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“I am an old man now, and when I die and go to

heaven there are two matters on which I hope for

enlightenment. One is quantum electrodynamics,

and the other is the turbulent motion of fluids.

And about the former I am rather optimistic”

–Horace Lamb





Abstract

Explicit variational multiscale methods for incompressible turbulent flow

Liang Yang

An explicit finite element scheme for the simulation of incompressible turbulent flows

is presented in this thesis. It consists variational multiscale (VMS) method in which

the sub-grid model is dynamic and the resulting sub-grid component is enforced to be

orthogonal to the finite element solution. These two particular features of our formu-

lation are basic for the explicit treatment in time. In particular, we have considered

the artificial compressibility method for the explicit enforcement of incompressibility.

The multiscale treatment of the problem using VMS and the sub-grid model sug-

gested have three positive numerical consequences. The method can be understood

as a residual-based stabilized finite element method, and so, the singularly perturbed

nature of the Navier-Stokes equations is stabilized as the Reynolds number increases.

On the other hand, it allows to avoid the compatibility conditions (the so-called inf-

sup) between velocity and pressure finite element spaces, and so, we are able to use

equal interpolation. Finally, the modelled sub-grid component acts as a turbulence

model in the problem for the finite element component. The turbulence modelling

inherent to our multi-scale approach is fully motivated by numerical arguments and

can be understood as a large eddy simulation (LES) model. Since we are consider-

ing dynamic subscales, the dynamic LES model allows backscatter. In order to show

the effect of the turbulent model, the lid driven cavity flow, the plane mixing layer

and isotropic turbulence both in two dimensions and three dimensions are studied,

obtaining the expected results. All these problems have been solved with equal order

velocity-pressure approximation and linear finite elements.

Keywords: Explicit time integration, Artificial compressibility method, Variational multiscale method,

Orthogonal subgird scale, Dynamic subgrid scale, Turbulence
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Chapter 1

Introduction

1.1 Introduction to turbulence

“Turbulence is the most important unsolved problem of classical physics ”

–Richard Feynman

Most of the flows in the world are turbulent. Examples range from smoke rising from

a cigarette to flood water, an aircraft passing through the air to the recent NASA’s

sun image (See Fig 1.1). The problem of turbulence has been studied by many great

scientists and engineers in the past. Beginning with its recognition by da Vinci and

jumping to the works of Boussinesq and Reynolds in the 19thcentury, the interest has

continued through the 20th century, with the works of Prandtl, Taylor, Kolmogorov

and many others. Till date it is one of the key research field in Computational Fluid

Dynamics (CFD).

Before plunging into the computational aspects of the turbulence, it is worthwhile to

first discuss physical aspects of the phenomenon.

1.1.1 General properties of turbulence

Von Karman (1937) defined the turbulence:

“Turbulence is an irregular motion which in general makes its appearance in fluids,

1
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(a) cigarrete (b) airplane

(c) water (d) sun

Figure 1.1: Turbulence in nature

gaseous or liquid, when they flow past solid surfaces or even when neighboring streams

of the same fluids flow past or over one another.”

(Wilcox, 2006) concludes the following features of turbulence:

• Instability and Nonlinearity. Analysis of solutions to the Navier-Stokes(NS)

equation shows that turbulence develops as an instability of laminar flow. Math-

ematically speaking, the instability result mainly from interaction between the NS

equation’s nonlinear inertial terms and viscous terms. The interaction is very com-

plex because it it rotational, fully dimensional and time dependent.
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• Statistical Aspects Turbulence is characterized by random fluctuations thus man-

dating the use of statistical methods to analyze it.

•Turbulence is a continuum phenomenon The time-dependent, three-dimensional

continuity and NS equations contain all of the physics of a given turbulent flow. As

noted by Tennekes and Lumley (1983)

“even the smallest scale occurring in a turbulent flow are ordinarily far larger than

any molecular length scale.”

• Vortex stretching The vorticity in a turbulent flow is itself three dimensional

so that vortex lines in the flow are nonparallel. Vortex stretching is absent in two-

dimensional flows so that turbulence must be three dimensional.

• Turbulence scales and the cascade Turbulence consists of a continuous spec-

trum of scales ranging from largest to smallest.

• Large eddies and turbulent mixing

• Enhanced diffusivity The turbulence enhances diffusivity. Turbulent diffusion

greatly enhances the transfer of mass, momentum and energy. The stresses in turbu-

lent flows are often several orders of magnitude larger than in corresponding laminar

flows.

1.1.2 Spectral representation and the Kolmogorov −5/3 law

Since turbulence contains a continuous spectrum of scales, it is often convenient to

do analysis in terms of the spectrum distribution of energy. In general, a spectral

representation is a Fourier decomposition into wavenumbers, k.

Kolomogorov’s (1941) idea is that a range of wave numbers k exists in which the
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energy transferred by inertial effects dominates.

A typical energy spectrum for turbulent flow is shown in Fig 1.2

Figure 1.2: Energy spectrum for the turbulent flow

1.2 Popular approaches

Computers have opened a door to the understanding of turbulence. The typical ap-

proaches to the simulation of turbulence are:

•Direct Numerical Simulation (DNS)
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Direct Numerical Simulation (DNS) of Navier-Stokes equations is a brute force ap-

proach that solves turbulence. When dealing with turbulent flow, this method tries

to resolve all turbulent phenomena at all length and time scales simply by numeri-

cally solving Navier-Stokes (NS) equation. The number of degrees of freedom scales

increases with Re3. Due to this reason, the computational costs of high Reynolds

number flow simulations exceeds the limits of computing power today.

•Large Eddy Simulation (LES)

Usually DNS of a turbulent flow is not feasible. Large eddy simulation, a promis-

ing approach, is resolving the large vortexes (eddies) and modeling the effect of the

smaller scales. Hence LES is much more economical in term of computational power in

comparison to DNS. The velocity and pressure is split in two parts. These quantities

are the sum of a mean component and a fluctuation component as follows. It solves

the mean component with a numerical method and solves the fluctuations analytically

(depending on the turbulent models). Physical modeling and physical parameters are

vital parts for the LES simulation.

•Reynolds Average Navier-Stokes (RANS)

In this approach, suggested by Reynolds (1895), quantities like velocity, pressure etc,

are decomposed into an ensemble mean flow and a fluctuating perturbation field. That

means, this approach only provides mean turbulent quantities, which is the cheapest

among these three.

Fig.1.2 illustrates the relations between computational costs and degree of modeling

among DNS, LES and RANS.
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Low High Extremely high
computing costs

6

-

degree of modeling

100%

0%

RANS

DNS

LES

1.3 FEM in flow problem and its difficulties

The finite element method (FEM) can be traced back to the 1950s in the aircraft

industry, and it is popular for structural analysis. In early 1970s, an attempt was

made to use it in fluid dynamics. In recent years, the FEM in fluids is becoming a

popular research field.

The variational multiscale method for turbulent flow is introduced by (Hughes et al.,

2000), the concept of orthogonal subgrid scales by (Codina, 2002) and dynamic subgrid

scales by (Codina et al., 2007).

1.3.1 Large reynolds number

The main difficulty is due to the convection term. A very fine mesh is needed, which

undermines the practical utility of the method. From a computational point of view,

convection operators are non-symmetric, which causes oscillations and can only be

removed by refining the mesh. From a physical point of view, an extremely fine mesh



1.4 Aim and Ambition 7

is needed to capture the smallest dissipative scales.

1.3.2 Inf-sup condition

Considering the steady state problem, the incompressibility leads to a saddle prob-

lem. The continuous problem is well-posed due to continuous inf-sup conditions. In

order for the discrete problem to be well-posed, it must also satisfy a discrete inf-sup

condition. This condition restrict the choice of the velocity-pressure FEM spaces. For

instance, the equal order velocity-pressure approximation does not satisfy the inf-sup

condition. In order to avoid the need to satisfy the inf-sup condition, we can rely on

stabilized methods for the incompressibility.

