the moving frame. The proof for
the invariance of Γu and Γv can be found in [SVQ86b] whereas the invariance
of Γθ is straightforward for the planar case.

2.3 A variational description for finite deforma-
tion

In order to construct finite element approximations for the solution of finite
deformation problems, i.e. the one described in the previous section 2.2, it is
necessary to write the formulation in the weak (or variational) form. These
integrals forms are chosen to be written in the reference configuration. This
approach allow us to treat variation or linearization steps simpler because the
reference domain does not change during the deformation process.

In order to deduce the variational form, we introduce the total energy Π of
the system in statics as [ZT00]

Π = Ψ−Πext , (2.8)

with Ψ defined in (2.4) and Πext being the potential for the external work, both
described in the reference configuration.

As we stated before, it will be assumed that strains are small, which allow
us to express a linear elastic relation between N and Γ (the constitutive law):

N = Ce Γ = diag
{

E A κG A E I
}

Γ , (2.9)

where E and G are respectively the beam’s material Young’s and shear modulus,
A is the cross-sectional area and I is the moment of inertia about the beam’s
cross-section centroid. Equation (2.9) implies that stresses are constant along
the cross-section, so it is common practice to include κ as a shear correction
factor that accounts for shear variations along A.

Using the proposed constitutive law, then it is possible to write (2.8) as:

Π =
1

2

∫
L

Ce Γ · Γ dX −Πext =
1

2

∫
L

ΓT Ce Γ dX −Πext . (2.10)
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With the proposed constitutive law, it is clear from (2.10) that Ψ results in
a quadratic form in Γ. Taking the variation of (2.10), it is found that:

δΠ =

∫
L

δΓT Ce Γ︸ ︷︷ ︸
N

dX − δΠext , (2.11)

where now δΠext denotes a term from end forces and loading along the beam
length. Here, we will consider that loads do not depend on the deformed con-
figuration. On the other hand, follower loads are configuration dependent and
such treatment can be find in [SVQ86a] for the 3D finite strain beam.

The vector δΓ corresponds to the beam’s virtual strains and is obtained from
the variation of equation (2.6) as follows:

δΓ = δ
(

(Λ Λ0)
T

r
′
)

= − (Λ Λ0)
T

J r
′
δθ + (Λ Λ0)

T
δr
′
, (2.12)

with the following defined skew-symmetric matrix J =

0 −1 0
1 0 0
0 0 0

 (see Ap-

pendix A for further details on the variation of rotations).

A finite element approximation for the displacements and rotation shall be
introduced accordingly to:

uv
θ

 ≈ Iα(X)

uαvα
θα

 , (2.13)

where the shape functions Iα(X) are standard Lagrangian polynomials and{
uα vα θα

}T
correspond to α = 1, . . . , n nodal values of the interpolated

variables. Summation over repeated indices is implied and this convention will
be followed from here on.

Recall that the same set of shape functions are used for each variable, and
that elemental functions Iα(X) of node α satisfy the completeness conditions:

n∑
α

Iα(X) = 1 ⇒
n∑
α

I
′

α(X) = 1 . (2.14)

Using this approximation, the variational equation (2.11) may now be writ-
ten for the finite element problem as:

δΠ =
[
δuα δvα δθα

] (∫
L

BT
α n dX − fα

)
= 0 , (2.15)

where the strain-displacement matrix is obtained by approximation of (2.12),
and after some standard algebra manipulations results in:
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Bα =

I
′

α 0 Iα r
′

2

0 I
′

α −Iα r
′

1

0 0 I
′

α

 . (2.16)

Regarding the external forces, the interpolation of δΠext yields

fα =

∫
L

{
Iα
(
ρ0 A b + T̄

)
0

}
dX , (2.17)

where we have considered for simplicity the beam is subjected to force vec-
tors b and T̄, a body and a distributed load along the arc length parameter
respectively, all defined in the reference configuration.

Let us remark that
[
δuα δvα δθα

]
are the beam nodal virtual displace-

ments and rotation in the reference configuration, which are arbitrary except at
the Dirichlet boundary. This implies that satisfying the finite element approxi-
mation of the variational equation (2.15), implies the satisfaction of equilibrium
and the traction boundary conditions at each node of the beam. Therefore, the
set of nodal beam equilibrium equations is conformed by:

gα = geα − fα = 0 , α = 1, . . . , n ; (2.18)

where gα is the residual vector for node α and

geα =

∫
L

 I
′

α 0 0

0 I
′

α 0

Iα r
′

2 −Iα r
′

1 I
′

α

 n dX (2.19)

is the elastic nodal force vector. Although the finite element problem is stated
completely in (2.18), for the numerical solution of the nodal equilibrium equa-
tions, the linearization of the beam residuals will have to be computed. In
Appendix B, a brief description of the Newton-Raphson method is presented
together with the derivation of the system (2.18) tangent stiffness matrix.

2.4 Modelling smooth contact slidelines

In the context of Computer Aided Engineering (CAE ), the geometry is usually
modelled with B -Splines or NURBS (Non-Uniform Rational B -Splines). How-
ever, this information is often lost when the geometry is discretized using finite
elements. Research has been recently done in a field that tries to skip the mesh
generation. Instead of using an approximated geometry with finite elements,
an exact description is done with NURBS and these ones are used as well as
basis for the analysis. This topic has been denominated Iso-geometric analysis
[HCB05], but since mesh generation is the approach mostly used, a method will
be described here to transform a set of finite elements into a B -Splines curve
[Muñ08]. The resulting interpolation will have the same number of elements
but a different number of nodes and connectivity pattern.
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2.4.1 B-Spline interpolation

The initial beam geometry will be discretized by a set of ne cubic B -Splines,
which results in a curve Ce(ξ) = Bi,p(ξ)Pi. The curve is shaped according to
n + 1 control points Pi and the corresponding basis function Bi,p(ξ), defined
over a parametric space 0 ≤ ξ ≤ 1 and a polynomial order, which is chosen to
be p = 3. For further details, see Ref. [PT97].

The support of each basis function is determined from a knot vector k of

the form kT =

0, . . . , 0︸ ︷︷ ︸
p+1

, ξ1, . . . , ξm−2p−1, 1, . . . , 1︸ ︷︷ ︸
p+1


m+1

, which has m+ 1 knot

values and m = n+ p+ 1. The knot spans [ξi, ξi+1) are used to define the basis
functions, that are constructed following a recursive formulae for all knot values
in k:

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p−1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ)

(2.20)

It is common practice to refer as the speed, the norm of the tangents to

the parametrized curve
∣∣∣C′(ξ)∣∣∣. The most relevant properties of the B -Splines

curves [Muñ08] are summarized as follows:

P1. Local support, as i.e. Bi,3(ξ) = 0 for ξ /∈ [ ξi, ξi+4 ).

P2. As a consequence of P1, for a given span [ ξi, ξi+1 ), at most 4 (p+1) basis
functions are non-zero.

P3. Non-negativity of the basis functions, Bi,p(ξ) ≥ 0 , ∀ i, p.

P4. The tangents of a B -Spline curve that passes through a control point Pk

have the directions Pk −Pk−1 and Pk+1 −Pk.

From properties P3 and P4, a resulting B -Splines interpolation holds a smooth
curve that start and end at the extremes control points, and approaches the
control points in the interior.

2.4.2 Curve fitting

The construction of B -Splines curves that fit an arbitrary set of geometric
data is known as fitting. Many work has been done on this field and it is only
intended here to describe the method chosen to develop B -Spline interpolation
from an existing finite element mesh. In the present case, for initially straight
beams, the fitting problem is pretty simple. However, it will be referred here a
method that can deal with a general curve in 3D.
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Figure 2.3: Definition of B-Spline from initial nodes of the beam.

It is first stated that the fitting problem in the present case categorizes as
data interpolation, which means that the constructed curve will satisfy precisely
the given geometry and to distinguish it from data approximation. Moreover,
the method described in this sub-section is considered local rather than global
interpolation. Local algorithms only use local data for each step, which makes
them computationally less expensive and can also deal with cusps or straight
line segments better. On the other hand, its more difficult to deal with the
desire continuity at segment boundaries and multiple interior knots will usually
result.

A C1 continuity curve is the goal to construct in order to smooth the finite
element contact transition. There is a possible choice between quadratic or cubic
B -Splines for that purpose. However, the choice for cubic B -Splines resides in
the fact that they can handle inflection points and collinearity without any
special treatment [PT97]. The following algorithm is described in [PT97, pp.
395-405] as a local cubic curve interpolation and allows to construct a cubic C1

B -Splines curve from a set two end-points Pe
0 and Pe

3 and their corresponding
unit length tangent directions, Te

0 and Te
3 respectively.

Given ne number of elements in a finite element mesh, a set of ne Bézier
segments Ce(ξe), with 0 ≤ ξe ≤ 1 will be first constructed following the speed
constant condition: ∣∣∣C′e(0)

∣∣∣ =
∣∣∣C′e(0.5)

∣∣∣ =
∣∣∣C′e(1)

∣∣∣ . (2.21)

This construction is proved to be unique [PT97] and will be the basis for the
intended B -Splines curve. The whole process is summary in the following step
by step list:

1. An average unit length tangent direction is determined from the common
nodes of adjacent elements, i.e. Tavg = 0.5(TA + TB) (see Figure 2.3a).

2. For each element e, a Bézier segment is constructed with four control
points, Pe

0 . . .P
e
3, and the two at the extreme will coincide with the finite

element end-nodes (see Figure 2.3b). Moreover, due to property P4, the
control points at the middle are obtained using:
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Pe
1 = Pe

0 +
1

3
αTe

0 avg ; Pe
2 = Pe

3 −
1

3
αTe

3 avg , (2.22)

where Te
0 avg = Te−1

3 avg and Te
3 avg are the average tangent directions at ad-

jacent elements. The construction is fully defined by the speed parameter
α, which is derived using condition (2.21) and results to be the positive
solution of the quadratic equation [PT97]:

aα2 + b α+ c = 0 , (2.23)

with a = 16−
∣∣Te

3 avg + Te
0 avg

∣∣2, b = 12 (Pe
3 −Pe

0) ·
(
Te

3 avg + Te
0 avg

)
and

c = −36 |Pe
3 −Pe

0|2.

3. The set of knot values ξ
e+1

= ξ
e

+ |Pe
1 −Pe

0| is computed. This yield to
a uniform parametrization, where each Bézier segment have unitary speed

at their end and mid-points with respect to the intervals
[
ξ
e
, ξ

e+1
]
.

4. If the internal common nodes, P1
3 . . .P

ne−1
3 , are removed, a C1 continuous

cubic B -Spline curve is defined by the control points (see Figure 2.3c)

P1
0,P

1
1,P

1
2,P

2
1,P

2
2, . . . ,P

ne
1 ,Pne

2 ,Pne
3︸ ︷︷ ︸

2 (ne+1)

. (2.24)

and the knots

kT=

0, 0, 0, 0,
ξ

1

ξ
ne ,

ξ
1

ξ
ne ,

ξ
2

ξ
ne ,

ξ
2

ξ
ne , . . . ,

ξ
ne−1

ξ
ne ,

ξ
ne−1

ξ
ne , 1, 1, 1, 1︸ ︷︷ ︸

2 (ne+3)

. (2.25)

If the above described steps are followed, a finite element mesh in a slide-
line has been transformed in a B -Splines curve parametrized via ξ, 0 ≤ ξ ≤ 1.
Each element e is defined by the knot span ξ ∈ [ ξ2e+2, ξ2e+3 ) and four control
points Pe−1

2 , Pe
1, Pe

2 and Pe+1
2 . As an exception to the previous rule, the first

and last elements will have control points P1
0, P1

1, P1
2 and P2

2 and Pne−1
2 , Pne

1 ,
Pne

2 and Pne
3 respectively (see Figure 2.3c). Moreover, the control points of

each element will be consider as the new B -Splines nodes, since the knot span
ensure (by means of property P2 ) there are only four non-zero basis functions.
It is sufficient then to resort to the previous B -Spline construction of the do-
main and use the B -Spline basis functions as the shape functions Iα(ξ) in the
variational formulation. Therefore, cubic B -Spline interpolation of beams will
parallel standard cubic Lagrangian finite elements, if the shape functions are
modified properly. However, the latter implies two important modifications to
be done compared to standard finite element procedures that will be described
next.
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Element A Element B

Iα2Iα1 Iα3 Iα4

(a) Lagrangian

B-Spline A B-Spline B

Element nodes A

Element nodes B

I3 I4 I5 I6I2I1

(b) B-Splines

Figure 2.4: Connectivity of finite elements. Standard Lagrangian (a) and B -
Splines (b).

