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Presentation of the Thesis

In this thesis, starting from the foundations of the Theory of Classical Finite

Elements Method, the basic principles of Extended Finite Elements Method (X-

FEM) are explained. Why X-FEM takes place in many applications in industry

is also emphasized. Although X-FEM has many various applications in different

disciplines of engineering, the main focus is on the numerical solutions of the two–

phase flows using the method. Level Set Method (sometimes it is abbreviated as

LSM) is also preferred for the tracking of the interphase position because of its easy

implementation, efficiency and reliability.

After presenting the introduction and the problem definition, the Theory of

Finite Elements Method is explained just before the explanation of Extended Finite

Elements Method so that the difference between two methods can be noticed more

easily. The advantages and disadvantages of both methods are also emphasized.The

basic idea of X-FEM is to track the location of interface using a level set function

and enrich the Finite Elements Method interpolation space in order to reproduce

discontinuities. The elements that are cut by the interface (enriched elements) are

divided into smaller cells with the aim of calculating the integral contributions

coming from the enriched elements to the global system of linear system of equations

accurately.

Lastly, an additional method for obtaining the accurate numerical solution in

the vicinity of interface of multiphase flows is given. A MATLAB code that is able

to solve the governing physical equations using the mentioned additional technique

to get a better solution for the two–phase problems is also developed and submitted

with the thesis. The code is written for getting the solution of a two dimensional

cell growth test problem however application of the technique is straightforward for

a three dimensional case. After presenting the results of the code applied to a test

case a comprehensive appendix chapter is also provided with the aim of explaining

the basics related to Finite Elements Method and a list of publications related to

Extended Finite Elements Method is also given in the same part to give the reader

a further insight related to the field.
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Chapter 1

INTRODUCTION AND

MOTIVATION

1.1 X-FEM And Improvement Of The Method

For Two–Phase Flows

Numerical methods are extremely important for design and development

of engineering systems since when used appropriately they provide very good

approximations of the solutions of engineering problems. Among these methods,

Extended Finite Elements Method is a versatile numerical tool for modelling

singularities and discontinuities in many engineering problems in mainly Oil and

Gas, Mining, Aviation, Transportation and Biomechanics Industries. In this thesis a

method which is an improvement of Extended Finite Elements Method is suggested

and applied on setup of cell growth problems.

It is useful to emphasize that the applications of Extended Finite Elements

Method in biomechanics industry are not only limited to cell growth or tumour

growth problems only. For example, the term neuronavigation means the comput-

erized tools that are used by the neurosurgeons within the confines of the skull

or vertebral column during surgery and in Vigneron et al. (2011) it is stated that

today’s neuronavigation systems can not adapt to changing intraoperative condi-

tions over time and Extended Finite Elements Method can be used to update the

preoperative brain images taken using intraoperative MRI and the article, using

Extended Finite Elements Method, presents a system that is capable of updating
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3D preoperative images in the presence of brain shift and successive resections. In

the model described in Vigneron et al. (2011) use of X-FEM instead of FEM for

modeling discontinuities makes it possible to build the biomechanical model offline

before the operation starts and does not need to be remeshed during the surgery.

However, in this work we will address the application of X-FEM in biomechanics

industry. This includes developing an X-FEM code and applying it on a cell growth

problem experiment setup in which the main aim is to let tissues or organs to be

grown from implantation and by this way it is aimed to eliminate the immunological

rejection. This process is carried out in a very well controlled sterile environment

(bioreactors) so that cellular biochemical and physical activity can also be enhanced

by observing and controlling the conditions in bioreactors. At this point, it is useful

to emphasize that the cell grows in very complex geometries that is difficult to mesh,

Extended Finite Elements Method can be used to easily overcome this difficulty. The

main factors that affect the cell growth and should be modelled in the process can

be listed as :

• Mechanical loading of the cell culture (distribution of shear stress along the

surface and the pressure distribution along the surface of the cell culture).

• Oxygen, nitrogen and glucose distribution around the cell culture

• Distribution of other chemicals around the cell culture

• Ph in the environment

• Nutrient distribution in the environment

• Temperature of the environment

In this work we are going to address the one of the most important factors in

cell growth experiments. That is the stress distribution along the interface. The

same factors are also important in tumour growth problems. For this reason, the

mentioned factors need to be closely monitored and controlled by the scientists.

Finite Elements Method has got some problems regarding the modelling of the

critical regions in the problems where singularities or discontinuities take place.

For example, in the interface of the numerical models where the cell culture

and the fluid flowing around the cell culture is modelled as two different fluids,
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handling the discontinuities due to material property changes in multiphase elements

becomes possible using Extended Finite Elements Method. Although, enriching the

approximation spaces used in the problem using Extended Finite Elements Method

makes it possible to capture the discontinuities, it does not necessarily mean that

the solution in the critical regions of the domain will satisfy the physical laws.