Finding a stabilization technique could be interpreted to find a good sub-scale recon-

struction. The basic idea of this framework is to introduce a decomposition of the

velocity space into a finite element space and a subscales space. The subgrid com-

ponent is modeled and can be motivated by Fourier analysis arguments, and then

substituted into the large scale equation.

1.3.3 Implicit pressure

Computational costs are always a great issue in CFD. The implicit treatment of the

pressure implies solving the pressure Laplacian equation, which usually costs 70% of

the overall computational time. A fast fully explicit method is an interest approach.

1.4 Aim and Ambition

Introducing an efficient explicit approach using the variational multiscale finite ele-

ment methods for the simulation of turbulent flow is a new, challenging and highly

valuable topic. First, the explicit method is fast, better for parallel computing and

able to exhibit rapid transient behavior. Second, in the variational multiscale method

framework, no turbulence model is needed and turbulence is fully motivated by the
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numerical method.

1.5 Overview of the thesis

At the end of this introduction, the following short overview should procure an im-

pression of what will be dealt with in the respective chapters of this work. The thesis

is organized as follows.

Chapter 2 is dedicated to present the stabilization of the convection-diffusion problem

and the introduction of the variational multiscale method. Both orthogonal sub-scales

(OSS) and algebraic sub-grid scale methods (ASGS) are considered and compared.

Chapter 3 provides an introduction to artificial compressibility method for the Stokes

problem: explicit treatment of the pressure is studied in this chapter. In the lid-driven

cavity, the comparison based on convergence behavior is given.

Chapter 4 presents the Stokes problem and a discussion about the LBB compatibil-

ity condition. The classical stabilization method and variational multiscale method

which avoid the LBB compatibility condition are studied.

Chapter 5 introduces the explicit variational multiscale method for incompressible

flow, the proposed algorithms and their implementation.

Chapter 6 contains various numerical examples for laminar and turbulent flow, in-

cluding the lid driven cavity flow both in 2D and 3D, the plane mixing layer in 2D

and decaying of isotropic turbulence in 2D and 3D.



Chapter 2

Convection-Diffusion Problem

This chapter first illustrates the deficiencies of the standard Galerkin formulation

in the convection-dominated problems and presents the SUPG method designed to

produce stable and accurate results in the presence of highly convective effects. Then,

it introduces the variational multiscale method, which consists of taking as space for

the sub-scales the orthogonal to the finite element space, and finally, compares these

two sub-scale models (OSS and ASGS).

2.1 Standard Galerkin method and its stabilization

As an introduction to the convection-diffusion problems by means of the generalized

Galerkin methods, we start illustrating the basic steps in the formulation of the stan-

dard Galerkin finite element method. This will point out the deficiency of the classical

Galerkin approach in solving the convection-dominated problem.

2.1.1 Problem statement

First we introduce some notations which are used in this chapter.

Let us consider the transport by convection and diffusion of a scalar quantity u domain

u ⊂ Rd where d = 2 or 3,with boundary Γ = ∂Ω.

Strong form:

9



10 Convection-Diffusion Problem

∂tu + a · ∇u − ν∇ · (∇u) = f in Ω, t ∈]0, T [

u = uD on ∂ΩD, t ∈]0, T [ (2.1)

In order to obtain the weak form of problem(2.1) we need to introduce some notations.

We denote by Lp(Ω), 1 ≤ p < ∞. The space of real functions defined on Ω with

the p power absolutely integrable with respect to the Lebesgue measure. The space

L∞(Ω) consists of essentially bounded functions in Ω. The case p = 2 is of special

interests. L2(Ω) is a Hilbert space endowed with the scalar product (u, v) and its

induced norm ‖u‖0. The Hilbert space Hm(Ω) is the space of functions in L2(Ω)

whose weak derivatives of order less than or equal to L2(Ω), m being an integer and

1 ≤ p <∞. This space is endowed with scalar product and its associated norm ‖·‖m.
Furthermore, we denote by H1

0 (Ω) the space of functions of H1(Ω) vanishing on Γ and

by H−1(Ω) its dual space. In general, duality pairing will be denoted with the symbol

〈·, ·〉. Given a function u ∈ H1
0 (Ω) the Poincaré inequality:

‖u‖2
1 ≤ CΩ ‖∇u‖2

0 (2.2)

holds for Ω with Lipschitz continuous boundary. Therefore, the seminorm |u|1 =

‖∇u‖2
0 in H1(Ω) is a norm in H1

0 (Ω).

Let V ≡ H1(Ω),V0 ≡ H1
0 (Ω) denote the real Hilbert spaces for velocity, with associ-

ated norms ‖v‖v, and let f ∈ V−1.

We shall often consider d-dimensional vector functions with components in one of these

spaces. We shall indicate them by boldface letters, for instance Hm(Ω) = (Hm(Ω))d.

In the following, we will not distinguish between scalar products or norms for scalar

or vector-valued functions.
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The weak formulation of the convection-diffusion problem then takes the following

form:

(∂tu , v) + ν (∇u ,∇v) + 〈a · ∇u , v〉 = 〈f , v〉 (2.3)

2.1.2 Standard Galerkin formulation

We now have to discretize the convection-diffusion problem by means of the Galerkin

finite element method:

(∂tuh, vh) + ν (∇uh,∇vh) + 〈a · ∇uh, vh〉 = 〈f , vh〉 (2.4)

Algorithm 2.1 Explicit Standard Galerkin algorithm for the convection-diffusion
problem
1: read u0

h

2: while time integration do
3: for element do
4: velocity un at cell nodes
5: velocity gradient ∇un at cell nodes
6: velocity residual R = 〈a · ∇uh, vh〉+ ν (∇un,∇vh)− 〈f , vh〉
7: end for
8: update the velocity un+1 = un + ∆tR
9: prescribe boundary conditions
10: end while

2.1.3 SUPG formulation

In order to ensure that the solution of the differential equation is also a solution

of the weak form, the stabilization term should be a function of the residual of the

differential equation. The general form of the stabilization technique is
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(∂tuh, vh) + ν (∇uh,∇vh) + 〈a · ∇uh, vh〉+ 〈R(uh), τP (vh)〉 = 〈f , vh〉 (2.5)

For the SUPG method, the stabilization technique is defined by taking

P (vh) = a · ∇vh (2.6)

Algorithm 2.2 Explicit SUPG algorithm for the convection-diffusion problem
1: read u0

h

2: while time integration do
3: calculate τ
4: for element do
5: velocity un at cell nodes
6: velocity gradient ∇un at cell nodes
7: velocity residual R = 〈a · ∇uh, vh〉+ ν (∇un,∇vh) + τ 〈a · ∇uh, a · ∇vh〉
8: end for
9: update the velocity un+1 = un + ∆tR
10: prescribe boundary conditions
11: end while

2.1.4 Numerical example

In this section, a test is conducted to show the numerical performance of the Standard

Galerkin and SUPG methods. The diffusion coefficient is taken as k = 10−4. The

finite element mesh employed consists of 20 × 20 Q1 elements. If ū donates the

boundary condition for u . The cases are defined and shown in Figure 4.3.

The problem definition:

a = (3, 2) , ū = 1 on Γ1 = [0, 0.25]× {0}, ū = 0 on ∂Ω\Γ1
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Figure 2.1: Difference between Galerkin FEM and SUPG

We show that the Galerkin finite element method is not suited to solve this problem

in 20× 20 grids. Stabilization is needed in this case.
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2.2 Variational multiscale method

The variational multiscale method introduced by Hughes provides the necessary math-

ematical framework for the construction of so-called sub-grid scale models. It is based

on the decomposition of the solution u , on a coarse-scale component uh, which can

be resolved by the finite element mesh, and a subscale component ũ , which attempts

to determine analytically.

2.2.1 Formulation

Consider a scale decomposition of the space V. The multiscale is applied to the weak

form of the convection-diffusion equation.