When comparing B -Spline interpolation with standard finite element meshes,
it is observed that connectivity will differ. Due to the support of B -Splines ba-
sis functions, the nodal connectivity will overlap different, i.e. in Figure 2.4b
adjacent element has more than one common nodes. Regarding numerical in-
tegration, according to the degree of the B -Splines basis functions, at least 3
Gauss Points per element along the beam arc length direction has to be used to
avoid underintegration. In addition, note that the parent domain for the whole
set of B -Splines belongs to ξ ∈ [0, 1] and this differ from standard iso-parametric
finite elements. Therefore, the location of the Gauss Points for each element will
differ in the B -Splines parent domain and additional storage of the elemental
shape function values will be needed (but no additional computational effort is
required).
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Chapter 3

Time-integration

It is of prime interest in this thesis to describe the behaviour of sliding beams
under the effect of inertial forces. In the beam equilibrium equations described
in (2.11) non dynamic term is described. To do so, the equations of motion will
be derived resorting to the Hamilton’s principle and Lagrange equations. From
this variational approach, the Newmark method [New59] will be presented as the
proposed scheme to integrate in time the beam equations of motion. It is shown
in [Muñ04] that the beam equations of motion in the continuum do conserve
the mechanical properties (energy and momenta) in absence of external and
dissipative loads. This motivates further analysis on the conserving properties
of the fully discretized (in space and time) beam equations. For the Newmark
method it will be shown that neither energy nor angular momenta are finally
conserved, and numerical examples confirm these conclusions afterwards.

In the context of modified time integration schemes, there are possible al-
ternatives that have been studied in order to achieve the constants of motion
conservation in the non-linear regime. In some techniques, the conservation of
energy is imposed upon a given algorithm through the use of Lagrange Mul-
tipliers, i.e. in [HCL78]. In a similar approach, but using penalty parameters,
other energy conserving time integration has been developed (see i.e. [KC99]).
On the other hand, here it will be followed the idea of keeping the minimum
set of degrees of freedom and not coupling differential with algebraic equations.
The conservation of energy is imposed between two subsequent time steps and
therefore an incremental form of the beam equations of motion will arise. This
approach will result in modified equilibrium equations (at a mid-time point)
that will conserve the system energy. Moreover, in order to achieve angular
momentum conservation, a tangent-scaled interpolation of the beam incremen-
tal rotations has to be implemented. The whole approach was first presented
in [STD95] in the context of 3D nonlinear beams and here it will be used as a
particular case for planar beams. In fact, an energy conserving time integra-
tion scheme for planar beams is described in [SS96], developed for linear finite
elements and interpolation of unscaledd incremental rotations. It will be demon-
strated here that the latter approach fails to conserve angular momentum.

Finally, many works has been also done in the context of conserving time
integration schemes with an additional energy dissipation. In [BB99, AR01],

17
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energy decaying algorithms have been constructed in order to eliminate unde-
sirable high frequencies in a system response. This kind of approach will result
more convenient to simulate dynamic problems where sudden motions or high
frequency oscillations are likely to appear. They are though based on exact
energy conserving algorithms.

3.1 Non-conserving schemes

3.1.1 A variational formulation for non-linear dynamics

Let us assume first the following definitions for a mechanical system in ab-
sence of dissipative loads. Consider q a vector of generalized coordinates (i.e.
Cartesian) and T (q̇) the system kinetic energy. The potential elastic energy
Ψ(q) and the scalar potential associated with a conservative load Πext(q) are
the ones described previously in Section 2.3. The total energy of the system is
now considered Π(q, q̇) = T + Ψ − Πext, and a Lagrangian function is defined
as L(q, q̇) = T − (Ψ − Πext). The Hamilton’s principle states that the true
evolution of q(t) between two specified states at two specified times, q1 = q(t1)
and q2 = q(t2), is a stationary point of the action functional defined as:

A ≡
∫ t2

t1

L(q, q̇, t) dt . (3.1)

In terms of functional analysis, the Hamilton’s principle implies that the true
physical evolution of a system is solution of the variational equation:

δA = 0 . (3.2)

In order to asses (3.2), let also consider that δq is a vector of small per-
turbations that vanishes at the end-points of the trajectory q(t1) = q(t2) = 0.
Therefore, to the first order in the perturbation, (3.2) result:

δA =

∫ t2

t1

(
δq · ∂L

∂q
+ ˙δq · ∂L

∂q̇

)
dt =

∫ t2

t1

δq ·
(
∂L

∂q
− d

dt

∂L

∂q̇

)
dt = 0 ; ∀δq ,

(3.3)

where integration by parts and boundary conditions have been applied to obtain
the final expression above. Note that (3.3) is satisfied if and only if:

∂L

∂q
− d

dt

∂L

∂q̇
= 0 , (3.4)

which are known as the Lagrange equations for the variational problem. The
equations of motion for the mechanical system are obtained applying the Virtual
Work Principle and (3.4):

δq · d

dt
∇q̇ T + δq · ∇q Ψ− δq · ∇q Πext = 0 ; ∀δq . (3.5)
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Note from equation (3.5) that the second term yields δΨ− δΠext defined previ-
ously in (2.11). The first term will be named δWdyn and deals with the inertial
terms of the dynamic non-linear problem. In general, the kinetic energy for
mechanical systems has a quadratic form. For the planar beam theory:

T =
1

2

∫
L

ṙT Cd ṙ dX , (3.6)

where r stands for the position vector defined in (2.2) and Cd = diag
{

Aρ Aρ Iρ
}

,
with Aρ = A ρ0 and Iρ = I ρ0. The superimposed dot symbols (˙) and (̈ ) denote
here and onwards first and second time differentiation respectively.

3.1.2 The Newmark method

Since first and second time differentiation of the interpolated variables (see
(2.13)) will naturally arise in the equation of motion, the numerical time inte-
gration will be introduced here. The Newmark algorithm was specially designed
for the solution of second-order differential equations [New59], and is given by:

rn+1 = rn + ṙn ∆t+
1

2
r̈n ∆t2 + β∆t3

r̈n+1 − r̈n
∆t

ṙn+1 = ṙn + r̈n ∆t+ γ∆t2
r̈n+1 − r̈n

∆t
.

(3.7)

The scheme is originally designed for problems with translational degrees of
freedom only. Note in (3.7), the position vector r - previously defined in (2.2)
- includes the rotational degree of freedom θ. This can be done since non
special treatment is needed for large rotations in the planar beam theory. The
particular choice of β = 1/4 and γ = 1/2 constitutes the trapezoidal rule for
numerical integration and is second order in accuracy. In linear problems, this
is the highest accurate order that can be achieved for unconditional stability of
the Newmark method [Muñ04]. However, this property will not be retained for
non-linear dynamics and it will be shown by the numerical examples in Chapter
5.

The expressions in (3.7) can be reordered so the unknowns accelerations and
velocities at time tn+1 are given as explicit functions of the unknown displace-
ments u - previously defined in (2.2) - at time tn+1 and other known variables
at time tn:

r̈n+1 = ün+1 =
1

β∆t2
(un+1 − un) + ¨̃un

ṙn+1 = u̇n+1 =
γ

β∆t
(un+1 − un) + ˙̃un ,

(3.8)

where ¨̃un and ˙̃un depend only on quantities that are given at time tn:
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¨̃un = − 1

β∆t
u̇n +

2β − 1

2β
ün

˙̃un =
β − γ
β

u̇n + ∆t
2β − γ

2β
ün .

(3.9)

If the finite element interpolation of displacements proposed in (2.13) is
inserted in the velocity expression of (3.8), then it is possible to write the
following:

ün+1 = Iα

(
1

β

uαn+1 − uαn
∆t2

+ ¨̃u
α

n

)
= Iα üαn+1

u̇n+1 = Iα

(
γ

β

uαn+1 − uαn
∆t

+ ˙̃u
α

n

)
= Iα u̇αn+1 .

(3.10)

The previous approximation will be used to discretize the virtual dynamic work
given in (3.5):

δWdyn = δq · d

dt
∇q̇ T = δuαn+1 ·

d

dt

∫
L

Iα Cd Iβ u̇βn+1 dX . (3.11)

The nodal dynamic force vector is finally obtained from (3.11) and is written as
follows:

gdα =

∫
L

Iα Cd Iβ dX︸ ︷︷ ︸
Mαβ

üβn+1 (3.12)

For the dynamic analysis, the Newmark method has been introduced and
together with the finite element interpolation, a whole set of discretized nodal
equations of motion is obtained by:

gα = gdα + geα − fα = 0 , α = 1, . . . , n . (3.13)

In the same way developed for the static case, the solution of the non-linear
system of equations in (3.13) is done through the Newton-Raphson method.
The linearization of the dynamic nodal beam residual results from (3.8) and
(3.12) in the following simple expression:

∆gdα =
1

β∆t2
Mαβ ∆uβn+1 = Kαβ

mass ∆uβn+1 . (3.14)
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3.2 Conserving schemes - An incremental for-
mulation

3.2.1 The mid-point time-stepping rule

An implicit time-stepping scheme is presented, and consists of the following
two simple rules for the mid-point acceleration and velocity respectively:

ün+ 1
2

=
u̇n+1 − u̇n

∆t
; u̇n+ 1

2
=

un+1 − un
∆t

, (3.15)

where the term mid-point refers in general to a situation in time, e.g.

u̇n+ 1
2

=
u̇n+1 + u̇n

2
. (3.16)

This algorithm was applied in the context of rigid body dynamics and proof
to conserve exactly the energy and momenta [SW91]. Reordering terms in
equations (3.15) and (3.16), yields the velocity update

u̇n+1 =
2

∆t

(
un+1 − un −

∆t

2
u̇n

)
. (3.17)

while the midpoint acceleration can be rewritten substituting (3.17) into (3.15):

ün+ 1
2

=
2

∆t2
(un+1 − un −∆tu̇n) . (3.18)

3.2.2 Modified mid-point equilibrium equations

Definitions for the system energy presented in 3.1 will be considered. The
conservation of energy between two consecutive time steps tn+1 and tn is im-
posed using the increments of kinetic, elastic and a potential of the external
loads respectively:

∆Π = Πn+1 −Πn = ∆T + ∆Ψ−∆Πext = 0 . (3.19)

Denote the symbol ∆ is used for incremental variations, such that ∆(•) =
(•)n+1− (•)n, and should not be confused here or elsewhere with the bold char-
acter ∆, which stands for iterative changes. Let remark that (3.19) resembles
(3.5), but in contrast, the latter states a zero energy infinitesimal variation. The
aim of the present conserving scheme will be to approximate the increments in
equation (3.19) as an inner product of the nodal incremental displacements vec-
tor ∆uα and a modified vector of nodal residuals g ∆

α
n+ 1

2

. In a similar way to

the variational formulation given in (3.5):

∆Π ≈ ∆uα · g ∆
α
n+ 1

2

= ∆uα · (g ∆, d
α
n+ 1

2

+ g ∆, e
α
n+ 1

2

− f ∆
α
n+ 1

2

) = 0 , (3.20)
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whereas the proposed algorithm will clearly acquire energy conservation if the
previous is satisfied.

The particular form in which the incremental displacements and rotations
∆uα in (3.20) are interpolated can furnish additional conserving properties to
the algorithm. This topic will be further explored when dealing with the con-
servation of angular momentum. Moreover, with respect to the modified mid-
point nodal equilibrium equations g ∆

α
n+ 1

2

in (3.20), the idea was first presented

in [ST92]. It has been proved in their work that all the conserving properties in
mechanics can be satisfied in the context of non-linear elastodynamics as well.
Together with the mid-point time-stepping rule, already presented in subsection
3.2.1, they proposed a modification of the second Piola-Kirchhoff stress tensor
in the equilibrium equations. An average of the latter tensor at consecutive time
steps tn+1 and tn came up instead. The simplicity of the method is remarkable
and has established a tendency on which different finite elements for non-linear
dynamics were developed.