In this work, to satisfy the continuity of the stresses in two–phase flow problems

the continuity of the stress along the interface is imposed as an extra condition to

be satisfied in the numerical solution so that the quality of the results obtained

in the vicinity of the interphase in a two–phase flow increases not only due to the

enrichment of the approximation spaces used by Extended Finite Elements Method

but also the quality also increases due to the extra imposed continuity of stress.

3 HAYRULLAH KERİM BOZKUŞ





Chapter 2

STATE OF THE ART

2.1 Introduction And History Of X-FEM

Classical Finite Elements Method (or know as Finite Element Analysis) is a very

useful numerical tool for finding numerical solutions of engineering problems and it

has been used for a long time for the solution of partial differential equations and

integral equations. Finite Elements Method is a good choice for design purposes in

engineering since most of the real life phenomena can be expressed with differential

equations and analytical solution to these equations can not be calculated except

for very few simple cases.

In spite of the usefulness of Finite Elements Method (FEM) there are a number of

cases where the classical FEM method imposes restrictions which makes it difficult

to get a good solution to the problem. These kind of problems usually include interior

boundaries, discontinuities or singularities.

Extended Finite Elements Method is a brand new numerical method that was

developed by Ted Belytschko, Nicolas Möes and John Dolbow in 1999. (Möes et al.

(1999)) The method is an active field of research and quite open to improvements.

Also, there exists only a few commercial implementations of the method. Since

its invention, Extended Finite Elements Method has been used mainly in solid

mechanics for modelling strong and weak discontinuities, cracks and singularities

in the problems. (Sukumar et al. (2000); Xiao and Karihaloo (2007); Wyart et al.

(2007); Unger et al. (2007)) But the applications of it in other areas such as

multiphase flows (Sussman and Fatemi (1999); Groß and Reusken (2007); Fries
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(2009)), solidification problems also exist. In the early attempts, involved use of

polynomials as test functions, they needed attention towards mesh refinement for

getting reasonable results. The method has been widely developed. (Belytschko et al.

(2003); Dolbow et al. (2005); Zlotnik and Diez (2009); Cottereau et al. (2010))

X-FEM is very useful if complex geometries are involved in the problems. To

obtain reasonably good approximations using Classical Finite Elements Method, the

edges of the elements that are used in the mesh have to coincide with geometrical

features such as the boundary of the structure, material interfaces and cracks. In

addition to this, the meshes must be very fine in the neighbourhood of discontinuities

to be able to capture the high gradient values appearing in the applications. It

is possible to use the automated meshing algorithms to satisfy this geometric

conditions however there is no guarantee that these algorithms can generate the

mesh with desired properties. The more geometry in the problem becomes more

complex, the possibility of the automated meshing algorithms used to fail increases.

In classical Finite Elements Method for moving interface problems the condition

that mesh has to conform the interface becomes very costly. This is a very big

problem for simulating phenomenon like melting of materials, oceanography and

flame propagation. By introducing X-FEM in the solution, the enrichment functions

can be chosen to represent the geometrical features mentioned above without the

necessity of remeshing. In X-FEM interpolation is enriched in order to be able to

capture singularities, discontinuities in the solution. Even very simple meshes that

are independent of the geometry may be used in combination with the X-FEM

to get reasonable good results to the engineering problems in consideration. This

is the main idea of X-FEM. In cases where Classical Finite Elements or Finite

Volumes methods fail X-FEM is a useful tool for finding the reasonable approximate

solution to the problem by using the partition of the unity concept. In this thesis,

X-FEM is used to find solution to two–phase flows which appear in many fields of

mechanics and physics. X-FEM not only improves the global solution obtained by

Finite Elements Method but also it can capture the discontinuous gradients of the

solution across the interface which leads getting a better solution along the interface.

In most of the cases, the change in the shape of the interface is dependant on the

fluxes and stress around the interface. (Knapen et al. (2007))

The contribution of this thesis is proposing a new method for improving the
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solution obtained by Extended Finite Elements Method in the vicinity of the

interface of two–phase flows by enforcing continuity of stress along the interface

while using a structured mesh and an Eulerian framework in the context of X-FEM.

The results to the cell growth test problem are given in chapter 6.

2.2 Information About Discontinuity And Singu-

larity Concepts

As it is mentioned in the previous section, one of the main difficulty when trying

to calculate a numerical result is the discontinuities in the domain. By the term

discontinuity, it is meant that there exists a rapid change of the field quantity over

a length which is small enough compared to the dimensions of the problem. Some

examples to these discontinuity can be stated as a list at this point:

• Boundary layers

• Shocks

• Pressure and velocity fields at the interface in a multiphase fluid flow problems

• Stresses and strains in solid interfaces

• Contact stresses at joints

• Other discontinuities due to the materials used in the system

It is also important to note that in literature the limit of the ratio of the length

on which the rapid changes occur to the ratio of the problem dimensions can be

considered as different in different sources.