V = Vh ⊕ Ṽ,uh ∈ Vh, ũ ∈ Ṽ

The problem becomes

(∂t (uh + ũ) , v) + ν (∇ (uh + ũ) ,∇v) + 〈a · ∇ (uh + ũ) , v〉 = 〈f , v〉 (2.7)

2.2.2 Large-scale problem statement

First, we consider test function vh ∈ Vh, the resolved large-scale problem becomes

(∂t (uh + ũ) , vh) + ν (∇ (uh + ũ) ,∇vh) + 〈a · ∇ (uh + ũ) , vh〉 = 〈f , vh〉 (2.8)

(∂tuh, vh) + ν (∇uh,∇vh) + 〈a · ∇uh, vh〉 − 〈ũ ,a · ∇vh〉 = 〈f , vh〉 (2.9)
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2.2.3 Sub-scale problem statement

Then, we consider ṽ ∈ Ṽ, the unresolved sub-scale problem becomes

∂tũ + a · ∇ũ − ν∆ũ = ru,h (2.10)

ru,h = − (∂tuh + a · ∇uh − ν∆uh − f ) (2.11)

where ru,h is appropriate residual of the finite element components uh adequately

projected onto the space of subscales Ṽ. The Projection P can be either the identity

or the projection orthogonal to the finite element space. We will refer the choice

P = I (identity) as the Algebraic Subgrid-Scale formulation (ASGS), whereas orthog-

onal projection on the appropriate finite element space, which lead to the so-called

Orthogonal Subscales Stabilization (OSS).

2.2.4 Orthogonal projection

If we apply Orthogonal Subscales Stabilization (OSS) to the subscale, the residual

simply becomes

ru,h = −P (a · ∇uh − f ) (2.12)

2.2.5 Sub-scale approximation

Using Fourier analysis, we could approximate the subscale, The details will be dis-

cussed in section 5.4.2. The following approximation could be motivated

1. Static Subscale

ũ = −τ0ru,h

2. Dynamic Subscale
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ũn+1 = τt
∆t

ũn − τtru.h

The sub-scale is solved analytically and substituted into the large-scale equation.

Algorithm 2.3 Explicit VMS algorithm for the convection-diffusion problem
1: read u0

h and set ũ = 0
2: while Time integration do
3: Calculate the parameters τ
4: for Element do
5: velocity un at cell nodes
6: velocity gradient ∇un at cell nodes
7: velocity residual (a · ∇un, vh) + ν (∇un,∇vh)− (ũn,a · ∇vh)− (f, vh)
8: contribution to the velocity subscales τt/∆tun − τta · ∇un

9: projection velocity subscales a · ∇un(only for OSS)
10: end for
11: update the velocity
12: prescribe boundary conditions

projection contribution ũn+1 (only for OSS)
13: end while

2.3 Numerical example

In this section, we test the performance of orthogonal subscale (OSS) and algebraic

subscale method (ASGS) using the similar case in (Codina, 2000). The convection-

diffusion problem is numerically solved by these method. In the following two cases,

the diffusion is taken as k = 10−4. The finite element mesh employed consists of

20× 20 Q1 elements. ū donates the boundary condition for u . The cases are defined

here:

1.f = 3;a = (3, 2) , ū = 0

2.f = 0;a = (3, 2) , ū = 1 on Γ1 = [0, 0.25]× {0}, ū = 0 on ∂Ω\Γ1
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Figure 2.2: Difference between OSS and ASGS

The numerical solution for the two cases are shown in Fig.2.2. Both the ASGS and



18 Convection-Diffusion Problem

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

 

 

ASGS
OSS

(a) Case1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

 

 

ASGS
OSS

(b) Case2

Figure 2.3: Mid-sections plots for the OSS and ASGS methods

the OSS yield very similar solutions in the interior of the computational domain, but

the former yields smaller overshoots near the boundary.

To better observe the difference between the solutions obtained using the ASGS and

the OSS methods, they are plotted along a mid-section in Fig.2.3. These figures

clearly indicate that the ASGS and the OSS formulations only yield different results
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near the layers.

2.4 Comparison between the static OSS and static

ASGS

A static subscale comparison of OSS and ASGS could easily help us to understand

it. For convenience, we define the convection term C, stabilization term S and mass

term M as

C = 〈a · ∇vh, vh〉 (2.13)

S = (a · ∇vh,a · ∇vh) (2.14)

M = (vh, vh) (2.15)

First, the projection operation P would have the follow property

(P, vh) = (a · ∇uh, vh) (2.16)

⇒ MP = Cun (2.17)

⇒ P = M−1Cuh (2.18)

Second, project the subscale

ũOSS
h = τrOSSr,h

= τ(rASGSr,h − I (a · ∇uh))

= rASGSr,h − τM−1Cuh (2.19)

= Suh − τM−1Cuh (2.20)
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In the last, compare the OSS and ASGS

〈a · ∇ũh, vh〉OSS = τ
(
S − CTM−1C

)
un (2.21)

〈a · ∇ũh, vh〉ASGS = τSun (2.22)

It is very clear that the OSS takes some diffusion out of the equation. The OSS is

less robust than ASGS when dealing with the sharp boundary layers not parallel to

the convection velocity.



Chapter 3

Artificial Compressibility Method

The difficulty in computing numerical approximations to the Stokes problem lies in

satisfying the divergence-free velocity condition. In this chapter we provide a brief in-

troduction to the theory of Artificial Compressibility (AC) Method for uncoupling the

pressure and velocity field, based on a perturbed version of the equation of continuity:

∇ · u = 0⇒ ∂tp+ ε∇ · u = 0 (3.1)

where ε is the penalty parameter, which is the square of artificial sound speed.

3.1 What is artificial compressibility method

The artificial compressibility was originally introduced by (Chorin, 1968) with the

object of solving steady state incompressible Navier-Stokes equations. With the suc-

cessful use of the artificial compressibility method for steady problems, it was natural

to investigate its applicability to unsteady problems. (Peyret and Taylor, 1983) were

some of the first to extend the Artificial Compressibility method to the unsteady in-

compressible Navier-Stokes equations. Simple explicit time stepping methods would

then be applicable.

21
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The ε is a critical value between computational efficiency and mathematical accuracy.

On one hand, a reduction of ε will make the system less stiff and permit larger time

step in the explicit numerical integration. On the other hand, a certain stiffness of

the system (the minimum value of ε) is necessary for a good approximations to the

original incompressible system.

The AC schemes reported in the literature can be classified into two categories. The

first one is the standard scheme based on the original work by (Chorin, 1968) and the

second classification is preconditioned AC schemes. Here we only discuss about the

classical AC schemes.

• Strong form(S):

After applied the AC schemes, the transient Stokes equations become{
∂tu − ν∆u +∇p = f

∂tp+ ε∇ · u = 0
(3.2)

where ε is the square of artificial sound speed.

•Weak form(W):

With the notations introduced in Chapter 2, let V ≡ H1(Ω),V0 ≡ H1
0 (Ω) and L ≡

L2(Ω)/R denote the real Hilbert spaces for velocity and pressure, with associated

norms ‖v‖v and ‖q‖L, and let f ∈ V−1.

{
(∂tu , v) + ν (∇u ,∇v) + (∇p, v) = 〈f , v〉

(∂tp, q) + (ε∇ · u , q) = 0
(3.3)

• Galerkin formulation:

Consider finite element spaces Vh and Lh. Such that uh ∈ Vh, ph ∈ Lh
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{
(∂tuh, vh) + ν (∇uh,∇vh) + (∇ph, vh) = 〈f , vh〉

(∂tph, qh) + (ε∇ · uh, qh) = 0
(3.4)

If we define K,M ,Gs, respectively, the diffusion, mass, and gradient operator, we can

write the Galerkin formulation in matrix form.