Increment of kinetic energy

Recalling the definition of kinetic energy T in (3.6) and a finite element
interpolation of displacements in (2.13), the increment of T over a time step ∆t
can be written as:

∆T =
1

2

(
u̇αn+1 ·Mαβ u̇βn+1 − u̇αn ·Mαβ u̇βn

)
. (3.21)

The increment in (3.21) can be rewritten as a product of a sum and a difference,
and using after that the mid-point rule velocity update and acceleration, from
(3.17) and (3.15) respectively:

∆uα ·g ∆, d
α
n+ 1

2

=
1

2

(
u̇αn+1 + u̇αn

)
·Mαβ

(
u̇βn+1 − u̇βn

)
= ∆uα ·Mαβ üβ

n+ 1
2

. (3.22)

Increment of the potential elastic energy

Using the definition stated in (2.10), the increment of the elastic potential is
given in the following expression, where again the difference of quadratic forms
is factorized:

∆Ψ =
1

2

∫
L

(Ce Γn+1 · Γn+1 −Ce Γn · Γn) dX

=

∫
L

(Γn+1 − Γn) ·Ce

(
Γn+1 + Γn

2

)
dX=

∫
L

∆Γ ·Nn+ 1
2

dX (3.23)

=

∫
L

ΛT
0

[
(ΛT r

′
)n+1 − (ΛT r

′
)n

]
·Nn+ 1

2
dX ,

and the definition of the strain measure - see equation (2.6) - has been used in
the last equality. If the rotational part of ∆Γ in (3.23) is computed, it simply
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yields ∆θ
′

for the planar beam theory. However, the translational part of ∆Γ
needs to be rewritten as a product of a mid-point term (•)n+ 1

2
times a vector

function of the incremental displacements ∆u. For that purpose, let introduce
r̃ to refer to the translational part of the position vector r defined in (2.2). The
same meaning will be noted for ∆Γ̃, which will finally be expand following:

Λ̃T
0

[
(Λ̃T r̃

′
)n+1 − (Λ̃T r̃

′
)n

]
= Λ̃T

0

(
Λ̃T
n+ 1

2
∆r̃
′
+ ∆Λ̃T r̃

′

n+ 1
2

)
. (3.24)

Note the first summand of (3.24) fits the shape intended for the mid-point
modifications but the second still have to be transformed. The following identity
will be used:

∆Λ̃ = 2 tan (∆θ/2) J̃ Λ̃n+ 1
2
, (3.25)

which is in fact the application of the Cayley transform [Muñ04] applied to
the planar case. Finally, the modified mid-point increment of elastic potential
energy is written by substitution of (3.24) and (3.25) into (3.23):

∆Ψ =

∫
L

 ∆r̃
′ · Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2

ω
′
Mn+ 1

2
− ω tan(ω/2)

ω/2

[
r̃
′

n+ 1
2

]
×
· Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2

 dX . (3.26)

Denote in the previous that
[

˜(•)
]
×

= J̃ ˜(•) and ω = ∆θ has been introduced as

the unscaled incremental rotation. The distinction will be make against ω, the
scaled incremental rotation which is given by

ω = 2 tan (ω/2) , (3.27)

and yields another form of the incremental elastic potential:

∆Ψ =

∫
L


∆r̃
′ · Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2

ω
′
(

1 + ω2

4

)−1

Mn+ 1
2
− ω

[
r̃
′

n+ 1
2

]
×
· Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2

 dX , (3.28)

where differentiation of (3.27) with respect to the arc length parameter has been
used:

ω
′

=
[
1 + tan2 (ω/2)

]
ω
′

=

s−1(ω)︷ ︸︸ ︷(
1 +

ω2

4

)
ω
′
. (3.29)

It still remains to be applied the interpolation of the incremental displace-
ments and rotation, that will yield to the discrete form of (3.23). We here have
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developed two possible choices for the interpolation of the incremental rotation,
either ω or ω. Let us note that interpolation of the latter will lead additionally
to conservation of angular momentum (see Appendix D). We therefore will use
the following discretization:

∆u ≡
{

∆ũ
ω

}
≈ Iα ∆uα , (3.30)

and remark that ∆r̃ = ∆ũ. Using (3.30) into (3.28), the modified mid-point
nodal elastic residual is obtained:

∆Ψ = ∆uα·g ∆, e
α
n+ 1

2

= ∆uα·
∫

L

 I
′

α 1̃ 0

−Iα

[
r̃
′

n+ 1
2

]T
×

I
′

α

{Λ̃n+ 1
2

Λ̃0 Ñn+ 1
2

s(ω) Mn+ 1
2

}
dX . (3.31)

Increment of a potential for the external loads

Since we consider only conservative and constant loads, an increment on the
external potential is simply determined by

∆Πext = ∆uα · f ∆
α
n+ 1

2

= ∆uα · fα , (3.32)

with fα defined in (2.17).

Solution of the dynamic conservative system

The increment of energy has been approximated as ∆Π ≈ ∆uα ·g ∆
α
n+ 1

2

, and

we have derived the expressions to build the nodal residual non-linear equations:

g ∆
α
n+ 1

2

= 0 ; α = 1, . . . , n , (3.33)

which yield the condition of energy conservation for any ∆uα. Moreover, it is
demonstrated in Appendix D that by using g ∆, e

α
n+ 1

2

, this scheme also conserves

linear and angular momenta. Let us remark that the latter condition requires the
interpolation of tangent scaled rotations and accordingly the following should
be addressed to the mid-time integration scheme:

u̇n+ 1
2

=


∆ũ

∆t
ω

∆t

 . (3.34)

The Newton-Raphson method is used to solve (3.33) for each particular time
step, with the particularity that an unsymmetric tangent stiffness matrix results
from the linearization of g ∆, e

α
n+ 1

2

(see Appendix B).



Chapter 4

The master-slave sliding
contact

In this chapter we will apply the master-slave approach in order to describe
a kinematically rigorous translational joint [MJ04], here referred to as a sliding
joint. We will next explain what we mean by the former definition, which has
basically used to distinguish the present approach from another one that is only
kinematically approximate.

Originally [CJ96], the master-slave method only related the degrees of free-
dom of a slave node to an extended set of master and released degrees of
freedom, which were specific to only one node in the master finite element. In
cases where the master element deformation is significant, this leads to unre-
alistic configurations. For example, with the node-to-node (NN) [Muñ04] de-
scription, a joint originally placed at the middle node of an horizontal beam
in Figure 4.1a will slide along the nodal tangent to the beam. This, as can be
clearly seen from deformed configurations 1 and 2 of Figure 4.1a, will lead to a
kinematically inconsistent result.

In order to amend the previous disjunction and rigorously model the kine-
matics of a sliding joint, a formulation that relates the behaviour of a slave
node to the set of master and released variables at all nodes of the master
element was first presented in [MJ04]. We will here refer the previous as a
node-to-element (NE) [Muñ04] approach, and with this technique we will model
the sliding joints in the present chapter. The basic contact assumption will be
that a slave node at such a joint, will follow without any friction, the deformed
line of cross-section centroids of the master beam element. An example of de-
formations obtained by the NE approach is sketched in Figure 4.1b, where it
can be compared as well with 4.1a, corresponding results from the NN case.

We remark that the treatment of sliding contact with other methods, primar-
ily Lagrange multipliers or augmented Lagrange formulations, has been reported
in [BB01, AP98], among others. The choice of the master-slave method is based
on previous work where it has been proved its advantages when modeling per-
manent, such as sliding, contact [MJ04]. We address that the previous allows us
to avoid issues about contact detection and assume as well that contact forces

25
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Deformation 1Initial

configuration

Deformation 2

(a) NN

(b) NE

Figure 4.1: Sketched results comparison between NN and NE methods

might be of either direction. In addition, we intend to smooth the contact ele-
ment transition by the introduction of B -Splines interpolation. We state that to
the author’s knowledge this has not been tested before in the context of sliding
beams.

Furthermore, we will combine the master-slave method (in an incremental
form) together with the conservative time-integration developed in Section 3.2.
With the previous master-slave technique, either energy or momentum conserv-
ing algorithms have been achieved in sliding contact problems, among others,
in the context of joint modeling for 3D geometrically exact beams [MJ06]. We
will propose and implement, for the planar case, a new algorithm that will pre-
serve both energy and momenta, through a modified mid-point relaxed contact
condition and equilibrium equations [SM11]. In this incremental formulations,
special care will be exercised to retain the conserving properties developed first
for a contact point sliding within a single element, to the case when the contact
point jumps to an adjacent element.

We present again [AP98], and also cite [Bau00] as references on conserving
algorithms in the context of sliding contact. The first one describes general
contact in elastodynamics with an augmented Lagrangian formulation, and the
last resort to Lagrange multipliers within 3D beams in combination with en-
ergy conservation or decay. Our choice in the master-slave context is based on
sorting out the problems inherit by the use of penalty parameters or Lagrange
multipliers as already mentioned before.

We will resume in this Chapter the key ideas of the master-slave method
in order to present in the end, our contribution to the energy-momentum con-
serving algorithm, but we refer the reader to [Muñ04], where the theory can
be found in more detail. The present Chapter is divided into two Sections, in
Section 4.1 we will present the variational master-slave formulation and Section
4.2 will introduce an incremental formulation. The latter is developed in order
to cope with conserving time integration, and the technique will reassemble the
one developed in Section 3.2.
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4.1 Sliding joints using NE contact

The present Section deals with a variational formulation of sliding contact
with the master-slave method, implemented for planar beams. Due to the na-
ture of the formulation, it can be coupled together with the Newmark method
(see Section 3.1) to reproduce the dynamic response of a system. The outline
for this section follows like this, first the kinematic assumptions of a system with
two beams in sliding contact are presented in Subsection 4.1.1. In addition, the
master-slave relationship is derived in Subsection 4.1.2 for the continuum, giving
rise to the infinitesimal form of the sliding contact condition. Furthermore, we
will introduce the finite element interpolation in Subsection 4.1.3 to discretize
the previous, allowing us to finally present the weak form of the nodal equilib-
rium equations for the whole system under sliding contact. It will be described
as well that the formulation deals with contact transitions along a discretized
slideline of master elements by the definition of a coupling element [Muñ04].
We finally describe in Subsection 4.1.4 a few issues regarding the computational
implementation of the method, such as the linearization of the master-slave
residuals and the treatment of contact transition between finite elements.

4.1.1 Kinematics of a sliding joint

In general, a joint is considered as a flexible attachment between two elements
of a system. In a finite element model, the kinematic relationship between two
nodes, from different elements but connected to the same joint, can be given
as an algebraic equation. In the master-slave approach for the sliding joint, we
will relate the degrees of freedom of a slide node (the slave node) to the degrees
of freedom of all the nodes at a master element, through the released degrees
of freedom (relative displacements of the slave node with respect to the master
element, measured in the moving frame).

We will use the following definitions:

rm ≡
{

r̃m
θm

}
; r ≡

{
r̃
θ

}
, (4.1)

to refer to the master and slave nodal variables respectively, defined in the fixed
basis ei. In addition, we will denote by

rR ≡
{

r̃R
θR

}
, (4.2)

the released nodal variables, which are given for the moving basis ti. Note that,
from here onwards, kinematic variables without a subscript will assumed to be
slave quantities.

Let us note that the idea of introducing released rotations is key in the
modeling of joints for 3D beams. In the planar case, non distinction can be
made for the rotation with respect to the moving or the fixed frame. However,
we have introduced the released rotation for completeness. In fact, we will



28 CHAPTER 4. THE MASTER-SLAVE SLIDING CONTACT

(a) Free rotation (b) Fixed rotation

Figure 4.2: Plane sliding joint type

distinguish the two possible configurations, either free or fix, the rotation make
take in a planar sliding joint (see Figure 4.2).

To start with the sliding kinematics, let us first consider two beams BA and
BB that at time t are in contact, at respective points of the centroid axis A1

and B1 (see Figure 4.3). The contact conditions will be written in terms of the
translations and the rotation as follows:

r̃(XA1
, t) = r̃(XB1

, t) (4.3a)

θ(XA1
, t) = θ(XB1

, t) + θrel , (4.3b)

where the constant θrel is the relative rotation between the two beams at the
initial configuration, i.e. due to additive planar rotations: θrel = θ0(XA1) −
θ0(XB1). We will also note that this contact condition, for the planar rotation,
implies a joint that transmits moment and therefore we are considering the case
sketched in Figure 4.2b.

The model we will consider for the sliding contact resorts to four basic hy-
pothesis that will be enumerated as follows:

H1: At the contact point, beam BA exercise a force nB1 on point B1 of beam
BB such that the third Newton law is valid:

nB1 = −nA1 , (4.4)

being nA1
the force exercise by BB on point A1 of beam BA.