In engineering problems there are mainly two types of discontinuities:

1. Strong Discontinuities: It means that the variable has a jump itself

2. Weak Discontinuities: It means that the gradient of the variable has a jump.

The examples of strong and weak discontinuities are plotted in Figure 2.1. In this

figure the first variable has a rapid change at the unity length and this is named as

a strong discontinuity. Only the slope of the second variable changes along the same

7 HAYRULLAH KERİM BOZKUŞ
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Figure 2.1: Changes of Two Different Variables Over The Same Length

length and for this reason this kind of discontinuity is named as a weak discontinuity.

Lastly, in mathematics singularities are defined as points where a mathematical

object is not defined or does not well-behave. This can be exemplified by mentioning

the points in the problem domain where the solution for stress tensor at that

point gives an infinite component of the tensor. In solid mechanics, singularities

can occur at crack tips. To deal with singularities and discontinuities in the

domain, a mesh refinement in the critical region (by critical region singularities

and discontinuities are meant) is needed in addition to the aligning the edges of the

elements used. Extended Finite Elements Method is basically used to overcome this

kind of difficulties using structured simple meshes. Optimal convergence rates can

be achieved by X-FEM where there are various discontinuities and singularities in

the domain. However, a tracking mechanism is needed for determining the location

of places in the problem on which singularities and discontinuities exist. There are

many options for this but Level Set Method is used in this thesis to achieve this

goal and details are provided in section 4.5
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2.3 State Of The Art And Applications Of X-

FEM In Industry

There are many fields where Extended Finite Elements Method is used to solve

engineering problems. For example:

In Oil and Gas Industry, there is an immense amount of interest in researching the

hydraulic and mechanical properties of fractures deep well injection of liquids, CO2

sequestration and underground storage of natural gas with the aim of producing oil

and gas more efficiently. Estimates of fault permeability can range over several orders

of magnitude for a single location. So, the hydraulic behaviour of faults becomes one

of the greatest components of uncertainty in risk assessments and cost analyses in

oil and gas industry.

Faults and fractures in rocks are the main reasons for discontinuities in

the displacement and strain fields during production and injection schedules in

reservoirs. Generally Hydraulic fracturing which includes usage of pressurized water

to create cracks in the rock is a technique used during oil and gas production. It is

useful to emphasize that capturing of the discontinuities that occur in this process

(which usually includes very complex geometries ) accurately by using Standard

Finite Element Analysis with a structured mesh is impossible whereas Extended

Finite Elements Method can be used to calculate such discontinuities accurately.

As it is understood from the list of references provided in Appendix B , until now

X-FEM is mainly used to model the fracture/fault propagation.

The improvement of an Extended Finite Elements Method for mechanical frac-

ture/fault evolution has a significant industrial potential. It is particularly important

for the Oil and Gas Industry where the technique leads to obtaining improved pre-

dictions for porosity/permeability changes in coupled geomechanical reservoirs. So,

developing efficient simulation methods with the objective of accurately predicting

the three-dimensional network of hydraulic fractures considering rock self-contact,

inhomogeneity, and poroelasticity is a key factor in oil and gas industry not only to

reduce down the cost but also to produce oil and gas more efficiently.

In aviation industry, safety is always the most important factor in designs.

Today’s aircraft structures are designed using a basic load carrying shell structure

reinforced by frames and longerons in the bodies and a skin stringer construction
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supported by spars and ribs in the surfaces. However, it is known that defects or

cracks in the such structures used in aviation industry almost always exist as a result

of applied forces during the operation of the aircraft. These defects or cracks grow by

time. In spite of the growing defects in the structure the aim is always maintaining

a safe operation of the aircraft. For this aim, engineers have to inspect the aircraft

to observe the major cracks in a time interval in which a devastating failure between

two inspections never happens. Various models which include simplification of the

phenomenon are used at this step to guess the time of failure. This is know as

Damage Tolerance Analysis.

Extended Finite Elements Method is mainly used to predict the crack growth and

also investigate the damage tolerance of composite aircraft structures in addition

to modelling the fatigue failure during the operation of the aircraft. The main

advantage provided by the Extended Finite Elements Method technique is that

modelling discontinuities during these simulations requires less time due to the fact

that the method avoids remeshing the during the numerical simulation. This is

a very important property when a complex system is considered. Also since the

method introduces a local enrichment which causes a small increase in number of

total degrees of freedoms in the solution better solutions can be obtained in critical

regions. Last example of usage of X-FEM in aviation industry could be solution of

multiphase flow problems as well as changing phase problems in fluid theory. It is

even possible to apply the technique to perform multi scale analysis of the mentioned

models.

In Mining Industry, crack propagation and fatigue failure are also very important

in designs in the equipment that serve Mining Industry so the publication related

to Extended Finite Elements Method given in Structural Mechanics and Crack

Propagation subsection of Appendix B also can be considered as the examples for

applications of the method for mining industry. For example, crack growth of drill

pipe is a typical example of one of the discontinuous problems in this field. It is

difficult to simulate this phenomenon using regular Finite Elements Analysis where

as Extended Finite Elements Analysis is able to give an accurate solution by just

increasing the total number of degrees of freedoms in the problem to a reasonable

level.