[
M 0

0 MP

ε

][
U̇

Ṗ

]
+

[
K Gs

GT
s 0

][
U

p

]
=

[
f

0

]

Discretizing the time we get[
M
∆t

0

0 Mp

ε∆t

][
Un+1

pn+1

]
=

[
f

0

]
− (

[
K Gs

GT
s 0

]
−

[
M
∆t

0

0 Mp

ε∆t

]
)

[
Un

pn

]

3.2 Numerical example

-

ūx = 0, ūy = 0

ūx = 1, ūy = 0

ūx = 0, ūy = 0 ūx = 0, ūy = 0

Consider the following example, lid-driven square cavity. We use the Q2 Q1 element

here, which satisfies the stable test, our concern is only about the explicit treatment
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of the pressure.

Figure 3.1: (a) mesh for the velocity (b) mesh for the pressure

Five different artificial speeds are employed to solve the cavity flow problem and struc-

tured meshes are shown in Figure 3.1, both velocity and pressure.

Figure 3.2 show the convergence history for Stokes flow for different artificial sound

speed. The error is calculated from the following L2 norm

error =
1

NN

NN∑
i=1

|∇P | (3.5)
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Figure 3.2: ACM convergence history in different artificial sound speed

As seen in Figure 3.2, (csq is the square of the artificial sound speed) when a large

artificial sound speed is used, convergence reaches in very short time. We should

also notice that large speed require small time step, which limit the use of artifi-

cial compressibility method. Often the real compressibility parameter is very high

(approaches infinity) for many nearly incompressible flow problems and therefore em-

ploying real compressibility leads to severe time step restrictions on the fully explicit

form of solution procedure. It is evident from recent work that a locally varying ar-

tificial compressibility parameter with a strong relationship to local time step makes

the scheme efficient(Nithiarasu, 2003).





Chapter 4

Inf-Sup Condition and Pressure

Stabilization

In this chapter we discuss the Stokes Problem. The Stokes problem is a well-posed

problem by virtue of the so-called inf-sup condition, which ensures pressure stability.

But in the fully discrete level, not all the velocity-pressure pair of finite-dimensional

spaces satisfy the discrete inf-sup condition. In order to use the equal interpolation,

stabilization of the formulation should be used. From this motivation, we review the

typical stabilization and introduce the framework of variational multiscale method.

In the end, a simple lid-driven cavity flow problem is studied using the equal interpo-

lation.

4.1 The Stokes problem

4.1.1 Strong form

u t − ν∇2u +∇p = f in Ω× ]0, T [

∇ · u = 0 in Ω (4.1)

u = 0 on ∂Ω

27
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where:

f : Vector of body forces

ν: Kinematic viscosity

Ω: Computational domain

4.1.2 Weak form and LBB condition

(Ladyzhenskaya, 1968), (Babuska, 7071), (Brezzi, 1974) have determined the compati-

bility condition, known as the LBB(or Inf-sup) condition that continuous and discrete

spaces must satisfy to guarantee the stability of a mixed method. The LBB condition

states that velocity and pressure spaces cannot be chosen arbitrarily, a link between

them is necessary. (Donea, 2003) lists a number of velocity-pressure spaces which pass

the compatibility test shown in Fig. 4.1.

We introduce some notation, viscous term:

a(u , v) := ν(∇u ,∇v) ∀u , v ∈ V (4.2)

This is a bilinear continuous form on H1
0 (Ω) which is coercive with respect to‖.‖1.

The next form is used for the pressure gradient and the incompressibility constraint.

b(v , q) := −(q,∇ · v) ∀v ∈ V0,∀q ∈ L (4.3)

The variational form for the problem can be written in terms of bilinear forms which

is also continuous with respect to the norms ‖q‖0 and ‖v‖1.

Then, the weak form consist of finding u ∈ V0 and p ∈ L such that:
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a(u , v) + b(v , q) = (f, v) ∀u , v ∈ v (4.4)

b(u , q) = 0 ∀v ∈ V ∀q ∈ L (4.5)

The well-posedness of this problem relies on the coercivity of bilinear form and inf-sup

condition:

inf
q∈L

sup
v∈V0

b(v , q)
‖v‖V ‖q‖L

≥ β̄ > 0 (4.6)

The pair of finite element spaces for the velocity and pressure should also satisfy this

equation:

inf
qh∈Lh

sup
vh∈Vh

b(vh, qh)
‖vh‖Vh

‖qh‖Lh

≥ β̄ > 0 (4.7)

4.1.3 Stabilization technique

In recent years, the researchers are trying to use the velocity-pressure pairs which do

not pass the compatibility test.

The basic idea behind stabilization procedure is to enforce the positive definiteness of

matrix. This could be accomplished through a modification of the weak form of the

incompressibility condition in order to render non-zero the diagonal term resulting

from the incompressibility condition.
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Figure 4.1: Types of mixed elements in two dimensions

ν (∇uh,∇uh) + (∇ph,uh) = 〈f, vh〉

τ (∇ph,∇qh) + (∇ · uh, qh) = 0 (4.8)

τ =
h2

ν[
K G

GT −τKτ

][
u

p

]
=

[
f

0

]
(4.9)
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Note that the presence in the second equation of the term (∇ph,∇qh) introduces a

non-zero diagonal term. Then, we can use the backward euler and write the implicit

formulation with stabilization technique.

(∂tuh, vh) + ν (∇uh,∇vh) + (∇ph, vh) = 〈f, vh〉

τ (∇ph,∇qh) + (∇ · uh, qh) = 0 (4.10)

τ =
h2

ν[
M
∆t

+K G

GT τK

][
un+1

pn+1

]
=

[
f

0

]
−

[
−M

∆t
0

0 0

][
un

0

]
(4.11)

In order to use the explicit method, we apply the AC scheme which is discussed in

Chapter 3.

(∂tuh, vh) + ν (∇uh,∇vh) + (∇ph,uh) = 〈f, vh〉

ε (∂tph, qh) + τ (∇ph,∇qh) + (∇ · uh,∇qh) = 0 (4.12)

τ =
h2

ν[
M
∆t

0

0 εM
∆t

][
un+1

pn+1

]
=

[
f

0

]
−

[
K − M

∆t
G

GT τK

][
un

pn

]
(4.13)

4.2 Variational multiscale method

Analog to the Chapter 3, the variational multiscale method framework is applied to

stabilize the pressure filed. But the aim of VMS here is to use the equal interpolation

for velocity-pressure field, rather than stabilize the convection term.
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Algorithm 4.1 Explicit stabilization algorithm for the Stokes problem
1: read u0

h, p0
h and set ũ = 0

2: while Time integration do
3: Calculate the parameters τ
4: for Element do
5: velocity un and pressure pn at cell nodes
6: velocity gradient ∇un at cell nodes
7: velocity residual ν (∇un,∇vh) + (∇pn, vh)− (f, vh)
8: pressure residual (∇ · u , qh) + τ (∇pn,∇qh)
9: end for
10: update the velocity and pressure
11: prescribe boundary conditions
12: end while

4.2.1 Formulation

Using the same notations we introduced in Chapter 2 and Chapter 3. We consider

scale decomposition of spaces V and L. The muti-scale is applied to the weak form

of the Navier-Stokes equations.

V = Vh ⊕ Ṽ,L = Lh ⊕ L̃,uh ∈ Vh, ũ ∈ Ṽ, ph ∈ Lh, p̃ ∈ L̃

Split the velocity u and pressure p as

{
u = uh + ũ

p = ph + p̃
(4.14)

where uh and ph belong to the finite element spaces and ũ and p̃ are fine sub-scale

components.