H2: Analogous to H1, but relating the planar moment we will assume that:

mB1 = −mA1 . (4.5)

H3: Since none frictionless contact is considered along a slideline, forces along
the tangent direction to the centroid lines of beams BA and BB will be
zero:

nA1
· r̃′A1

= nB1
· r̃′B1

= 0 . (4.6)
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e2
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BA

BB
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B1

BB

BA

r̃(XA1 , 0)

r̃(XB1
, 0)

r̃(XA1
, t) = r̃(XB1

, t)

θ(XA1 , t) = θ(XB1 , t) + θ0

Initial configuration

Current configuration

BA

BB

B1

A1

nA1

nB1

mB1

mA1

Figure 4.3: Contact kinematics at time t for beams BA and BB

H4: In case the joint rotation is released (see Figure 4.2a), none friction moment
will be associated to its movement. Again, an equivalent hypothesis to H3
for the planar moment is valid:

mA1
= mB1

= 0 . (4.7)

4.1.2 The master-slave relationship

Let us first consider that the contact condition previously defined in a de-
formed configuration, is perturbed by a kinematically admissible virtual dis-
placement ε δu [Muñ04]. Since we have stated that permanent contact will
be modelled, is assumed that point A1 will remain in contact with beam BB .
However, the contact point in the latter will change due to sliding and, in the
perturbed configuration, contact will be established at point B2 (see Figure 4.4).

We will rewrite the contact conditions given in (4.3) to the perturbed con-
figuration as

r̃ε(XA1 , t) = r̃ε(XB2 , t) (4.8a)

θε(XA1 , t) = θε(XB2 , t) , (4.8b)

which in fact provide the following relationships between virtual quantities:
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e2

e1
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BB
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B1

BB
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r̃0(XB1 )
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)

r̃(XA1
) = r̃(XB1
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Initial configuration
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ε δX

θ(XA1
) = θ(XB1
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r̃(XB2
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r̃ε(XA1
) = r̃ε(XB2

)
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ε δũA1

ε δũB2

Figure 4.4: Admissible perturbed contact configuration for beams BA and BB

δr̃A1
≡ d

dε

∣∣∣∣
ε=0

r̃ε(XA1
) =

d

dε

∣∣∣∣
ε=0

[r̃(XB1
+ ε δX) + ε δũ(XB1

+ ε δX)]

= r̃
′
(XB1) δX + δũB1 ,

δθA1
≡ d

dε

∣∣∣∣
ε=0

θε(XA1
) =

d

dε

∣∣∣∣
ε=0

[θ(XB1
+ ε δX) + ε δθ(XB1

+ ε δX)]

= θ
′
(XB1

) δX + δθB1
,

where the time index t has been dropped to easy the notation and we denote
δX a variation of the contact point on the reference configuration. Defining
r̃
′

B1
≡ r̃

′
(XB1

) and θ
′

B1
≡ θ

′
(XB1

) we arrive from the previous result to the
master-slave relationships

δũA1
= r̃

′

B1
δX + δũB1

, (4.9a)

δθA1
= θ

′

B1
δX + δθB1

. (4.9b)

4.1.3 Equilibrium equations in sliding contact

Let us consider first the discrete weak form Gh of the equilibrium equations
for the two beams in sliding contact. Recall Gh corresponds to the finite element
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interpolation defined in (2.13), such that uh = Iα uα and

Gh(r, δuh) ≡
∑
I=A,B

δuI · gI − θ′B1
mA1 δX = 0 , (4.10)

where δuI =
{
δuI1 . . . δuInI

}
is the vector of nodal virtual displacements,

gI =
{
g1, I . . . gnI , I

}
the nodal residual vector, and both of them correspond

to a discrete beam I. Denote such residual comprises the dynamic, elastic and
external nodal force vectors gdα, I , geα, I and fα, I respectively, and are given in
equation (3.13).

We remark the complete derivation of (4.10) can be found in [MJ04]. Their
followed procedure considers first the weak form of local equilibria in BA and
BB separately, together with the work done by nI1 and mI1 , their corresponding
contact concentrated force and torque respectively. Finally, by the introduction
of the infinitesimal sliding condition (4.9), the contact hypothesis H1 -H3 and
using the proposed finite element interpolation, the complete nodal weak form
of the system Gh yields.

With the finite element interpolation, the master-slave relationship (4.9) may
be rewritten as

δunA =

{
r̃
′

B1

θ
′

B1

}
(δũR ·E1) + IBα δuα , (4.11)

where ũR =
{
δX 0

}
is the vector of released translations, and we have assumed

that the sliding point A1 at a finite element A corresponds to node nA all
throughout the motion. The master and master and released vectors of virtual
displacements and rotations are defined respectively as

δuA ≡


δuA1

...
δuAnA

 and δuARm ≡



δuR
δuA1

...
δuAnA

δuB1
...

δuBnB


, (4.12)

Using (4.12), we can relate the previous vectors as follows

δuA = N∗δ δu
A
Rm , (4.13)

where, denoting by 0 the 3× 3 zero matrix, then

N∗δ=


0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0

R∗δ B 0 . . . 0 0 IB1 1 . . . IBnB 1

 and R∗δ B=

[
r̃
′

B1
⊗E1 0

θ
′

B1
E1 0

]
. (4.14)
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We will now insert the master-slave relationship (4.14) into the weak form
(4.10), which leads to

Gh(r, δuh) = δuARm ·N∗T
δ gA + δuB · gB − θ′B1

mA1 δX = 0 , (4.15)

but recalling that the rotational part of the nodal residual gnA yields the equiv-
alence gmnA = mA1

, then we finally arrive to

Gh(r, δuh) = δuARm ·NT
δ gA + δuB · gB = 0 , (4.16)

with

Nδ=


0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0

Rδ B 0 . . . 0 0 IB1 1 . . . IBnB 1

 and Rδ B=

[
r̃
′

B1
⊗E1 0
0 0

]
. (4.17)

It can be observed that through the master-slave relationship, the the virtual
work performed by the beam element A has been expressed as the dot product
of δuARm, a set of master and released degrees of freedom, and its work-conjugate
extended residual, given by

gARm ≡ NT
δ gA =



RT
δ B gnA
g1, A

...
gnA−1, A

0
LT
δ B gnA


, with Lδ B ≡

[
IB1 1 . . . IBnB 1

]
. (4.18)

Considering now the virtual work performed by the finite element B, together
with (4.18), then the new equilibrium equations for the whole system with sliding
contact yields:

gα,A = 0 , α = 1, . . . , nA − 1 , (4.19a)

RT
δ B gnA,A = 0 , (4.19b)

gα,B + IBα gnA,A = 0 , α = 1, . . . , nB . (4.19c)

Denote equations (4.19a) are the standard equilibrium equations for all nodes
on element A with exception of node nA. The second equation, (4.19b), en-
forces none work along the direction of released translations ũAR, consequently
to our bilateral frictionless hypothesis. Finally, equations (4.19c) establish the
equilibrium at the master nodes, given by the residuals of the master element B
nodes gα,B plus the contribution of the sliding node residuals gnA,A, weighted
by shape functions IBα computed at the corresponding element.
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Modeling the sliding joint with its rotation free

We have previously derived the master-slave relationship for a fixed rotation
in the sliding joint. If a free rotation is consider instead, and resorting to hy-
pothesis H4, non contact moment can be exercised by such a joint in the planar
case. We will now rewrite the contact condition related to the joint rotation and
that will result as well in slightly changes of the master-slave residuals. Since we
consider this type of joint (refer to Figure 4.2) has more practical applications,
it will be the one implemented in the numerical examples of Chapter 5.

The contact condition for the released planar joint rotation gives a trivial
relation:

θ(XA1 , t) = θR(t) , (4.20)

which simply relates the infinitesimal rotations

δθA1
= δθR . (4.21)

Using the previous, together with the infinitesimal translations condition (4.9a),
then the master-slave relationship yields

δunA =

{
r̃
′

B1

0

}
(δũR ·E1) +

{
0
δθR

}
+ IBα δũα . (4.22)

Since we have that mA1
= 0, for the present joint it will result that NR

δ ≡
N∗δ = Nδ, with

NR
δ =


0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0

RR
δB 0 . . . 0 0 IB1 1̃ . . . IBnB 1̃

 , RR
δB=

[
r̃
′

B1
⊗E1 0
0 1

]
, (4.23)

and 1̃ = diag
{

1 1 0
}

.

The new equilibrium equations will result in

gα,A = 0 , α = 1, . . . , nA − 1 , (4.24a)

RRT

δ B gnA,A = 0 , (4.24b)

gα,B + IBα gfnA,A = 0 , α = 1, . . . , nB . (4.24c)

We will remark the differences with (4.19) reside in (4.24b), which enforces
none work associated with the released translations and rotation uAR, whereas
equations (4.24c) establish the equilibrium at the master nodes, given by resid-
uals gα,B plus a weighted contribution only of the sliding nodal force residuals

gfnA,A.
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The contact coupling element

Let us define a coupling element [Muñ04] an hypothetic element that con-
tains the displacement vector uARm, with 3× (nA + nB + 1) degrees of freedom:
displacements and rotations of elements A and B, and the released degrees of
freedom from the slave node nA. Note that coupling element residual gARm has
been defined in (4.18), and depends not only on element A residual gA but also
the terms Rδ B and Lδ B which depend on element B. Since these last terms
are not limited to a single element on a slideline, by computing them at the
contact point of a new contacted element, different coupling elements will deal
with the contact transition. We will expand the topic of dynamically changing
the coupling element in the next Subsection.

4.1.4 Aspects on the NE computational implementation

Newton-Raphson solution and update

The non-linear vector equation

g = 0 (4.25)

yields for g the global residual of the structure, which is obtained after the
assembling of all elemental residuals, including gARm. Note that the last one has
to be assembled following the pattern given by the coupling element uARm. An
iterative Newton-Raphson procedure will be employed to solve (4.25). Within
this scheme (refer to Appendix B), the global tangent operator K = ∇u g
will contain additional terms that arise from the linearization of the coupling
element. Indeed, such linearization leads to ∆gRm = ∇uRm gARm = Kcp ∆uRm,
where Kcp is the local tangent operator of the coupling element and may be
expressed as

Kcp = NT
δ KA N∗δ +

 KRR 03×3NA KRm

03NA×3 03NA×3NA 03NA×3NB

KmR 03NB×3NA 03NB×3NB

 (4.26)

The previous result has been derived in Appendix C. We denote that Kcp has
coupling terms between degrees of freedom of element A and master element
B and therefore, special care must be exercised whenever the contact point
switches from one element to another along the slideline, as we will described
in the following part.

Regarding the update process during the iterative solution, special care must
be taken in order to preserve the sliding contact condition. This is done by
including a consistent update of the slave kinematics, once the iterative changes
∆X and ∆θR has been obtained from the solution of (4.25), following the
process summarized in Tables 4.1 and 4.2 for a fixed or released joint rotation
respectively. The master and released variables are updated following standard
procedures, as well as the inertial forces should be computed after velocities and
accelerations are updated following i.e. in this variational approach, Newmark
method 3.1.
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Xi+1
B = Xi

B + ∆X

Translations Rotations

r̃i+1
nA = r̃(Xi+1

B ) = Iα(Xi+1
B ) r̃α θi+1

nA = θ(Xi+1
B ) + θ0 = Iα(Xi+1

B ) θα + θ0

Table 4.1: Updating the kinematics of slave node. Planar joint rotation fixed

Xi+1
B = Xi

B + ∆X

Translations Rotations

r̃i+1
nA = r̃(Xi+1

B ) = Iα(Xi+1
B ) r̃α θi+1

nA = θi+1
nA + ∆θR

Table 4.2: Updating the kinematics of slave node. Free planar joint rotation

Contact element transition

With a proper definition of the coupling element, we will here show how the
formulation can deal with a straightforward contact transition between elements
along a slideline. For example, in Figure 4.5, it is assumed that at times t1 and
t2, the element A has its contact point established with adjacent elements B
and C respectively. In the reference configuration (see Figure 4.5), the contacted
element can be easily obtained from the value of XR and the initial mesh element
sizes.

If the transition of the contact point occurs during the iterative process,
the generic definition of the coupling element will allow to consider that a new
element is contacted, simply by changing the computation of Rδ B and Lδ B , i.e.
referring again to Figure 4.5: Rδ C and Lδ C . If the topology of the elements
in the slideline is the same, the size of the coupling element will not change,
but let us remark that the extended residual and the coupling terms of Kcp will
have to be assembled adequately.

1 2

nB

A

B

1

nA

Coupling element

time t1

A

1

nA

1
2 nB

C

time t2

Coupling element

Sliding line

A

B C

XR(t1)

XR(t2)

Reference configuration
Slave node

Master nodes

Figure 4.5: Scheme of a coupling element and a contact element transition
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4.2 Conserving contact using NE sliding

We will here present a technique that will adapt the variational NE approach
for sliding contact, into an incremental formulation that will be connected with
a conserving time integration scheme. However, we will need to distinguish first
two possible situations, depicted in Figures 4.6 and 4.7. In the first case, the
contact point slides within only one element (NT), but in the other, it moves
to an adjacent element (T).