Also plasticity is another field in which X-FEM can be used to handle the
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discontinuous property of the desired phenomenon.
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Chapter 3

PROBLEM STATEMENT

3.1 Basics And Notation Used

Some basic information used in the thesis is given in this section to make

everything clear and make the notation used in the thesis straightforward:

Fluid is a substance that flows and deforms continuously under an applied shear

force. Fluids are also defined as substances that can not sustain a shear force while

at rest. No matter how small the applied shear stress is fluid continues to deform

as long as the force is applied. Fluids do not have a fixed shape and they take the

shape of the container in which they are kept. According to this definition liquid and

gases are fluids. It is known that gases and liquids are made of individual molecules.

As a result the measurement of properties of the fluid medium such as density or

pressure is expected to fluctuate if a very small scale is used. However, if the scale

used is selected properly the properties of fluid properties become continuous. For

this reason it is very important to select the length scale used. In the continuum

approach, continuous fields are given by an average over a cube which has got side

length L. This length L should be selected satisfying the following conditions:

L >> average intermolecular spacing & L << characteristic length of the flow

At this point, it is important to state that continuum approach does not give

always good results of the fluid motion. To exemplify, the cases where the average

intermolecular space is larger than the characteristic length of the flow can be

considered. As it will be shown later, in some cases it is possible to model solid
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structures as fluids that have high viscosities compared to other fluids in the problem.

a is a scalar variable and −→a is a vector and it has got components ai .

For a three dimensional space −→a =







a1

a2

a3







Tensor is a indexed array and the rank of a tensor is total number of indices required

to represent that tensor. In solution of fluid flow problems rank 2 tensors are widely

used.

S is a rank two tensor which has got components Sij

S can be written explicitly as S =







S11 S12 S13

S21 S22 S23

S31 S32 S33







Gradient of a scalar field φ is shown as ∇φ and it can explicitly be written as:

∇φ =
∂φ

∂x1

−→
i +

∂φ

∂x2

−→
j +

∂φ

∂x3

−→
k (3.1)

where
−→
i ,

−→
j ,

−→
k are unit vectors in direction of axes x1, x2 and x3.

Gradient of a vector −→v is shown as ∇−→v and can explicitly be written as:

∇−→v =







∂v1

∂x1

∂v1

∂x2

∂v1

∂x3

∂v2

∂x1

∂v2

∂x2

∂v2

∂x3

∂v3

∂x1

∂v3

∂x2

∂v3

∂x3





 (3.2)

Divergence of a vector −→v (velocity vector) is shown as ∇ ∙ −→v and it can

explicitly be written as:

∇ ∙ −→v =
∂v1

∂x1

+
∂v2

∂x2

+
∂v3

∂x3

(3.3)
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Any tensor can be decomposed into its symmetric and skew symmetric parts. In

case the tensor to be decomposed is the gradient of the velocity field shown as ∇−→v

of which components are explicitly written in equation 3.2 :

∇−→v =
∂ vi

∂ xj

= 0.5 ×
∂ vi

∂ xj

+ 0.5 ×
∂ vi

∂ xj

(3.4)

Equation 3.4 can be restated adding and subtracting the same term as:

∇−→v =
∂ vi

∂ xj

= 0.5 ×

(
∂ vi

∂ xj

−
∂ vj

∂ xi

)

︸ ︷︷ ︸
A

+ 0.5 ×

(
∂ vi

∂ xj

−
∂ vj

∂ xi

)

︸ ︷︷ ︸
B

(3.5)

Terms in equation 3.5 :

term A = ∇s−→v = ε → is named as strain rate tensor (3.6)

term B = ∇w−→v → is named as vorticity tensor (3.7)

In fluid mechanics, strain rate tensor includes information related to the local

velocity of strain. The vorticity tensor gives information on local rotation velocity.

Divergence of rank-2 tensor σ is a vector and shown as ∇ ∙ σ of which ith

component can be written using Einstein’s notation as :

[
∇ ∙ σ

]
i
= σij,j (3.8)

Level Surface is the union of the spatial positions in which a scalar has the same

value and in two dimensional space it is named as Contour Line. If the scalar function

is shown with symbol φ the unit normal vector to the Level Surface or Contour Line

of φ is stated using the formula:

−→n =
∇φ

‖ ∇φ ‖
(3.9)

Equation 3.9 also gives the direction in which the maximum rate of change of φ
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at that point exists.

Kronecker delta is a function defined as:

δij =






1 if i = j

0 if i 6= j
(3.10)

where the range of i and j changes from one to the dimensional space of the

problem.

Before finishing the section, note that all the basics related to the Finite Elements

Method is given in Appendix A.

3.2 Governing Equations Of Stokes Flow

Stokes flow, in other words creeping flow is a flow type in which the internal

forces are small enough compared to the viscous forces. This means that Reynolds

number is low. Reynolds number is defined as:

Re =
ρvL

μ
(3.11)

where:

• ρ is the density of the fluid

• v is the mean velocity of the flow

• L is the characteristic length of the flow

• μ is the dynamic viscosity of the fluid.