The problem becomes{
(∂t (uh + ũ) , v) + ν (∇ (uh + ũ) ,∇v)− (ph + p̃,∇ · v) = 〈f, v〉

(∂t (ph + p̃) , q) + (ε∇ · (uh + ũh) , q) = 0
(4.15)
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First we consider vh ∈ Vh, qh ∈ Lh. The resolved large-scale problem becomes{
(∂t (uh + ũ) , vh) + ν (∇ (uh + ũ) ,∇vh)− (ph + p̃,∇ · vh)= 〈f, vh〉

(∂t (ph + p̃) , qh) + (ε∇ · (uh + ũh) , qh) = 0
(4.16)

As a result, we have the final large scales equation

{
(∂tuh, vh) + ν (∇uh,∇vh)− (ph,∇ · vh)− (p̃,∇ · vh) = 0

(∂tph, qh) + (ε∇ · uh, qh) = 0
(4.17)

4.2.2 Sub-scale problem statement

Then, we consider ṽ ∈ Ṽ, q̃ ∈ L̃. The unresolved sub-scale problem becomes

{
∂tũ − ν∆ũ +∇p̃ = ru,h

∂tp̃+ ε∇ · ũ = rp,h
(4.18)

{
ruh

= −P (∂tuh − ν∆uh +∇ph − f)

rp,h = −P (∂tph + ε∇ · uh)
(4.19)

where ru,h, rp,h is appropriate residual of the finite element components uh and ph

adequately projected onto the space of subscales Ṽ, L̃. As the concept we introduced

in chapter 2, we have Algebraic Subgrid-Scale formulation (ASGS) and Orthogonal

Subscales Stabilization (OSS).

4.2.3 Sub-scale approximation

We could solve the subscale analytically using the Fourier transform. In this chap-

ter we directly give the approximation solution as follows. The details for subscale
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approximation will be discussed in Chapter 5.{
ũn+1 = τt

∆t
ũn − τt [ru,h + τ2p̃n]

p̃n+1 = p̃n −∆t [rp,h − ετ2ũn]
(4.20)

where


τ1 = c1

ν
h

τ2 = c3
1
h

τt = 1
1

∆t
+τ1

Algorithm 4.2 Explicit VMS algorithm for the Stokes problem
1: read u0

h, p0
h and set ũ = 0

2: while Time integration do
3: Calculate the parameters τ
4: for Element do
5: velocity un and pressure pn at cell nodes
6: velocity gradient ∇un at cell nodes
7: velocity field with subgrid scale a = un + ũn

8: velocity residual ν (∇un,∇vh) + (∇pn, vh)− (f, vh)
9: pressure residual (∇ · a , qh)
10: first contribution to the velocity subscales τt

∆t
un − τt∇pn

11: projection of first velocity subscales ∇pn
12: end for
13: update the velocity and pressure
14: prescribe boundary conditions

projection contribution ũn+1

15: end while

4.3 Numerical example

This section presents the solution of a simple lid-driven cavity problem in two explicit

stabilized methods, a straightforward stabilized method and the OSS method with

dynamic subscales. The stationary Stokes problem has been solved using a mesh with

10× 10 Q1 elements, with equal linear velocity and pressure interpolation.



4.3 Numerical example 35

-

ūx = 0, ūy = 0

ūx = 1, ūy = 0

ūx = 0, ūy = 0 ūx = 0, ūy = 0

Here we show the Stokes flow in a cavity, stabilized method Algorithm 4.1 and OSS

Algorithm 4.2 are used. the results for both methods are the same and all the stable

velocity and pressure fields are obtained. Numerical results are shown in Fig.4.2.

The stabilized method, which could be understood as a static subscales approach, has

the same performance as the transient (dynamic) subscales in this case. However, for

the transient Navier-Stokes (NS) problem, it is worth to track the subscales in time

in a variational multiscale approach (Badia & Codina, 2008), which would be shown

in the chapter 5.
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Figure 4.2: Cavity flow for the Stokes problem



Chapter 5

Explicit Variational Multiscale

Method for Incompressible Flow

In this chapter presents the key part of this thesis, an explicit variational multiscale

method for incompressible flow, suitable for LES-type turbulence modeling. The tur-

bulent modeling is entirely based on the numerical scheme rather than large eddy

modeling, which is more fundamental and logically consistent.

This chapter is organized as follows. We first propose the explicit variational multi-

scales method for incompressible flow, then we explore the property of the discrete

formulation and compare with the incompressible Navier-Stokes equations. And we

show that the dynamic sub-grid model provides a direct numerical approach to mod-

eling the turbulence and relations with typical LES approaches. In the last, we talk

about the time-stepping concerning with stability issue.

5.1 Problem statement

The Newtonian incompressible turbulent flows is governed by Navier-Stokes equations.

Strong form(S): Assume domain u ⊂ Rd where d = 2 or 3,with boundary Γ = ∂Ω

37
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The initial/boundary-value problem is Find the velocity u and the pressure p

∂tu − ν∇2u + u · ∇u +∇p = f in Ω, t ∈]0, T [

∇ · u = 0 in Ω, t ∈]0, T [ (5.1)

u = 0

u(t = 0) = 0

As the notations we introduced in the previous chapter, Let V ≡ H1(Ω),V0 ≡ H1
0 (Ω)

and L ≡ L2(Ω)/R denote the real Hilbert spaces for velocity and pressure, with asso-

ciated norms ‖v‖v and ‖q‖L, and let f ∈ V−1.

The starting point is to apply the artificial compressibility (AC) method, we get the

perturbed version of the NS equations.

∂tu − ν∇2u + u · ∇u +∇p = f in Ω, t ∈]0, T [

∂tp+ ε∇ · u = 0 in Ω, t ∈]0, T [ (5.2)

u = 0

u(t = 0) = 0

5.2 Variational multiscale formulation

Here we recall the concept of variational multiscale(VMS) method. It splits the so-

lution u , p, on a coase-scale component uh, ph, which can be resolved by the finite

element mesh, and a subscale component ũ and p̃ , which attempt to determine ana-

lytically.
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Consider scale decomposition of spaces V and L. Vh and Lh are the finite element

spaces to approximate the velocity and pressure. The multiscale is applied to the

weak form of the Navier-Stokes equations.

V = Vh ⊕ Ṽ,L = Lh ⊕ L̃,uh ∈ Vh, ũ ∈ Ṽ, ph ∈ Lh, p̃ ∈ L̃

Split the velocity u and pressure p as

{
u = uh + ũ

p = ph + p̃
(5.3)

where uh and ph belong to the finite element spaces and ũ and p̃ are sub-grid scales

or the subscales. We can identify the finite element components of the solution as the

resolved scales, whereas the subscales are the unresolved scales.

The problem becomes
(∂t (uh + ũ) , v) + ν (∇ (uh + ũ) ,∇v) + 〈(uh + ũh) · ∇ (uh + ũh) , v〉

− (ph + p̃,∇ · v) = 〈f, v〉
(∂t (ph + p̃) , q) + (ε∇ · (uh + ũh) , q) = 0

(5.4)

First we consider vh ∈ Vh, qh ∈ Lh. The resolved large-scale problem becomes
(∂t (uh + ũ) , vh) + ν (∇ (uh + ũ) ,∇vh) + 〈(uh + ũh) · ∇ (uh + ũh) , vh〉

− (ph + p̃,∇ · vh) = 〈f, vh〉
(∂t (ph + p̃) , qh) + (ε∇ · (uh + ũh) , qh) = 0

(5.5)

• Remark 1:

(∂t (uh + ũ) , vh) = (∂tuh, vh) (5.6)
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The term (∂tũ , vh)vanish because the sub-scales are assumed to be orthogonal to the

finite element space.

• Remark 2:

ν (∇ (uh + ũ) ,∇vh)

= ν (∇uh,∇vh) + ν

[∑
K

(−ũ ,∆vh)K + 〈ũh, n · ∇vh〉∂K

]
(5.7)

= ν (∇uh,∇vh)

The (−ũ ,∆vh)K vanish because linear element is used. 〈ũ , n · ∇vh〉∂K vanish because

velocity subscales vanishing on the boundary like bubble functions.