Such distinction is essential in the present approach since the coupling el-
ement may vary its topology, as well as the requirements for the conservation
properties may change when transition occurs T. We denote by nA, nB and nC
the number of nodes of elements A, B and C respectively. Note that, as in
the previous Section, we have assumed that the slave node is nA, and we have
plotted in Figure 4.6 and 4.7 the slave nodes in blue in contrast to the master
ones shown in red.

The sliding kinematic conditions for a slave node nA, resorting to interpo-
lating functions Iα, may be written as follows:

tn tn+1

NT : r̃nA,n = r̃Xn = IαXn r̃j,n r̃nA,n+1 = r̃Xn+1
= IαXn+1

r̃j,n+1 (4.27a)

T : r̃nA,n = r̃Xn = IαXn r̃Bj,n r̃nA,n+1 = r̃Xn+1
= IαXn+1

r̃Cj,n+1 , (4.27b)
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where we have added a superscript to the nodal positions in (4.27b) in order to
distinguish the element to which they belong.

Incremental relationships in absence of contact transition ( NT)

Whenever there are translations with no contact transition NT, the incre-
mental displacement of node nA may be written as

∆r̃nA = r̃nA,n+1 − r̃nA,n = IαXn+1
r̃α,n+1 − IαXn r̃j,n

= IαX 1
2

∆r̃α + ∆Iα r̃α,n+ 1
2
, (4.28)

accounting with the following definitions:

IαX 1
2
≡ 1

2

(
IαXn+1

+ IαXn

)
; ∆Iα ≡ IαXn+1

− IαXn ; ∆r̃α ≡ r̃α,n+1 − r̃α,n .

We refer the reader to [MJ06], where a graphical interpretation analysis of (4.28)
has been done. It has been clearly shown that the increments ∆r̃tn and ∆r̃tn+1

are due to the variation of the contact point coordinate at respecting times tn
and tn+1, whereas ∆Xn and ∆Xn+1 are the increments of the position vectors
due to time variation at coordinates Xn and Xn+1 respectively. In fact, using
an interpolation of the previous increments through a parameter γ ∈ <:

∆r̃nA = (1− γ)
(
∆r̃tn + ∆r̃Xn+1

)
+ γ

(
∆r̃Xn + ∆r̃tn+1

)
(4.29)

which follows that (4.28) is nothing but the special case of (4.29) for γ = 1
2 .

Having in mind as well, that our goal is to find the incremental form of the
master-slave relationship, then the following vectors can be rewritten:

∆r̃tn =
1

∆X
(∆r̃tn ⊗E1) ∆r̃R ; ∆r̃tn+1 =

1

∆X

(
∆r̃tn+1 ⊗E1

)
∆r̃R (4.30)

Inserting equations (4.30) into (4.28) and using the standard nodal interpolation,
the master-slave relationship for translations (and case NT ) is obtained in the
incremental form:

∆r̃nA =
1

∆X

(
∆Iα r̃j,n+ 1

2
⊗E1

)
∆r̃R + IαX 1

2
∆rj , (4.31)

where we remark γ = 0.5 has been used for the interpolation defined in (4.29).

Incremental relationships with contact transition ( T)

We will consider now the case which contact conditions are given by (4.27b).
We will again propose an interpolation of increments such like (4.29), using
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γ = 0.5 but considering now that position vectors from different elements will
have to be taken into account. This yields a different master-slave relationship
for incremental translations than in (4.31):

∆r̃nA =
1

∆X

[(
IαXn+1

r̃Cα,n+ 1
2
− IαXn r̃Bα,n+ 1

2

)
⊗E1

]
∆r̃R+0.5 IαXn+1

∆r̃Cα+0.5 IαXn ∆r̃Bα .

(4.32)

We remark that the topology now for the coupling element will change since
two elements C and B present their incremental displacements ∆r̃Cα ∆r̃Bα in the
master-slave relationship.

An incremental form for the master-slave relationship

Having studied the relationships for translations in the previous Subsections,
either for NT or T conditions of the contact point transition within elements,
and assuming now that the sliding joint planar rotation will be released, we will
present here the master-slave incremental relationship, using the results derived,
mainly equations (4.31) and (4.32).

Let us first define, as we have done in previous Section for infinitesimal dis-
placements, the vector of slave incremental displacements ∆uA and the vector
of released and master incremental displacements ∆uARm as

∆uA ≡


∆uA1

...
∆uAnA

 and ∆uARm ≡



∆uR
∆uA1

...
∆uAnA

∆uB1
...

∆uBnB


, (4.33)

with ∆uR =
{

∆r̃R ∆θR
}

. Let us remark that the superscript I corresponds
in vector ∆uARm corresponds to the contacted element at time n+ 1, and re-
call that when the transition occurs, then we will consider the relationship as
it two elements were in contact, leading to a bigger coupling element. This
approach, though it requires modifications on the data structure with respect
to the variational approach, will lead to an incremental formulation that can
conserve energy and momentum.

It is now clear that equations (4.31) and (4.32) provide with the necessary
relationships to build the transformation matrix N∆ such that

∆uA = N∆ ∆uARm , (4.34)

with
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No Transition (NT ) Transition (T )

IαX Iα
X 1

2

0.5Iα,CXn+1
; 0.5Iα,BXn

∆r̃X ∆Iα r̃α,n+ 1
2

∆r̃BC
n+ 1

2

=
(
IαXn+1

r̃C
α,n+ 1

2

− IαXn r̃B
α,n+ 1

2

)
γ 0.5 0.5

Table 4.3: Values for the incremental NE approaches EC and MC in matrices
N∆ and R∆

N∆ =


0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0

R∆ 0 . . . 0 0 I1
X 1̃ . . . InIX 1̃

 , (4.35)

and the matrix R∆ given by

R∆ =

[
1

∆X ∆r̃X ⊗E1 0
0 1

]
. (4.36)

Note that different expressions for IαX , ∆r̃X and γ will lead to different strate-
gies in the incremental master-slave NE approach. We will present our choice
in Table 4.3, with γ = 0.5 maintained for both NT and T cases, which fur-
nishes the best approximation to the angular momentum conserving condition
[Muñ04], as we will later discuss.

4.2.1 An energy conserving approach

The incremental NE sliding approach has been derived with an exact contact
condition, which states that, no matter about the contact point transition within
elements, the kinematics of the slave node will be given by:

r̃nA, n+1 = Iα IXn+1
r̃Iα, n+1 , (4.37)

with I the element contacted at time tn+1. In order to preserve the energy
conservation of the time integration scheme, it will be mandatory to update the
slave kinematics using (4.37) [MJ06]. However, since the angular momentum
condition is given by:

r̃nA, n+ 1
2

= Iα IX
n+ 1

2

r̃Iα, n+ 1
2
, (4.38)

when no element transition occurs at element I and:

r̃nA, n+ 1
2

= 0.5 I
α In+1

Xn+1
r̃
In+1

α, n+ 1
2

+ 0.5 Iα InXn
r̃In
α, n+ 1

2

, (4.39)
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No Transition (NT ) Transition (T )

IαX Iα
X 1

2

0.5Iα,CXn+1
; 0.5Iα,BXn

∆r̃X 2
(
Iα
X 1

2

r̃α,n − r̃nA, n

)
2
(

0.5 IαXn+1
r̃Cα,n + 0.5 IαXn r̃Bα,n − r̃nA, n

)

Table 4.4: Values for the incremental NE approach E&MC in matrices N∆ and
R∆

with In+1 the slideline element in contact at tn+1 and analogous, In the previous
contacted element at tn.

The previous discrepancy made the present algorithm EC to be energy con-
serving, with an exact contact kinematic condition, but fails to preserve angular
momentum.

4.2.2 An angular momentum conserving approach

In the previous case, we will update the kinematics of the slave node following
the angular momentum conditions, either (4.38) or (4.39), depending on the
contact point transition condition. However, since the equilibrium equations has
been derived through a master-slave relationship on an exact contact condition,
this algorithm MC will be the contrary example to EC . We state that the
angular momentum conserving condition for the slave node is satisfied, but at
the expense of loosing the energy conserving properties of the time integration
scheme.

4.2.3 The energy and momentum conserving approach

With the intention of assessing the paradox between EC and MC , a new
algorithm that preserves energy and momenta has been built [SM11]. Since the
angular momentum condition is unavoidable, we have developed the master-
slave relationship starting from the mid-point relaxed condition (4.38) instead
of the exact contact conditions of (4.27a) and (4.27b). In such a way, the
slave node kinematics are updated following the angular momentum conserving
condition and at the same time the energy conserving condition given by the
master-slave relationships is fulfilled. We remark the update kinematics for
the slave node will be given by (4.38) and (4.39), depending on the transition
condition, and the master-slave residuals can be derived from the summary in
Table 4.4.



Chapter 5

Numerical examples

In the present Chapter we will present a series of numerical examples that
implement in a MATLAB code, the different theories developed through all
the rest of the previous chapters. There are five different beam problems that
have been taken from the literature and adapted in some cases to our planar
formulation. We intend with these examples, either to verify our formulations
comparing them to previous work, or to benchmark with a model problem the
performance of different algorithms.

The convergence for all the finite element computations reported herein, is
established on the basis of the L2 norm of the residual nodal vector, and a full
Newton-Raphson iterative solution procedure is employed. A convergence force
tolerance εf = 1E − 10 will be considered unless a different one is specified,
and non convergence will be stated after the maximum number of iterations
Itemax = 20 is reached at a given time step.

It is emphasized as well that the deformed shapes in all figures reported here
are given at the same scale as the initial geometry of the beams, that is to say,
non magnification factors are employed to show structural deformations.

We will start first with a single example on statics in Section 5.1. We will
verify the quadratic convergence in the solution of the beams residuals, using
different orders of Lagrangian standard interpolation and testing as well the per-
formance of the B -Splines. In Section 5.2 and 5.3 two examples of dynamics will
be shown, and conserving properties of the different time integration schemes
will be discussed. Finally, Section 5.4 and 5.5 will present a two beam system
in sliding contact with different load cases and supports. We will asses there
the role of contact smoothing, as well as testing the performance of different
conserving algorithms in the stability of the non-linear solution.

41
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(a) Lagrangian interpolation
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(b) B-Splines interpolation

Figure 5.1: Cantilever beam deformation. Interpolation comparison

5.1 Pure bending of a cantilever beam

A similar example to the problem presented in [SVQ86a] is here described.
In addition, we well test as well, different orders for standard Lagrangian and
B -Splines interpolations. An initial straight beam of unit length and bending
stiffness E I = 2 is subjected to a concentrated moment ML at its end. The
exact solution to this problem is a circumference arch with radius ρC = E I/ML

[SVQ86a]. An end moment ML = 4π is applied in a single load step, and will
force the rod to wind around itself into a closed circle. Let us remark that
regarding numerical integration, different Gaussian quadrature rules have been
used depending on the interpolation’s order. In the linear case, a one point rule
has been used to avoid shear locking effects, for the quadratic order, a two point
rule is implemented, and three points are applied for the cubic and B -Splines
interpolations.

In Figure 5.1a we present in scale the initial configuration of the cantilever
beam, as well as the comparison of deformed results from different finite element
interpolations. We have used different orders of standard Lagrangian interpo-
lation, maintaining the total number of nodes constant. Therefore, results are
shown for five, three and two; linear, quadratic and cubic elements respectively.
Moreover, in Figure 5.1b we show the same problem solution but modelled with
three B -Spline elements, joined at knot values kj , plotted in red. We have
also depicted in black their nodal configuration, given by control points Pi,
connected together by the control polygon.

In Figure 5.2 we present the different solutions convergence rate, and it is
shown that near equilibrium, quadratic convergence is achieved. We note that
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Figure 5.2: Bending problem: comparison in the evolution of the L2 norm of
the residual for different interpolations

in Figure 5.2 the values for which the logarithm is not defined have not been
plotted, and the solution for B -Splines requires one iteration less than the other
interpolations.
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Figure 5.3: The flying spaghetti. Initial configuration and data

5.2 The flying spaghetti

The present numerical example has been extracted from [SVQ86c]. We will
reproduce the mechanical and geometric properties exactly as it has been re-
ported, but will include modifications in the finite element interpolation and
a comparison between time integration schemes. A flexible rod with free ends,
initially placed in an inclined position, is subjected to a torque and force applied
simultaneously at one end (see Figure 5.3). The external force and moment are
removed at the same time t = 2.5, and consequently a free flight occurs immedi-
ately after, which is simulated till t = 7.5. We will apply a time step increment
∆t = 0.1, and the obtained sequence of motion will be likely to the one shown
in Figure 5.4, which in fact has been modelled using five B -Spline elements and
a Newmark method.