Consequently, the flow can include very low velocities or very high viscosities,

the third possibility is that the length scale of the flow is very small.

Starting from the form of momentum equation, which is derived in Appendix

A.6.2, written for a fluid with constant material properties:

ρ
(−→
Vt + (

−→
V ∙ ∇)

−→
V
)

= ∇ ∙ σ + b (3.12)

where :

16 HAYRULLAH KERİM BOZKUŞ
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• σ is Cauchy stress

•
−→
V is velocity field

• b is the force acting on unit volume of the material

For the Stokes flow, the term in equation 3.12 ((
−→
V ∙∇)

−→
V) is negligible since the

effect of inertia is negligible. Assuming there is no time dependency, time derivative

also disappears. So, the equation 3.12 reduces to :

∇ ∙ σ + b = 0 (3.13)

This is equation represents the conservation of momentum in the time

independent Stokes flow problem. Stokes flow momentum equation includes the

balance of dynamical effect of externally applied forces and internal forces of a fluid.

Here the sources of the internal forces are pressure and the viscosity of the fluid and

external forces are body and surface forces applied to the fluid. Actually, Stokes flow

equations are identical to the equations of isotropic incompressible elasticity. The

only difference is the physical interpretation of the variables.

Because of the conservation of mass as explained in Appendix A.6.1, equation

A.18 gives us a divergence free velocity in domain:

∇ ∙ −→v = 0 (3.14)

For a two–phase flow the equations 3.14 and 3.13 should be satisfied in both of

the subdomains. In addition to this jump of the normal component of stress across

the interface should also be zero:

Jσ−→n K = 0 on Γ (3.15)

Next section includes information about the constitutive relations. It is important

to note that the fluids used in our problem are all Newtonian fluids before giving

the details.

17 HAYRULLAH KERİM BOZKUŞ
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3.3 Constitutive Relations

Viscosity is the most important property of a fluid which directly characterize the

fluid-mechanical behaviour of the fluid in consideration. In another words, viscosity

relates the stress acting on a fluid with the strain rate. Viscosity is also a measure of

the resistance of the fluid to deform under applied shear stress. See figure 3.1 which

is taken from White (2006). In the figure a fluid element sheared in one plane by

a shear stress τ takes place. The shear strain angle ∂θ will continuously grow with

time as long as the shear stress is applied to the fluid element as shown in the figure.

The upper surface moving at a speed ∂u larger than the lower. Such common fluids

such as water, oil and air show a linear relation between applied shear and resulting

strain rate.

τ ∝
∂θ

∂t
(3.16)

From the geometry in figure 3.1 the following relation can be written :

tan ∂θ =
∂u ∂t

∂y
(3.17)

In the limit of infinitesimal changes this becomes:

dθ

dt
=

du

dy
(3.18)

It is known from the equation 3.16 that the applied shear is also proportional

to the velocity gradient for the common linear fluids. The constant of the

proportionality is called the viscosity and shown by the symbol μ:

τ = μ
dθ

dt
= μ

du

dy
(3.19)

The linear fluids which obeys the given formula in equation 3.19 is called

Newtonian Fluids. (White (2006))

Constitutive relations in fluid mechanics give the relation between stress, velocity

and strain rate. Rheology is the branch which researches this relation for different

kinds of materials. The term is most commonly applied to liquids or liquid-like

materials such as paint, catsup, oil well drilling mud, blood, polymer and molten
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Figure 3.1: A Fluid Element Straining At A Rate ∂θ/∂t

plastics although it also includes the deformation of solids such as in metal forming

or stretching of rubber. For more a detailed definition of rheology refer to Dealy and

Wissbrun (1990).

Although for non-Newtonian fluids like polymers and some kind of oil there can

be very complicated relations which also can change according to the history of

deformation of the material for Newtonian fluids the relation between the stress and

the rate of strain is linear. Since this is a reasonable assumption for many fluids in

practice only Newtonian fluids are considered for the model in this thesis. The stress

strain rate relationship for a Newtonian fluid can be written as:

σij = −p δij + τij = −p δij︸ ︷︷ ︸
Isotropic Part of Stress

+ 2με̇ij + λε̇kkδij︸ ︷︷ ︸
Deviatoric Part of Stress

(3.20)

where:

• μ is the dynamic viscosity of the fluid

• εij is strain rate tensor defined in equation 3.6

• λ is bulk elasticity

• δij is the Kronecker delta
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Assuming that the fluid in consideration is incompressible the velocity field

becomes divergence free (ε̇kk = 0). For this reason equation 3.20 reduces to the

Stokes law defined as :

σij = −p δij + τij = −p δij + 2με̇ij (3.21)

Equation 3.21 can also be expressed in matrix form for an isotropic, incompressible

Newtonian fluid as :

σ = −p I + 2 μ∇s−→u (3.22)

where:

• I is identity tensor

• −→u is assumed to be the fluid velocity

Where the definition of the symmetric gradient operator ∇s is defined as :

∇s = 0.5 × (∇ + ∇T ) (3.23)