• Remark 3:

〈(uh + ũ) · ∇ (uh + ũ) , vh〉

= 〈(uh + ũ) · ∇uh, vh〉+

∫
(u + ũ)i ∂iũ jv j

=

∫
∂iũ j ((uh + ũ)i v j)

=

∫
∂i (ũ j (uh + ũ)i v j)−

∫
ũ j∂i (uh + ũ)i v j

=

∫
∂Ω

ni (ũ j (uh + ũ)i u j)−
∫

ũ j∂i (uh + ũ)i v j (5.8)

= −
∫

ũ j [∂i (uh + ũ)i] v j −
∫

ũ j (uh + ũ)i ∂iv j

= 〈(uh + ũ) · ∇uh, vh〉 − 〈ũ , ((uh + ũ)) · ∇vh〉

• Remark 4:

(∂t (ph + p̃) , qh) = (∂tph, qh) (5.9)
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In the last, we have the equation


(∂tuh, vh) + 〈a · ∇uh, vh〉+ ν (∇uh,∇vh)− (ph,∇ · vh)− (p̃,∇ · vh)

−〈ũ ,a · ∇vh〉 = 0

a = uh + ũ

(∂tph, qh) + (ε∇ · a , qh) = 0

(5.10)

5.3 Main feature of the formulation

Let us analyze the implications of the formulation and write the first equation in

another form:

(∂tuh, vh) + 〈a · ∇uh, vh〉+ ν (∇uh,∇vh)− (ph,∇ · vh)− (p̃,∇ · vh)− 〈ũ ,a · ∇vh〉

= (∂tuh, vh) + ν (∇uh,∇vh) + 〈uh · ∇uh, v〉

− (ph,∇ · vh)− 〈vh, f〉 Galerkin terms

+ 〈ũ ,uh · ∇vh〉 Stabilization terms

+ 〈ũ · ∇uh, vh〉 − 〈ũ , ũ · ∇vh〉 Effect of ũ in material derivative

(5.11)

The stabilization terms appear also in the stationary and linear problem, which are

use to stabilized the convection-dominated flows and make equal velocity and pressure

interpolation possible, as we seen in Chapter 2 and Chapter 4.
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5.4 Local sub-scale problem and its approximation

In this section, we discuss the sub-scale formulation and then give the analytical

approximation solution by Fourier transform. In the last, the orthogonal subscales in

the Explicit VMS method is given.

5.4.1 Sub-scale problem statement{
∂tũ + (uh + ũ) · ∇ũ − ν∆ũ +∇p̃ = ru,h

∂tp̃+ ε∇ · ũ = rp,h
(5.12)

{
ruh

= −P (∂tuh + (uh + ũ) · ∇uh − ν∆uh +∇ph − f)

rp,h = −P (∂tph + ε∇ · uh)

where ru,h and rp,h are appropriate residual of the finite element components. As the

concept we introduced in chapter 2 and chapter 4, we have Algebraic Subgrid-Scale

formulation (ASGS) and Orthogonal Subscales Stabilization (OSS).

5.4.2 Sub-scale approximation

(Codina, 2002) analysis of the problem for the sub-scales. Consider the Fourier trans-

form of a generic function g defined on K :

ĝ(k) :=

∫
K

e−
k·x
h g(x )dΩ (5.13)

where i =
√
−1,h is now the diameter of element K and k = (k1, ..., kd) is the

dimensionless wave number.

The subscales ũ are the continuous solution which do not belong to the finite element

spaces. This means the Fourier representation will be dominated by the components

with high wave numbers. If nj is the jth component of normal exterior to K , it can
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be known that
∂ĝ
∂xj

(k) =

∫
∂K

nje−i
k·x
h g (x ) dΓx + i

k j
h

(̂k) (5.14)

From this expression it is seen that if we are interested in high wave numbers, the

second term in the right -hand side of this expression dominates the first one, Thus,

for functions with high wave numbers we may approximate

∂ĝ
∂x j

(k) ≈
∫
∂k
i
k j
h

ĝ(k) (5.15)

Applying them to the subscale problem

{
∂tû(k) + (ν |k |

2

h2 + ia ·k
h

)û(k) + ik
h
p̂(k) = ru,h

∂tp̂(k) + iεk
h
û(k) = rp,h

(5.16)

Here we get an ordinary partial differential equation, then discretize

{
ũn+1 = τt

∆t
ũn − τt [ru,h + τ2p̃n]

p̃n+1 = p̃n −∆t [rp,h − ετ2ũn]
(5.17)

where


τ1 = c1

ν
h

+ c2
|uh+ũ|
h

τ2 = c3
1
h

τt = 1
1

∆t
+τ1

5.4.3 Orthogonal subscales

(Codina, 2002) first introduced the concept ’orthogonal subscales’. Here we apply the

concept to the Explicit VMS subscales.

∏ ⊥
h (∂tuh + (uh + ũ) · ∇uh − ν∆uh +∇ph − f)

= (∂tuh + (uh + ũ) · ∇uh − ν∆uh +∇ph − f)

−
∏

h (∂tuh + (uh + ũ) · ∇uh − ν∆uh +∇ph − f)

= (uh + ũ) · ∇uh +∇ph −
∏

h ((uh + ũ) · ∇uh +∇ph)

(5.18)
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∏ ⊥
h (∂tph + ε∇ · uh)

= (∂tph + ε∇ · uh)−
∏

h (∂tph + ε∇ · uh)

= ε∇ · uh −
∏

hε∇ · uh

(5.19)

The subscales could also be approximated by Algebraic Subgrid-Scale formulation

(ASGS). Here the Orthogonal Subscales Stabilization (OSS) is used and substitute

the subscales to large scales, we have the Algorithm 5.1.

Algorithm 5.1 Explicit VMS algorithm for incompressible turbulent flow
1: read u0

h, p0
h and set ũ = 0

2: while Time integration do
3: Calculate the parameters τ
4: for Element do
5: velocity un and pressure pn at cell nodes
6: velocity gradient ∇un at cell nodes
7: velocity with subgrid scale a = un + ũn

8: velocity residual (a · ∇un, vh) + ν (∇un,∇vh) + (∇pn, vh)− (ũn,a · ∇vh)−
(f, vh)

9: pressure residual (∇ · a , qh)
10: first contribution to the velocity subscales τt

∆t
un − τt (a · ∇un +∇pn)

11: projection of first velocity subscales (a · ∇un +∇pn)
12: end for
13: update the velocity and pressure
14: prescribe boundary conditions

projection contribution ũn+1

15: end while

5.5 A door to turbulence

(Codina et al., 2007) and (Badia & Codina, 2009) state the relation between VMS

method and LES model. The LES model often adds a divergence of the “residual

stress tensor or subgrid-scale tensor ”

R := u ⊗ u − ū ⊗ ū
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The residual stress tensor, R is often decomposed into Reynolds stress, Cross stress

and Leonard stress.

−〈ũ , ũ · ∇vh〉 = −〈ũ ⊗ ũ ,∇vh〉 Reynolds stress.

〈uh · ∇uh, vh〉 − 〈ũ ,uh · ∇vh〉+ 〈ũ · ∇vh〉
= −〈uh ⊗ uh,∇vh〉 Convection part

−〈uh ⊗ ũ + ũ ⊗ uh,∇vh〉 Cross stress

The convective term of the residual in the subscale equation and take P = I, we have

〈(uh + ũ) · ∇uh, ṽ〉 = −〈uh ⊗ uh,∇ṽ〉 Leonard stress

−〈uh ⊗ ũ ,∇ṽ〉

The divergence of R in the LES equation is automatically included in the variational

multiscale method. The formulation depends on the validity of the approximation

made to derive the evolution for the subscales, In order to check the performance,

some benchmark problems for turbulent flows are tested in the next chapter. The

model should be able to reproduce the Kolmogorov energy cascade in the wavenumber

Fourier space that displays an inertial range, where E(k, t) = Ckε
2/3k−5/3(ε being the

energy dissipation rate, k the wave-space and E the kinetic energy).