We will first test the performance in the Newmark method, using different
finite element interpolation but a similar number of degrees of freedom. For
example, the five B -Splines case depicted in Figure 5.4 is compared to a four
cubic Lagrangian, in order to maintain similar total number of nodes. We have
found that none time step halving is required in the B -Splines case to complete
the total simulation time. On the other hand, convergence difficulties has been
reported at times t = 5.2, t = 5.6, t = 6.5, t = 7.0, and t = 7.2 when the same
algorithm is used with cubic Lagrangian interpolation, taking nine time steps
more than the expected to end the simulation.

In Figure 5.5, we present the evolution of energy and angular momentum in
the Newmark method for the flying spaghetti in free flight, and the plots show
that none of these quantities are conserved. We compare as well the energy and
angular momentum values computed for the different interpolations. The energy
results for the present example show the effects of time step reduction for cubic
elements, where smaller time increments had to be taken to avoid instabilities.
On the other hand, energy seems to remain bounded when Newmark method is
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Figure 5.5: The flying spaghetti. Energy and angular momentum during free
flight
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Figure 5.6: The flying spaghetti with conserving time integration. Energy and
angular momentum during free flight

employed with B -Splines, a fact that becomes even more noticeable when mesh
refinement is applied. A test with five cubic finite elements fails to converge
at t = 4.9 after five successive time step halvings, and this behaviour is worsen
when the mesh is further refined. However, we have encountered that simulation
ends without any time step halving even for 15 B -Splines.

We conclude the present example of non-linear dynamics showing the con-
serving properties of the modified mid-point time integration schemes described
in Section 3.2. We take the same discretization previously described of five
B -Spline elements and the flying spaghetti is run to compare results from the
conserving algorithms that use unscaledd or scaled rotations. In Figure 5.6,
energy and angular momentum time evolution is plotted. The results confirm
that energy conservation is achieved by both schemes, whereas only the interpo-
lation of tangent scaled incremental rotations leads to conservation of momenta
(see Appendix D). Let us finally remark that the previous two schemes do not
significantly differ in the computation of results (see i.e. energy differences in
Figure 5.6a).
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Figure 5.7: A flexible pendulum. Initial configuration and data

5.3 A flexible pendulum

The example in this Section takes the same initial data and beam properties
proposed in [SS96]. A simple beam pendulum is placed initially in vertical
position and an angular velocity ω0 is consistently applied to all nodes. The
pendulum’s tip is subjected to a constant force FL, and no body forces are
considered. The structural behaviour of this system will be studied till the
simulation end time t = 10 s.

In [SS96], they developed a conservative mid-point time integration scheme
specifically for C0 planar beam elements, and interpolation of unscaled incre-
mental rotations. In that context, they successfully tested the energy conserving
scheme against Newmark method. The former algorithm showed that despite its
unsymmetric stiffness matrix, it worked more efficient than the latter, as much
bigger time steps could be taken in non-linear dynamics problems. In our case,
based on the previous background, we will test B -Splines and interpolation of
tangent scaled incremental rotations. The latter, as we have already mentioned
before, leads to an energy and momenta - E&M - conserving algorithm. Sim-
ulations are run for all cases with spatial discretization of five B -Splines. The
conservative time scheme will use a time step ∆t = 0.4 s whereas ∆t = 0.05 s
will be applied for the Newmark scheme - NWM -. With respect to the con-
vergence force tolerance, εf = 1E − 8 will be used for both time integration
schemes.

In Figure 5.8 we present the sequence of motion of deformed configurations
of the beam pendulum, using the conserving time integration scheme. Fur-
thermore, we test the performance of E&M against NWM, by comparing their
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Figure 5.8: Beam pendulum motion. First consecutive fourteen time increments

resulting energy and angular momentum evolution of the system, in Figure 5.9.
NWM failed to converge after five successive time step halvings at time t = 7.43.
In fact, is seen in Figure 5.9a that the energy gradually became unstable before
the NWM algorithm completely failed. This has been observed in [SS96] as
well, which makes NWM unsuitable even for a time adaptive scheme. On the
other hand, E&M complete the analysis using a time step eight times bigger for
the whole simulation history. As it is clear seen in 5.9a and 5.9b respectively,
with E&M the total energy of the system remains constant and the angular
momentum is conserved.

We finally present in Figure 5.10 the evolution of some variables of structural
analysis, such as the tip rotation θL and the bending moment at point A. We
have included as well in the plots, an interpolation of the E&M results in black.
We conclude that the conserving scheme, despite its long time increments, re-
produces structural analysis variables with acceptable accuracy.
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Figure 5.9: Beam pendulum energy and angular momentum. Time integration
comparison
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tion comparison
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Figure 5.11: A free moving mass attached to sliding beams. Initial configuration
and problem data

5.4 Free mass in sliding flight

The present example has been adapted from [MJ06] to our planar case for-
mulations. The system is formed by two beams connected with a sliding joint,
with its rotation free, and a mass m = 1 kg attached to one beam’s tip. The
initial configuration is depicted in Figure 5.11, as well as mechanical properties,
which are shared for both beams. However, the geometrical design differs, beam
BA total length is LA = 1 and for beam BB corresponds LB =

√
10 and an initial

rotation θ0 = arctan 1/3 rad. An initial velocity v0 =
{
−10 −10

}T
is applied

to the mass at BA tip. Since no external loads are applied to the system, the
actual physics of this problem must conserve energy and momenta. We remark
this problem has no practical relevance, but it will test the conserving properties
of incremental NE sliding formulations proposed in Section 4.2.

In the following simulations, we will discretize beams BA and BB with
three and five B -Spline elements respectively, and the analysis will be run until
t = 0.36, which is the approximate time when BA reaches BB tip. Three dif-
ferent incremental formulations within the NE sliding contact approach will be
tested using time increment ∆t = 0.02, referring to them as EC, MC and E&MC,
which respectively stands for energy, momentum and energy-momentum con-
serving schemes (see Subsections 4.2.1, 4.2.2 and 4.2.3 respectively for further
references). The whole set of algorithms are able to reach the end time for
the prescribed ∆t without any need of time step halving. However, if we com-
pare the energy and angular momentum time progression in Figure 5.13, the
distinguishing characteristics of the three algorithms are clearly shown.

In Figure 5.12, it is shown the sequence of free sliding motion of the beams’
and mass system. The depicted plot has been taken from the EC algorithm
results. We remark that although results from the different conserving schemes
in question do not differ significantly at first sight, the only scheme that preserves
the exact contact conditions in the EC (we refer the reader to 4.2.1 for further
details). On the other hand, MC and E&MC use a relaxed sliding contact
condition, as it is shown in Figure 5.13 for the E&MC free flight sequence. Such
non-exact contact state, though it is confined, can still be well distinguished in
the detail at Figure 5.13a.



5.4. FREE MASS IN SLIDING FLIGHT 51

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1.5

−1

−0.5

0

0.5

1 t = 0

e1

e 2

t = 0.02

t = 0.04

t = 0.06

t = 0.08

t = 0.1

t = 0.12

t = 0.14

t = 0.16

t = 0.18

t = 0.2

t = 0.22

t = 0.24

t = 0.26

t = 0.28

t = 0.3

t = 0.32

t = 0.34

t = 0.36

Figure 5.12: The free sliding mass system motion
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Figure 5.13: The free sliding mass system motion. Detail of relaxed contact
constrains
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Figure 5.14: The free sliding mass problem. Comparison of conserving proper-
ties in modified NE sliding schemes

In Figure 5.14 we present, as anticipated before, the evolution of the con-
serving properties of the three incremental NE sliding contact approaches. In
Figure 5.14a, we show that energy remains constant for EC and E&MC. How-
ever, the angular momentum in 5.14b is only conserved for MC and E&MC. The
previous show that a relaxed contact condition and a consequent modification
of the master-slave relationship (see 4.2.3) preserves the conserving properties
of the modified mid-point time integration scheme given in 3.2.2. This can be
consider one of our contributions in the present work, recalling that to the au-
thor’s knowledge, non energy and momentum conservation has been reported
yet for sliding contact within a NE approach.



5.5. A PLANAR AERIAL RUNWAY 53

e1

e2

θ0

LB

6

g

m

BA

LA

BB

Material properties:

E A = 100.00

κG A = 38.46

E I = 8.33E − 4

Aρ = 8.00E − 2

Iρ = 8.33E − 10

Figure 5.15: Initial configuration and problem data for the aerial runway exam-
ple

5.5 A planar aerial runway

The example here is formed, like in previous Section 5.4, by a system of two
beams in sliding contact and a mass m = 1 kg attached to the free end of beam
BA. The initial configuration is given in Figure 5.15, where the mass is subjected

to the gravitational field g =
{

0 −9.8
}T

and beam BB is simply supported at
both ends. The beams dimensions LA and LB, together with θ0 initial rotation
are the same used before (refer to Section 5.4). However, the initial position of
BA has been changed as depicted in Figure 5.15. Note as well in Figure 5.15,
the material properties, shared by both beams, which are much more flexible
than in the free mass in sliding flight problem. In fact, our intention with the
present example is to model (in a planar configuration) an aerial runway. A
real mechanical device like that, for leisure purposes, has been drawn in Figure
5.16 1. This example has been adapted from [MJ04], where it was presented for
3D sliding beams. Our aim here is to asses the effects of sliding contact at the
finite element transitions, either modelled by standard Lagrangian or B -Splines
interpolations. The problem is of particular interest since strong variations of
the tangent to the deformed line of centroids is expected along the beam’s arc
length.

The simulation of the problem will be run during the first 1.9 seconds. An
initial time increment ∆t = 0.1 will be used, which may be eventually reduced
due to time step halvings, and no convergence of the problem will be stated af-
ter five successive time step halvings. We propose four different discretizations
that, in order to keep similar (or equal if possible) the total number of degrees
of freedom, result in table 5.1. We will test the different finite element interpo-
lations performance in the solution of the aerial runway, using for benchmarking
the NE incremental approach EC, which preserves the exact contact condition.

We will first present in Figure 5.17, the sequence of motions for the aerial
runway using B -Splines. The plot is shown in four different snapshots, each
of them containing the system deformation at five consecutive time increments
∆t = 0.1. Let us note that at intermediate configurations during the iterative

1Vectorized draw from http://www.ludusleisure.co.uk/downloads/swings/Aerial-Runway.jpg.
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Figure 5.16: A typical aerial runway device

Number of elements

Element type BA BB

B -Splines 3 5
Cubic 2 4
Quadratic 3 6
Linear 6 12

Table 5.1: Number of elements per beam used for the aerial runway problem
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Figure 5.17: Planar aerial runway B -Splines model. Sequences of the system
motion in four snapshots

solution process, beam BA released translations may result outside BB domain.
We remark that time step halving (up to a minimum ∆t = 0.0125) was em-
ployed, though it is not shown in Figure 5.17, in order to maintain the sliding
contact between beams. Despite that, the simulation reaches the end time suc-
cessfully for the smooth slideline discretized with B -Splines.

On the other hand, we have implemented as well standard Lagrangian finite
elements of different orders (refer to Table 5.1) such that the aerial runway
simulation is run with the same solution parameters just mentioned before. We
have confirmed that a discrete non-smooth (Lagrangian) interpolation of the
slideline has a detrimental effect on the convergence, regardless of the order of
the interpolation. In Figure 5.18, the different results are shown in a sequence
of deformed configurations of the beam system. However, we have found that
for all Lagrangian discretizations, the analysis fails to converge between times
t = 0.6 and t = 0.7, that is precisely when element transition occurs. Let us
finally note as well, that intermediate time steps halvings has been computed
during the numerical solution, but are not shown in the plot for clarity.



56 CHAPTER 5. NUMERICAL EXAMPLES

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

t = 0
t = 0.1

t = 0.2

t = 0.3

t = 0.4

t = 0.5

t = 0.6

(a) Linear

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

t = 0
t = 0.1

t = 0.2

t = 0.3

t = 0.4

t = 0.5

t = 0.6

(b) Quadratic

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

t = 0
t = 0.1

t = 0.2

t = 0.3

t = 0.4

t = 0.5

t = 0.6

(c) Cubic

Figure 5.18: Planar aerial runway. Comparison of non-smooth contact using
Lagrangian interpolation



Chapter 6

Conclusions

6.1 Contribution of the present thesis

The modelling of sliding contact for a geometrically exact planar beam us-
ing a node-to-element (NE) master-slave approach has been successfully imple-
mented. In addition, we have included B -Splines interpolation with the inten-
tion of smoothing the contact slideline and results have shown its advantages
compared with standard Lagrangian interpolation. Conserving time integration
has been explored as well in the previous context, and the main contribution
in the topic has been the energy and momentum conserving scheme, which
properties has been auspiciously tested.