3.4 Boundary Conditions

In addition to the information provided so far, the problem must be completed using

the appropriate boundary conditions. Typically the velocity is defined as Dirichlet

boundary condition on Dirichlet part ΓD of the boundary:

−→v (−→x ) = −→v D(−→x ) where −→x ∈ ΓD (3.24)

also a boundary traction
−→
t is given as Neumann boundary condition on the

Neumann part of the boundary represented with ΓN :

σ(−→x )−→n =
−→
t (−→x ) where −→x ∈ ΓN (3.25)

Pressure exist only by its gradient in Stokes problem for this reason a restriction

of pressure is needed. One option is giving the value of the pressure at one position as
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a reference in cases where all boundary is only full of Dirichlet boundary conditions

defined as velocities.
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Chapter 4

FEM AND X-FEM SOLUTION

OF STOKES FLOW

4.1 Extended Finite Elements Method

X-FEM method was developed in a research by the computational mechanics

group at Northwestern University directed by Ted Belytschko. The main advantage

of Extended Finite Elements Analysis as compared to Classical Finite Elements

Analysis is that the features of interest such as fluid structure interface, phase

boundaries and crack surfaces are represented independently from the mesh and

using an Eulerian framework so that the solution can be easily obtained using a

reasonable extra computational resources compared to Classical Finite Elements

Analysis.

It is widely known that meshing is the biggest problem in design stage of

complex industrial applications such as designing cars, bridges or machines for

specific purposes. In a complex designs in industry, for an average company it is

considered to be normal to spend more than % 60 of the total time of the design

stage to have a good mesh. Since the computational mesh used in the numerical

analysis directly effects the errors associated to the numerical solution it is very

important indeed. However, remeshing the whole computational domain in every

time step is a very time consuming process. This becomes extremely important

especially in applications where the deformations in the problem is big. Meshing is

not only a time consuming process but also its computational cost is very high. Since
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Extended Finite Elements Method does not require remeshing in the solutions of the

problems and can calculate the solution where there are moving interfaces involved in

the problem Extended Finite Elements Method becomes a versatile tool for getting

solution in this kind of problems. When Extended Finite Elements Method is used

even in complex applications, just using a structured mesh is enough.

Extended Finite Elements Method is specifically handy in cases where the strain

rate is discontinuous due to the continuity of stresses and a change in material

properties. Extended Finite Elements Method adds the extra degrees of freedoms to

the critical locations that is determined by using a level set function. By the usage of

this Level Sets in Extended Finite Element Analysis technique it becomes possible

to describe and accurately solve multiphase problems using an Eulerian framework.

4.2 Derivation Of The Weak Form

In Finite Elements Analysis weak form (in another words variational form) is used

before replacing the functions with their approximations with the aim of reducing

the continuity constraint on the approximation that are going to be used in the

numerical solution. Writing the previously derived form of the Stokes flow given in

section 3.2, it has to be written for a flow domain Ω ∈ Rn with a closed boundary

Γ sufficiently regular with Neumann and Dirichlet boundaries shown as ∂ ΓN and

∂ ΓD where ∂ ΓN ∩ ∂ ΓN = 0:

∇ ∙ σ + b = 0 in Ω (4.1)

Since the flow is incompressible, as explained in equation A.18 flow field has to

be divergence free, for convenience the equation is written with a minus in front:

−∇ ∙ (−→v ) = 0 in Ω (4.2)

For the derivation of the weak formulation of the problem the following

definitions for mathematical convenience are required:

A function u is called square-integrable on a domain Ω if the function u satisfies
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the following condition :

∫

Ω

u2 dΩ < ∞ (4.3)

where ∞ is infinity. If equation 4.3 is satisfied we write u ∈ L2(Ω). Hk(Ω) is the set

of functions of which derivatives up to order k are in L2(Ω).

Four collections of functions are required in the derivation of the weak form

of the problem. They are the trial functions and the test functions, both for the

pressure field and the velocity field. S is the space of velocity trial functions. This

collection of functions includes all the functions which are square–integrable, also

have square integrable first derivatives over the computational domain Ω and satisfy

the Dirichlet boundary conditions on ΓD defined in 3.24. This collection of functions

is given by :

S =
{
u ∈ H1(Ω) | u = uD on ΓD

}
.

This space contains vector functions of which all components are in the

corresponding space of scalar functions.

The test functions for velocity belong to space V . Functions in this class have

the same characteristics with the ones in S, except that they are required to become

zero on ΓD where the velocity is prescribed as a Dirichlet boundary condition . The

definition of space V is :

V =
{
w ∈ H1(Ω) |w = 0 on ΓD

}
.

Lastly, space of functions shown by the symbol Q are introduced for the pressure

field. Because of the fact that the space derivatives of pressure do not appear in the

weak form of the Stokes problem, the functions that are in Q are require only the

following condition :

Q =
{
q ∈ L2(Ω)

}
.

This space is both the trial space and the test function space.