5.6 Time stepping

As mentioned in Chapter 3, the compressible wave speed for many problem of fluid

dynamics is very large and the solution scheme becomes stiff and imposes severe time

step restrictions. However, it can be replaced by an appropriate artificial sound speed

β.

β =
umax
Mach

(5.20)
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where Mach is artificial Mach number always less than 1.

From the explicit method stability consideration, the Courant number calculated from

artificial sound speed β should less than 1.

Co =
h

β∆t
< 1 (5.21)

where h is the element size

Then we can chose the step ∆t by

∆t = α
h

β
(5.22)

where α is the safe factor.



Chapter 6

Numerical Examples

The following numerical examples are intended to show the performance of explicit

variational multiscale method introduced in this thesis. Two dimensional cases (the

lid-driven cavity flow, plane mixed layer and decaying of the 2D isotropic turbulence)

and three dimensional cases (lid-driven cavity flow and decaying of the 3D isotropic

turbulence) are studied.

6.1 Lid-driven cavity in 2D (low Reynolds flows)

The first problem considered here is the well-known benchmark case of lid-driven

square cavity. The flow is driven by the uniform motion of one side of a box. Four

cases in a wide range of Reynolds numbers, Re = 100, Re = 1000, Re = 5000 and

Re = 10000 are employed to test the lid-driven cavity flow problem. Here the ’low

Reynolds flows’ means the flow would reach to steady state in these Reynolds numbers.

6.1.1 Convergence test

Figure 6.1 shows the convergence histories in different Reynolds numbers.

The error is calculated from the following L2 norm

47
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Figure 6.1: Convergence history for a 100× 100 uniform mesh of quadrilaterals.

Error =
1

NN

NN∑
i=1

[
1

β2

(
pn+1 − pn

∆t

)]2

(6.1)

where NN is the total number of nodes.

The convergence rate decreases when the Reynolds number goes up. The solution

convergence histories are excellent even for Reynolds number 10000 in a 100 × 100

mesh. However, for Re=100000, the error first oscillates then blows up in the 100×100

grid.
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6.1.2 Numerical result

100 × 100 bilinear quadrilateral element mesh and OSS method is applied to solve

this problem. Fig.6.4, Fig.6.5, Fig.6.6, Fig.6.7 compare the velocity, pressure, veloc-

ity x-component and velocity y-component in different Reynolds number Re = 100,

Re = 100, Re = 100 and Re = 10000. The data obtained by Ghia et al. (1982),

which become a standard reference, are compared with the result from VMS method.
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(c) Re=5000
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(d) Re=10000

Figure 6.2: Flow in a lid-driven cavity. Comparison with Ghia et al. of uy velocity
distribution along the vertical line.

In the Fig.6.2 and Fig.6.3 the velocity distributions at various Reynolds numbers are

compared with the benchmark solution by Ghia et al.(1982). The horizontal velocity

ux components along the mid-vertical line are compared in Fig.6.2 and the vertical
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(b) Re=1000
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(c) Re=5000
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(d) Re=10000

Figure 6.3: Flow in a lid-driven cavity. Comparison with Ghia et al. of ux velocity
distribution along the vertical line.

velocity uy components along the mid-height line are compared in Fig 6.2.

At lower Reynolds numbers the comparison is excellent. However, at Re = 5000 and

Re = 10000 small deviations close to peaks are noticed. This is mainly due to the

coarseness of the mesh. Because the structured mesh is used, we need more elements

to get a better solution especially finer mesh near the boundary.
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(a) Re=100 (b) Re=100

(c) Re=1000 (d) Re=1000

(e) Re=5000 (f) Re=5000

(g) Re=10000 (h) Re=10000

Figure 6.4: Laminar cavity velocity at different Reynolds number
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(a) Re=100 (b) Re=100

(c) Re=1000 (d) Re=1000

(e) Re=5000 (f) Re=5000

(g) Re=10000 (h) Re=10000

Figure 6.5: Laminar cavity pressure at different Reynolds number
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(a) Re=100 (b) Re=100

(c) Re=1000 (d) Re=1000

(e) Re=5000 (f) Re=5000

(g) Re=10000 (h) Re=10000

Figure 6.6: Laminar cavity velocity x-componet at different Reynolds number
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(a) Re=100 (b) Re=100

(c) Re=1000 (d) Re=1000

(e) Re=5000 (f) Re=5000

(g) Re=10000 (h) Re=10000

Figure 6.7: Laminar cavity velocity y-componet at different Reynolds number



6.2 Lid-driven cavity in 2D (high Reynolds flows) 55

6.2 Lid-driven cavity in 2D (high Reynolds flows)

This numerical experiment gives transient solutions of the 2D lid-driven cavity flow

at Reynolds number Re = 100000. Similar to the first example, bilinear quadrilateral

element and OSS are used, but a larger Reynolds number is chosen. In order to avoid

the instability, 512× 512 bilinear quadrilateral element is applied.

The aim of this numerical experiment is not to give benchmark result but to study

the qualitative behavior of the solution. Unlike the previous case, the 2D lid-driven

cavity flow in Re = 100000 would not leads to steady state.

Fig. 6.8 shows the velocity and pressure contour view at t = 50s. A varying number

of vortices could be noticed inside the cavity.

(a) velocity contour view (b) pressure contour view

Figure 6.8: Velocity and pressure contour view at Re=100000 in t = 1s

Figure 6.9 shows the evolution of velocity at Re=100000 in each time step.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.9: Evolution of cavity flow at Re=100000
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6.3 Lid-driven cavity in 3D

Under the explicit VMS method, the extension of the scheme to three dimensions is

straightforward. This section presents results of three-dimensional driven cavity flow

simulations for Reynolds number of Re = 100 and Re = 1000. This is an interesting

flow, with a complex behavior in a simple geometry. The structured mesh is employed

to calculate this problem.

6.3.1 Problem statement

Fig 6.3.1 shows the cubical cavity. The flow motion is induced by the top lid that

moves in the x-direction with a constant unit velocity U0 = 1.

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

U0 = 1
-

6.3.2 Numerical result

The simulation results of the lid-driven cavity flow in 3D for Reynolds number Re =

100 and Re = 1000 are shown. Fig. 6.10 and Fig. 6.11 show velocity isosurfaces at

V = 0.1 and the velocity streamlines. The post-processing is performed in Gid for

convenience.
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Figure 6.10: Vorticity isosurfaces at V = 0.1 and velocity streamlines in 1003 mesh at
Re = 100 in 3D cavity flow

Figure 6.11: Vorticity isosurfaces at V = 0.1 and velocity streamlines in 1003 mesh at
Re = 1000 in 3D cavity flow
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6.4 Plane mixing layer in 2D

Mixing layers are encountered in aerodynamics, in the atmosphere or the ocean. It is

a flow developing far away from boundaries, and the influence of boundaries is elim-

inated in this example. This 2D case would not lead to what is usually perceived as

’turbulence’, but it shows some features of the flow considering it to be ’turbulent in

a certain sense’ (Gravemeier, 2003).

For example, the flow is extremely sensitive to the initial condition. It would be

completely unpredictable in an infinite domain. Besides, the flow shows the typical

turbulent eddy evolution.

6.4.1 Problem description

The domain is defined to be Ω = [0, 1]× [0, 1], see Fig 6.4.1, with periodic boundary

condition at the boundaries x1 = 0 and as well as x1 = 1

-

�

ux = −1, uy = 0

ux = 1, uy = 0

per.b.c per.b.c
initial thickness δ

?

A initial velocity field is given by a hyperbolic tangent profile

ux = umax tanh(
2y − 1

δ0

) (6.2)
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where δ0 denotes the initial vortex thickness.