In previous work, the same master-slave NE approach has been implemented
for the modelling of joints in 3D geometrically exact beams [CJ96, MJ04, MJ06].
Despite that our work has been based on a simpler model, which do not have
the complexities of of large 3D rotations, we believe that the achievements of
this thesis, mainly the use of B -Splines interpolation, can be extended to the
3D case without posing any further theoretical difficulty.

Although the scope of this work has been to model conservative time inte-
gration, in the context of beam sliding contact, we have found that the dynamic
response of beams integrated with Newmark method, behaves more stable when
B -Splines interpolation is used. The latter can be seen more like a by product
rather than a thesis scope.

We may finally summarize the contributions done in the present work:

1. B -Splines interpolation has been tested in a variety of model problems
and gave a successfull response mainly in the solution of sliding contact
in beams, given the smooth discretization of contact loads at elements
transitions they provide. Moreover, the solution in non-linear dynamics
under Newmark method have always behaved more stable with B -Splines
interpolation compared with standard Lagrangian interpolation (up to
order three).

2. In the context of conservative time-integration of beams in sliding con-
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tact, using the master-slave method, an algorithm that conserves energy
and momentum has been developed and implemented. Their conserving
properties have been confirmed in a series of numerical examples.

3. Recalling the definition of the coupling element in the NE master-slave
incremental approach [MJ06], an extension of this idea that couples more
than a master element to the slave node has been developed and imple-
mented. The previous has allowed us to preserve the conserving properties
of the incremental master-slave formulation at the elements contact tran-
sitions.

6.2 Further work

The energy-momentum conserving algorithm presented for sliding beams
does not fulfilled the exact contact constrains. At this expense, it has not been
tested how much the relaxed contact kinematics may vary from the exact ones,
and if such may present a detrimental effect in the iterative solution of the
non-linear equations.

With respect to an algorithm that may be able to exactly conserve the
energy, momentum and the contact constrains using the master-slave method
for geometrically exact beams, it has not been explored yet. An idea on that
direction may well be to leave the interpolation parameter γ (see (4.29)) as an
extra variable to the problem, and add consequently the algebraic equation of
the slave nodal condition for angular momentum conservation.



Appendix A

Variation of rotations

Let v a unitary 3D vector that can be expressed as a rotation in an arbitrary
Euclidean system of coordinates ei, such that i.e. v = Λ e1

Taking a variation of v [Muñ04] then:

δv = δΛ e1 = [δΘ]× v , (A.1)

where [(•)]× denotes the skew-symmetric matrix form of a vector such that
[(•)]× a = • × a. It holds therefore that:

[δΘ]× =

 0 −δθ3 δθ2

δθ3 0 −δθ1

−δθ2 δθ1 0

 (A.2)

Note (A.1) holds the variation of rotations equation:

δΛ = [δΘ]× Λ , (A.3)

and let also remark the following properties:

δ
(
ΛT
)

= (δΛ)
T

= ΛT [δΘ]
T
× = −ΛT [δΘ]×

true in 2D︷︸︸︷
= − [δΘ]× ΛT (A.4)

Denote that in the 2D case δθ3 = δθ, with θ the angle defined in Figure 2.1.
This means that (A.2) will be simplified as:

[δΘ]
2D
× =

 0 −δθ 0
δθ 0 0
0 0 0

 = J δθ . (A.5)
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Appendix B

Solution of the discretized
beam equations

An overview on the Newton-Raphson method

Many numerical techniques has been developed in the context of solution for
nonlinear systems, see i.e. [ZT00]. Let formulate the problem as the solution of
the discretized beam equations (see Section 2.3)

gα(uβn+1) = geα(uβn+1)− fαn+1 = 0 , α, β = 1, . . . , n , (B.1)

which starts from a nearby nodal solution at

uβn+1 = uβn , gα(uβn) = 0 , fαn+1 = fαn , (B.2)

and arises from changes in the nodal forcing function fαn (load steps):

fαn+1 = fαn + ∆fαn . (B.3)

So far, the objective will be to determine the change in the set of nodes ∆uβn
such that

uβn+1 = uβn + ∆uβn . (B.4)

The Newton-Raphson iterative method is the one that will be described
here. It is based mainly on the first order approximation of (B.1) (recall that
non follower loads are modelled), given by:

gα(ui+1
βn+1

) ≈ gα(uiβn+1
) + ∆geα(uiβn+1

) = 0 . (B.5)
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The iteration counter i is distinguished from the discrete time parameter n
1 and usually starts by assuming that

u1
βn+1

= uβn , (B.6)

in which uβn is a converged nodal solution at a previous load step. Moreover,
the jacobian matrix (or stiffness matrix in structural terms) corresponding to a
tangent direction is given by:

∆geα = Kαβ
T ∆uβ . (B.7)

The nodal iterative correction for the method is compute as:

ui+1
βn+1

= uiβn+1
+ ∆uiβn , (B.8)

and relies on the solution of the linear system given in (B.5):

Kαβ
T (uiβn+1

) ∆uiβn = −gα(uiβn+1
) . (B.9)

Linearization of the beam’s variational elastic resid-
ual

For the derivation of the tangent stiffness matrix, consider first (B.7) and
after refering to (2.19) is obtained:

Kαβ
T ∆uβ =

∫
L

BT
α ΛΛ0 ∆N dX︸ ︷︷ ︸

KM

+

∫
L

∆(BT
α ΛΛ0) N dX︸ ︷︷ ︸
KG

(B.10)

Note KM results from the linearization of the spatial stress-couple resultant
n and is known as the material part of KT. In addition, KG is known as the
geometric part of KT and arises from the linearization of the strain-displacement
matrix. The material tangent stiffness matrix results to be symmetric, it can be
derived considering (2.9) and (2.15), and the computation is performed using:

Kαβ
M =

∫
L

BT
α ΛΛ0 C (ΛΛ0)

T
Bβ dX (B.11)

For the geometric tangent stiffness matrix, the derivation is a little more involved
and will be described as a special case of the 3D beam theory (see [SVQ86a]).

Let first take a digression to remark that in the 3D case there is a distinction
between the spatial stress and couple resultant that will be named as n3D and
m3D respectively, together with the position vector r3D. Each of them will have

1Note, from here and through all this work, the difference used in notation between an
iterative ∆ or an incremental ∆ variation.
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three components, and should not be confused with n and r, defined in (2.5)
and (2.2) respectively for the planar case. Following [SVQ86a], the geometric
tangent stiffness matrix is given by:

Kαβ
G =

∫
L

ΦT
α G Φβ dX (B.12)

where Φα is a discretized differential matrix operator defined as follows:

Φ =

I
′
α 1 0

0 I
′
α 1

0 Iα 1

 (B.13)

and G is a so-called geometric stiffness matrix, which take for the 3D beam
theory the following form:

G =

 0 0 − [n3D]×
0 0 − [m3D]×

[n3D]× 0 [r
′
3D]× [n3D]×

 (B.14)

Having considered equations (B.12), (B.13) and (B.14) the following ‘[2,2]’
submatrix 2 is derived as the expression for the geometric tangent stiffness
matrix of 3D beams:

Kαβ
G =

∫
L

[
0 − [n3D]× I

′
αIβ

[n3D]× IαI
′
β − [m3D]× I

′
αIβ + [r

′
3D]× [n3D]× IαIβ

]
dX (B.15)

For the planar beam formulation, (B.15) will be reduced to a special case where
the following identities are considered (see Appendix A):

[m3D]× = ∅ ; [(•)3D]× = JT (•) . (B.16)

Finally, an expression for the computation of the geometric tangent stiffness
matrix of planar beams is given by:

Kαβ
G =

∫
L

 0 0 −fv I
′
α Iβ

0 0 fu I
′
α Iβ

−fv Iα I
′
β fu Iα I

′
β −

(
fu r

′

1 + fv r
′

2

)
Iα Iβ

 dX (B.17)

Note that (B.17) is a symmetric matrix. Nevertheless, (B.15) describes gen-
erally an unsymmetric matrix. It is demonstrated in [SVQ86a] that the sym-
metry of KG is recovered at a state of equilibrium in the continuum. However,
this is not in general valid if a finite element discretization is used [Cri97].

2Note this compact notation holds a 6× 6 matrix
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Linearization of the beam’s incremental residuals

We will present here the linearization of the dynamic and elastic nodal resid-
uals developed in Subsection 3.2.2, where non contribution to the tangent stiff-
ness matrix from the external loads are considered. Recall that interpolation of
tangent scaled rotations leads to the following formulation:

g ∆, d
α
n+ 1

2

= Mαβ üβ
n+ 1

2

, (B.18a)

g ∆, e
α
n+ 1

2

=

∫
L

 I
′

α Λ̃n+ 1
2

Λ̃0 0

−Iα

[
r̃
′

n+ 1
2

]T
×

Λ̃n+ 1
2

Λ̃0 I
′

α s(ω)

 Nn+ 1
2

dX , (B.18b)

where s(ω) is the function such that ∆θ = s(ω)∆ω and the linearization has to
be performed consequently with respect to ∆u = Iβ ∆uβ .

Dynamic nodal residual

Let us first note the equivalence g ∆, d
α
n+ 1

2

= g ∆, d
α
n+ 1

2

, from equations (3.22) and

(B.18a). This equality results from the time stepping condition stated in (3.34),
which simply allow us to derive from (3.22) that

∆uα · g ∆, d
α
n+ 1

2

= ∆uα · g ∆, d
α
n+ 1

2︸ ︷︷ ︸
g∆, d

α
n+ 1

2

. (B.19)

Despite the equivalence in equation (B.19), let us remark that from the imple-

mentational point of view it is different to compute üβ
n+ 1

2

if unscaled or scaled

incremental rotations are interpolated.

Regarding the linearization of (B.18a), we will use from (3.34) that

∆üβ
n+ 1

2

=
∆u̇βn+1

∆t
=

2

∆t2
∆uβ , (B.20)

which can be used directly in (B.18a) to derive

∆g ∆, d
α
n+ 1

2

=
2

∆t2
Mαβ ∆ uβ . (B.21)

Similarly, it is possible to verify that

∆g ∆, d
α
n+ 1

2

=
2

∆t2
Mαβ ∆ uβ . (B.22)
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Elastic nodal residual

For the linearization of the present residual, we will first aim to writte the
relation between independent and interpolated variables from B.18b:

∆ũ
′

∆θ
′

∆θ

 =

 ∆ũ
′

s
′
(ω) ∆ω + s(ω) ∆ω

′

s(ω) ∆ω

 = B∆
β ∆uβ , (B.23)

with matrix B∆
β defined like:

B∆
β =

I
′

β 1̃ 0

0 Iβ s
′
(ω) + I

′

β s(ω)

0 Iβ s(ω)

 . (B.24)

In order to obtain the linearization of the second term in the integral from
(B.18b), we first aim to write ∆Γn+1 as a function of the increments described
in (B.23):

∆Γn+1 =

∆
(
Λ̃n+1 Λ̃0

)T

r̃
′

n+1 +
(
Λ̃n+1 Λ̃0

)T

∆r̃
′

∆θ
′


=


(
Λ̃n+1 Λ̃0

)T
(
−
[
r̃
′

n+1

]
×

∆θ + ∆r̃
′
)

∆θ
′

 (B.25)

=
(
Λ̃n+1 Λ̃0

)T
[
1̃ 0 −

[
r̃
′

n+1

]
×

0 1 0

]
︸ ︷︷ ︸

1r̃

∆ũ
′

∆θ
′

∆θ

 =
(
Λ̃n+1 Λ̃0

)T

1r̃

∆ũ
′

∆θ
′

∆θ

 .