Equations 4.1 and 4.2 are the governing equations that have to be satisfied in

Stokes flow. So, the weighted residuals that has to be forced to become averagely

zero over the problem domain with the aim of finding a good solution to the problem.

By the term residuals the left-hand sides of equations 4.1 and 4.2 are meant.
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To obtain the weak formulation of the problem, the governing equation 4.1

is multiplied by a velocity test function −→w ∈ V and integrated over the domain

Ω. Similarly, the incompressibility condition 4.2 is multiplied by the pressure test

function q ∈ Q and integrated over the domain Ω. Hence, using the mentioned

weighting functions −→w and q for the equations 4.1 and 4.2 and integrating the

functions over the domain of the problem Ω the weighted residual integral equations

that are forced to be zero can be expressed as:

∫

Ω

−→w ∙
(
∇ ∙ σ + b

)
dΩ = 0 (4.4)

−
∫

Ω

q
(
∇ ∙ (−→v )

)
dΩ = 0 (4.5)

The first equation (4.4):

−
∫

Ω

−→w ∙
(
∇ ∙ σ

)
dΩ =

∫

Ω

−→w ∙
−→
b dΩ (4.6)

Using the integration by parts and divergence theorem, equation 4.6 can be

stated as:

∫

Ω

∇−→w : σ dΩ −
∫

Γ

−→w ∙
(
σ ∙ −→n

)
dΓ =

∫

Ω

−→w ∙
−→
b dΩ (4.7)

where:

• Γ is the surfaces in the problem domain Ω

• −→n is the outward unit normal vector to Γ

The first term in equation 4.7, the definition of Cauchy stress tensor can be used

from equation 3.22 considering the definition of the symmetric gradient defined in

equation 3.23. Therefore, the first term in equation 4.7 can be written as :

=

∫

Ω

∇−→w :
(
−p I + 2 μ∇s−→v

)
dΩ (4.8)

= −
∫

Ω

∇−→w :
(
p I
)

dΩ

︸ ︷︷ ︸
term B

+

∫

Ω

∇−→w :
(
2μ∇s−→v

)
dΩ (4.9)
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where the double contraction of two rank-two tensors K and L is defined as :

K : L = KijLij (4.10)

thus term B defined in the first term in equation 4.7 can be written in an equivalent

form :

∇−→w :
(
p I
)

=
∂w1

∂x
× p +

∂w2

∂y
× p +

∂w3

∂z
× p = ∇ ∙ −→w p (4.11)

Finally the weak form of the problem can be stated as :

∫

Ω

∇s−→w : 2μ∇s−→v dΩ −
∫

Ω

∇ ∙ −→w p dΩ = (4.12)
∫

Ω

−→w ∙
−→
b dΩ +

∫

Γ

−→w ∙
(
σ ∙ −→n

)
dΓ

−
∫

Ω

q
(
∇ ∙ (−→v )

)
dΩ = 0 (4.13)

In equation 4.12 it is worth to note that the surface term σ ∙ −→n on the right-hand

side is the physical traction on the boundary of the domain.

The proof that shows the strong and the weak formulations of the problem are

equivalent can be found also in Hughes (2000), Zienkiewicz and Taylor (2000) or

Donea and Huerta (2002).

4.3 Finite Elements Method Solution Of The

Stokes Problem

Finite Elements method is a very good choice for solving an engineering problem

but it is useful to state that the simplest way for solving the same problems is

the Finite Difference Method rather than Finite Elements Method. Both Finite

Elements Method and Finite Difference Methods are based on a discretization of the

domain. In another words, in both techniques a mesh is needed. Standard version

of Finite Difference Method includes using a structured mesh. As a natural result,

it becomes impossible to control the density of the mesh in different regions of
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the domain. In contrast, Finite Elements Method uses an unstructured mesh which

gives the opportunity to change the density of the mesh in different regions of the

domain. So, it becomes possible to get a better solution in critical areas using more

elements per area (increasing the density of the mesh in that region only). It is

always better to use a coarse mesh for the regions where the solution is simpler with

the aim of using computational resources efficiently. Furthermore, complex or curved

boundaries and boundaries that are not parallel to the cartesian axes are very hard

to handle with Finite Difference Method whereas handling them is straightforward

with Finite Elements Method.

The main technique that is used in this thesis is Extended Finite Element Method

for the solution of the given basic differential equations that are used in the analysis

of fluid flow problems (main equations used in the definitions of the problem are

provided in section A.6 of Appendix A). Finite Elements Analysis is a robust

technique and capable of modelling complex geometries. Because of this, Finite

Elements Analysis has been used for many years in many engineering problems. In

addition to this, Finite Elements Analysis lets modelling the problem in spherical

or cartesian domains without reformulating the equations and this shows that the

method has got flexibility as well. Extended Finite Elements Method improves this

technique by adding a local enrichment in the solution.