Boersma el al(1997) chose δ0 to be 1/28. The small perturbation in the initial condi-

tion is expected to be amplified by Kelvin-Helmholtz instabilities during the evolution

of the flow. The velocity component uy is chosen by

uy = unoise sin(8πx) (6.3)

This problem has been investigated experimentally, for instance, in Brown and Roshko

(1974) as well as Winant and Browand (1974). Numerically, it has been analyzed in a

quasi-DNS in finite difference method by Lesieur (1988). The corresponding Implicit

VMS method for this case is studied by (Volk., 2006).

6.4.2 Numerical result

In the described case, Reynolds number is taken to be Re = 10000, basic discretiza-

tion with 240×240 mesh, bilinear quadrilateral elements of uniform length have been

chosen and OSS method is applied. The physical evolution of the flow wil be explained

with the help of Fig. 6.12. This figure illustrates the evolution of the eddy paring and

four different stages of this flow could be easily distinguished:

• Development of four primary eddies

• First pairing

• Second pairing

• Rotation of the final vortex
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(a) (b)

(c) (d)

(e) (f)

Figure 6.12: Eddy pairing
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6.5 Decaying of isotropic turbulence in 2D

Two dimensional turbulence is very important in some area of physics and useful to

test ideas and theories regarding some aspects of three-dimensional turbulence. How-

ever, there is an essential difference between two-dimensional and three dimensional

turbulence: the lack of vortex stretching in the former. A broadband energy spectrum

E(k) of slope between K−4 and K−3 is developed.

6.5.1 Problem description

The domain of the problem is defined to be Ω = [0, 1]× [0, 1], with periodic boundary

condition on ∂Ω The initial velocity is given

u = [cos(16πx), 0] (6.4)

The 2D mesh and initial field are shown in Fig. 6.13

(a) Mesh 240× 240 (b) Initial velocity

Figure 6.13: The 240×240 mesh and Initial velocity field for the decaying of isotropic
turbulence in 2D

6.5.2 Numerical result and spectra energy analysis

Figure 6.14 shows the evolution of isotropic 2D turbulence. At time t = 40s, the

turbulence is fully developed.
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(a) t=40 (b) t=60

(c) t=100 (d) t=150

(e) t=250 (f) t=500

Figure 6.14: Vorticity modulus field at different time steps. 240× 240 mesh and the
OSS finite element method
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(a) t=40 (b) t=60

(c) t=100 (d) t=150

(e) t=250 (f) t=500

Figure 6.15: Vorticity surfaces at different time steps. These results are those of Fig
6.14 but showing elevation surfaces.
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Figure 6.16: Energy spectra E(kx, ky) at different time steps. a) Initial condition t =
0 s, b) t = 40 s.

In Fig. 6.16(a) we plot the energy spectrum E(Kx, Ky) for the initial condition(t = 0

s). Obviously only the wavenumber (Kx, Ky) has a non-null value. In Fig. 6.16(b) we

have plotted E(Kx, Ky) for (t = 40s), which corresponds to the velocity field whose

vorticity has been plotted in fig 6.14. As seen, almost all wavenumber have been

excited by this time.
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Figure 6.17: Energy spectra E (k) for various time steps. 240 × 240 mesh using the
OSS finite element method.

The spectrum of turbulent velocity fluctuations shows how the turbulent energy is

distributed over various scales, with their size being the inverse of the wave number

k. In Fig 6.17 we plot the energy spectrum E(k) for different time steps together with

the k−3 and k−4 slopes. The result of this figure have been obtained using the OSS

finite element method with a mesh of 240× 240 elements.
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6.6 Decaying of isotropic turbulence in 3D

Turbulence in an incompressible fluid obeying the NS equation under periodic bound-

ary conditions may be regarded as one of the simplest systems that retains the

essence of the three-dimensional turbulence dynamics. In this section, the decay-

ing of isotropic turbulence in 3D is studied. Energy spectrum in the middle line is

given to approximate the well-known −5/3 slope.

6.6.1 Problem description

The domain of the problem is defined to be Ω = [0, 1] × [0, 1] × [0, 1], with periodic

boundary condition on ∂Ω. The initial velocity is given by

u = [cos(16πx), 0, 0] (6.5)

The 3D mesh and initial field are shown in Fig. 6.18

(a) Mesh 1003 (b) Initial velocity

Figure 6.18: The 3D mesh and Initial velocity field for the decaying of isotropic
turbulence
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6.6.2 Numerical result and spectra energy analysis

The energy spectra distribution at the center line of the cubic are shown in Fig. 6.19.

It is observed that the −5/3 slope is well approximated without using any LES model.

The result have been obtained using the OSS finite element method with a mesh of

1003 elements.

100 101
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energy
K= 5/3

Figure 6.19: The energy spectrum for the decaying of isotropic turbulence in 3D
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Fig. 6.20 shows snapshot of vorticity isosurfaces and velocity streamlines computed

on 1003 mesh. The visualizations are performed using MATLAB.

Figure 6.20: Vorticity isosurfaces, velocity streamlines, and vorticity contours plotted
on the entire computational domain.
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Appendix A

Code implementation

Here I list some important equations which are used in code implementations in 2D.

∇Na
ig is defined on the gauss point ig and node a.

∇N1
1 =

(
−1

−1

)
,∇N1

2 =

(
−1

0

)
,∇N1

3 =

(
0

0

)
,∇N1

4 =

(
0

−1

)

∇N2
1 =

(
1

0

)
,∇N2

2 =

(
1

−1

)
,∇N2

3 =

(
0

−1

)
,∇N2

4 =

(
0

0

)

∇N3
1 =

(
0

0

)
,∇N3

2 =

(
0

1

)
,∇N3

3 =

(
1

1

)
,∇N3

4 =

(
1

0

)

∇N4
1 =

(
0

1

)
,∇N4

2 =

(
0

0

)
,∇N4

3 =

(
−1

0

)
,∇N4

4 =

(
−1

1

)

For the linear square element, we have the relation:

73



74 Code implementation

u u

u u

Node 1 (1,1) Node 2 (1,2)

Node 3 (2,2)Node 4 (2,1)

4∑
ig=1

∂jN
a
ig = ∂jN

a
a + ∂jN

a
tw(a,j)

4∑
a=1

∂jN
a
ig = ∂jN

ig
ig + ∂jN

tw(ig,j)
ig

∂jN
a
tw(a,j) = ∂jN

a
a

∂jN
tw(ig,j)
ig = −∂jN tw(ig,ig)

ig

∇uh

=
4∑

a=1

∂jN
a
igu

a,i

= ∂jN
ig
ig u

ig,i + ∂jN
tw(ig,j)
ig uw(ig,j),i

= ∂jN
ig
ig (uig,i − uw(ig,j),i)

(∇uh,∇vh)
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ig=1

2∑
j=1

(∂juh)
i
ig∂jN

a
ig |J |wig

=
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j=1
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(∂juh)a∇Na

a + (∂juh)
i
tw(a,j)∂jN

a
tw(a,j)

]
|J |wa
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∂jN
a
a
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(∂juh)

i
ig + (∂juh)

i
tw(a,j)

]
|J |wa
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(
∇Tuh,∇vh
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ig∂jN

a
ig |J |wig
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j
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a · ∇uh
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a
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(∇ph,∇qh)

=
2∑
j=1

4∑
ig=1

(∇ph)ig,j ∂jNa
ig |J |wig

=
2∑
j=1

4∑
ig=1

∂jN
a
a

(
(∇ph)ig,j + (∇ph)tw(ig,j),j

)
|J |wa



Appendix B

A brief survey of computational tools
used

B.1 Matlab code

In chapter 3, the implicit Matlab (Matrix form) code is originated from Dr. Esther

Sala Lardies and is modified to test the AC scheme.

In chapter 2,4, the vector form explicit code is written in MATLAB.

B.2 Fortran code

Considering the computing efficiency, the algorithm introduced in Chapter 5 is based

on the programming language FORTRAN and generated the result for chapter 6.

B.3 Postprocessing

The most important aspect of the postprocessing stage consists in the visual presen-

tation of the achieved data. For this purpose, the fortran generated result file are

readable by MATLAB and Gid.
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