An expression for ∆Nn+ 1
2

can be directly derived using (B.25) and (B.23) as

follows:

∆Nn+ 1
2

=
1

2
∆Nn+1 =

1

2
Ce ∆Γn+1 =

1

2
Ce

(
Λ̃n+1 Λ̃0

)T
1r̃ B∆

β ∆uβ . (B.26)

In addition, we will account on the following equations to derive the linearization
of the first term in (B.18b):

∆Λn+ 1
2

=
1

2
s(ω) J̃ Λ̃n+1 ∆ω , (B.27)

∆s(ω) = −1

2
s2(ω)ω∆ω . (B.28)

Resorting finally to

65



Appendix B

∆g ∆, e
α
n+ 1

2

= K ∆, e
αβ ∆uβ , (B.29)

the unsymmetric stiffness matrix K ∆, e
αβ results:

K ∆, e
αβ =

1

2

∫
L

 I
′

αΛ̃n+ 1
2
Λ̃0 0

−Iα

[
r̃
′

n+ 1
2

]T
×
Λ̃n+ 1

2
Λ̃0 I

′

αs(ω)

Ce

(
Λ̃n+1Λ̃0

)T
1r̃ B∆

β dX+ (B.30)

+
1

2

∫
L

 0 I
′
αIβ

[
Λ̃n+1Λ̃0∆̃Nn+ 1

2

]
×

s(ω)

IαI
′

β

[
Λ̃n+ 1

2
Λ̃0∆̃Nn+ 1

2

]T
×
−IαIβ

[
r̃
′

n+ 1
2

]T
×

[
Λ̃n+1Λ̃0∆̃Nn+ 1

2

]
×
− I′αIβs2(ω)ωMn+ 1

2

 dX .
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Linearization of
master-slave residuals

Variational formulation

The linearization of the extended residual gARm = NT
δ gA will be split in two

terms:

∆(NT
δ gA) = NT

δ ∆gA + (∆NT
δ ) gA (C.1)

where we will consider Nδ, together with Rδ B and Lδ B defined in (4.23), which
stands for the released planar sliding joint rotation.

The first term in (C.1) can be expressed using the Jacobian matrix of the
single element A, KA, such that:

∆gA = KA ∆uA = KA Nδ ∆uARm (C.2)

where equation (4.23) has been used to relate the vector of iterative changes of
released and master variables. We therefore have, remarking again for a released
planar joint rotation, that the first term in (C.1) yields

NT
δ ∆ gA = NT

δ KA ∆uA = NT
δ KA Nδ ∆uARm . (C.3)

The second term on (C.1) is a bit more involved, and using first (4.23) for
the definition of Nδ, the development of the product (∆NT

δ ) gA results:

(∆NT
δ ) gA =



E1 ⊗∆r̃
′

B gfnA
03×(nA+1)

∆(IB1 ) gfnA
...

∆(IBnB ) gfnA


. (C.4)
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Deriving from (C.4) the following term

∆r̃
′

B = ∆(I
′ B
α r̃α) = I

′ B
α ∆r̃α + I

′′ B
α r̃α ∆X = I

′ B
α ∆r̃α + r̃

′′

B ⊗E1 ∆r̃R ,

the computation of (∆NT
δ ) gA turns into (4.26), where the following definitions

have been implicitly made:

KRR =

[(
r̃
′′

B · gfnA
)

E1 ⊗E1 0

0 0

]

KRm =

[
E1 ⊗ gfnA 0

0 0

] [
I
′ B
1 1̃ . . . I

′ B
nB 1̃

]
(C.5)

KmR = KT
Rm
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Demonstration of
conserving properties

Tangent scaled rotations - Conservation of mo-
menta

Recall the nodal residuals given by interpolation of tangent scaled incremen-
tal rotations conform the following non-linear system of equations:

g ∆
α
n+ 1

2

= g ∆, d
α
n+ 1

2

+ g ∆, e
α
n+ 1

2

− fα = 0 ; α = 1, . . . , n . (D.1)

The dynamic, elastic and external force vectors were developed in the Subsection
3.2.2 and may be written respectively as

g ∆, d
α
n+ 1

2

=
1

∆t

∫
L

Iα ∆l dX , (D.2a)

g ∆, e
α
n+ 1

2

=

∫
L

 I
′

α 1̃ 0

−Iα

[
r̃
′

n+ 1
2

]T
×

I
′

α

{Λ̃n+ 1
2

Λ̃0 Ñn+ 1
2

s(ω) Mn+ 1
2

}
dX , (D.2b)

fα =

∫
L

{
Iα
(
Aρ b + T̄

)
0

}
dX , (D.2c)

where the definition of the vector of local specific momenta l has been used in
(D.2a) for a demonstration purpose:

l =

{
lf
lm

}
≡
{

Aρ
˙̃u

Iρ θ̇

}
. (D.3)

Equation (D.2a) can be derived from the increment of kinetic energy - see (3.22)
-, using the time stepping condition (3.34) and replacing with (D.3) as follows:
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∆T =

∫
L

(
Aρ

˙̃un+ 1
2
·∆ ˙̃u + Iρ θ̇n+ 1

2
∆θ̇
)

dX =
1

∆t

∫
L

(
∆ũ ·Aρ ∆ ˙̃u + ω Iρ ∆θ̇

)
dX

=
1

∆t

∫
L

∆u ·∆l dX . (D.4)

Replacing the expressions (D.2a), (D.2b) and (D.2c) in equation (D.1), we
obtain

g ∆
α
n+ 1

2

=


g ∆, f
α
n+ 1

2

g∆,m
α
n+ 1

2

 = 0 (D.5)

=

∫
L


Iα

Aρ

∆t
∆ ˙̃u + I

′
α Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2
− Iα

(
Aρ b + T̄

)
Iα

Iρ
∆t

∆θ̇ − Iα

[
r̃
′

n+ 1
2

]
×
· Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2
+ I

′
α s(ω) Mn+ 1

2

dX ,

where we can use the shape functions completeness conditions - see (2.14) - to
sum the contribution of (D.5) over the n nodes and derive that

1

∆t

∫
L

{
∆lf
∆lm

}
dX =

∫
L

 Aρ b + T̄[
r̃
′

n+ 1
2

]
×
· Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2

dX . (D.6)

On the other hand, the increment of momenta over a time step reads

∆Ξ =

∫
L

{
∆lf

∆lm + Aρ ∆
(
r̃× ˙̃u

)}
dX

=

∫
L

 ∆lf

∆lm + Aρ

([
r̃n+ 1

2

]
×
·∆ ˙̃u + [∆ũ]× · ˙̃un+ 1

2

) dX . (D.7)

It is first observed from (D.6) that if non external loads occur, the linear momen-
tum is conserved: ∆Ξf = 0. Regarding the increment of angular momemtum
∆Ξm, we observe that recalling the mid-point rule in (3.34), the last term of
(D.7) vanishes due to the collinearity between ∆ũ and ˙̃un+ 1

2
. We finally rewritte

the increment of Ξm using the rotational equilibrium from (D.6):

∆Ξm =

∫
L

(
∆t
[
r̃
′

n+ 1
2

]
×
· Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2
+ Aρ

[
r̃n+ 1

2

]
×
·∆ ˙̃u

)
dX . (D.8)

By inserting into the previous the dot product: ∆t
[
r̃α
n+ 1

2

]
×
· g ∆, f

α
n+ 1

2

from equa-

tion (D.5), it follows that
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∆Ξm = ∆t

∫
L

[
r̃n+ 1

2

]
×
·
(
Aρ b + T̄

)
dX , (D.9)

which clearly vanishes if non external forces exist.

Increment of angular momentum for unscaled ro-
tations

We will use similar arguments to the ones exposed in the previous Section,
to show that even in absence of external loads the interpolation of unscaled
incremental rotations ω will lead to a non-angular conserving algorithm. In
the present case, the nodal residuals conform the following set of non-linear
equations:

g ∆
α
n+ 1

2

= g ∆, d
α
n+ 1

2

+ g ∆, e
α
n+ 1

2

− fα = 0 ; α = 1, . . . , n , (D.10)

together with the following expressions (see Subsection 3.2.2):

g ∆, d
α
n+ 1

2

=
1

∆t

∫
L

Iα ∆l dX , (D.11a)

g ∆, e
α
n+ 1

2

=

∫
L

 I
′

α 1̃ 0

−Iα
tan(ω/2)
ω/2

[
r̃
′

n+ 1
2

]T
×

I
′

α

{Λ̃n+ 1
2

Λ̃0 Ñn+ 1
2

Mn+ 1
2

}
dX , (D.11b)

fα =

∫
L

{
Iα
(
Aρ b + T̄

)
0

}
dX . (D.11c)

The n nodal equilibrium equations yield

g ∆
α
n+ 1

2

=


g ∆, f
α
n+ 1

2

g∆,m
α
n+ 1

2

 = 0 (D.12)

=

∫
L


Iα

Aρ

∆t
∆ ˙̃u + I

′
α Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2
− Iα

(
Aρ b + T̄

)
Iα

Iρ
∆t

∆θ̇ − Iα
tan(ω/2)
ω/2

[
r̃
′

n+ 1
2

]
×
· Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2
+ I

′
α Mn+ 1

2

dX ,

and again applying the shape functions completeness properties for the sum of
(D.12) over all the nodes gives rise to

1

∆t

∫
L

{
∆lf
∆lm

}
dX =

∫
L

 Aρ b + T̄

tan(ω/2)
ω/2

[
r̃
′

n+ 1
2

]
×
· Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2

dX . (D.13)
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Since there are non changes in the time integration rule for the translations -
compare (3.15) and (3.34) -, we will write the same increment of momenta over
a time step from (D.7) using the collinearity condition between ∆ũ and ˙̃un+ 1

2
:

∆Ξ =

∫
L

 ∆lf

∆lm + Aρ

[
r̃n+ 1

2

]
×
·∆ ˙̃u

dX . (D.14)

The first equations in (D.14) and (D.13) lead to conservation of linear momen-
tum if non external forces occur. On the other hand, by recalling the rotational
part of (D.13), we can express the increment of Ξm as

∆Ξm=
[
r̃αn+ 1

2

]
×
·
∫

L

AρIα∆ ˙̃u dX+

∫
L

∆t
tan (ω/2)

ω/2

[
r̃
′

n+ 1
2

]
×
·Λ̃n+ 1

2
Λ̃0Ñn+ 1

2
dX . (D.15)

From the nodal equilibrium equations in (D.12) it follows that AρIα∆ ˙̃u can be

replaced in (D.15) using ∆t
(
Iα
(
Aρb + T̄

)
− I

′
α Λ̃n+ 1

2
Λ̃0Ñn+ 1

2

)
instead, and

by considering a system with non external loads we arrive to the following result:

∆Ξm = ∆t

∫
L

(
tan (ω/2)

ω/2
− 1

)[
r̃
′

n+ 1
2

]
×
· Λ̃n+ 1

2
Λ̃0 Ñn+ 1

2
dX . (D.16)
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[SM11] A. Sibileau and J. Muñoz. Conservative time integration on beams
under contact constrains using B -Spline interpolation. In MULTI-
BODY DYNAMICS ECCOMAS Thematic Conference, Brussels,
July 2011. Paper submitted.

[SS96] N. Stander and E. Stein. An energy-conserving planar finite beam
element for dynamics of flexible mechanisms. Engng. Comput., 16:60–
85, 1996.

74



[ST92] J.C. Simo and N. Tarnow. The discrete energy-momentum method.
Conserving algorithms for nonlinear elastodynamics. J. Appl. Math.
Phys. (ZAMP), 43:757–792, 1992.

[STD95] J.C. Simo, N. Tarnow, and M. Doblare. Non-linear dynamics of
three-dimensional rods: exact energy and momentum conserving al-
gorithms. Int. J. Num. Meth. Engng, 38:1431–1473, 1995.

[SVQ86a] J.C. Simo and L. Vu-Quoc. A three-dimensional finite-strain rod
model. Part II: computational aspects. Comput. Methods Appl. Mech.
Engng, 58:79–116, 1986.

[SVQ86b] J.C. Simo and L. Vu-Quoc. On the Dynamics of Flexible Beams
Under Large Overall Motions - The Plane Case: Part I. ASME J. of
Appl. Mech., 53:849–854, 1986.

[SVQ86c] J.C. Simo and L. Vu-Quoc. On the Dynamics of Flexible Beams
Under Large Overall Motions - The Plane Case: Part II. ASME J.
of Appl. Mech., 53:855–863, 1986.

[SVQ88] J.C. Simo and L. Vu-Quoc. On the dynamics in space of rods un-
dergoing large motions -a geometrically exact approach. Comput.
Methods Appl. Mech. Engng, 53:125–161,, 1988.

[SW91] J.C. Simo and K.K. Wong. Unconditionally stable algorithms for
rigid body dynamics that exactly preserve energy and momentum.
Int. J. Num. Meth. Engng, 31(1):19–52, 1991.

[TWH11] I. Temizer, P. Wriggers, and T.J.R. Hughes. Contact treatment in
isogeometric analysis with NURBS. Comput. Methods Appl. Mech.
Engng, 200:1100–1112, 2011.

[ZT00] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, vol-
ume 2: Solid Mechanics, chapter 11: Non-linear structural problems
-large displacement and instability. Butterworth-Heinemann, Oxford,
fifth edition, 2000.

75