With the aim of comparing Classical Finite Element Method with Extended

Finite Element Method, Classical Finite Elements Method derivations of the

problem is also given in this section. In the beginning of section 4.2, it is already

mentioned that weak formulation is used in Finite Elements Analysis. The next step

includes replacing the unknown functions with their approximations which uses the

values of the unknowns in the nodes of the elements of the computational mesh

used in the solution. By the term mesh it is meant a division of the domain Ω into

subdomains Ωk where k goes from one to total number of elements in the mesh

(k = 1 . . . n) where Ωk ∩ Ωk = 0 if k 6= k. The approximation mentioned leads

to a linear system of equations to be solved with the aim of calculating the the

unknowns. For this purpose, a Standard Finite Elements Method approximation of

the function u(−→x ) which is represented as uh(−→x ) can be stated as :

uh(−→x ) =
∑

i∈I

Ni(
−→x ) ∗ ui (4.14)
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CHAPTER 4. FEM AND X-FEM SOLUTION OF STOKES FLOW

In equation 4.14 :

• i is the nodes in the finite elements mesh

• N is the shape functions used in classical finite elements

• ui is the values of the unknown at the nodes of the mesh

• −→x is the position

For stability reasons, a mixed Finite Elements Method is used since some

numerical difficulties that arises because of the saddle point nature of the resulting

variational problem exist in the solution of incompressible flow problems. By mixed

Finite Element Method, it is meant that the meshes that are used to interpolate

the pressure and velocity unknowns are selected as different meshes since if the

same mesh is used the numerical solution becomes unstable. The incompressibility

condition given in equation 4.2 is actually a constraint on the velocity field in the

flow. The existence of pressure in momentum equation has the aim of introducing

an additional degree of freedom needed to satisfy the incompressibility constraint.

In this sense, the role of the pressure variable in the problem is to adjust itself in

order to satisfy the condition of having a divergence free velocity field. This means,

the pressure is acting as a Lagrangian multiplier of the incompressibility constraint

and thus there is a coupling between the velocity and pressure unknowns. ( Donea

and Huerta (2002) ).

Replacement of the unknown functions with their approximations in equations

4.12 and 4.13 should be done in order to get a system equations to be solved. The

approximated values of the velocity and pressure fields using the discretization for

the Galerkin formulation of the Stokes problem are defined as vh and ph for velocity

and pressure fields. The related test functions −→w and q are also discretized as wh

and qh. Vh and Sh are used to represent the finite dimensional subspaces of V and

S, and the finite dimensional subspace of Q is Qh . The computational domain Ω

is partitioned into element domains Ωe. This discretization or mesh is composed by

elements and nodes.

Each unknown functions are approximated using the shape functions and

associated nodal values of the value of the unknown function. We denote I the

set of velocity nodes in the mesh. The subset ID of I is the subset of velocity nodes
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CHAPTER 4. FEM AND X-FEM SOLUTION OF STOKES FLOW

corresponding to the Dirichlet boundary conditions, where the velocity is prescribed.

The velocity is can be written as:

−→v h = −→v h + −→v h
D (4.15)

−→v h =
∑

i∈I

Ni(
−→x ) −→v i (4.16)

−→v h
D =

∑

i∈ID

Ni(
−→x ) −→v Di (4.17)

where the shape function associated with the node number i is represented by Ni

and −→v i is the value of −→v h at node i. The interpolation of the pressure field is done

using a different set of pressure nodes denoted by Ip and shape functions N̂i :

ph =
∑

i∈Ip

N̂i(x) pi (4.18)

where pi is the pressure value at node i in of the pressure mesh used.

Replacing the unknown functions with their approximations in the end gives a

linear equation system as:



 K G

GT 0








−→v
−→p



 =




−→
f
−→
h



 (4.19)

The first line of equation 4.19 is the conservation of momentum and the second

line is the conservation of mass after discretization of the system of equations.

Because of the fact that the right-hand side of mass conservation equation (given

in equation 3.14) is zero, in equation 4.19
−→
h is defined as a zero vector. Using the

derivation provided in Liu and Li (2006) the viscosity term K can also be expresses

as:

K =

∫

Ω

BT C B dΩ (4.20)

where matrix form of the tensor C is defined as:

C =







2v 0 0

0 2v 0

0 0 v





 (4.21)
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here v is the kinematic viscosity of the fluid defined as v = μ/ρ and the gradient

matrix B is defined by equations 4.22 and 4.23:

B = [B1,B2, . . . , Bnv ] (4.22)

Bi =







∂Ni

∂x1
0

0 ∂Ni

∂x2

∂Ni

∂x2

∂Ni

∂x1





 (4.23)

The system of equations obtained in equation 4.19 after replacing the unknown

functions with their approximations in equations 4.12 and 4.13 gives a partitioned

matrix with a null submatrix on the diagonal. An appropriate choice of the finite

element spaces for velocity and pressure interpolation is crucial since it effects the

solvability of such a system. In this thesis, the element used is called mini-element.

It is illustrated in figure 4.1.

Figure 4.1: Mini Element Used In The Numerical Solution

Mini Element is a triangular element in which there are three pressure nodes at

the vertices of the element and four velocity nodes (three of them are at the vertices

of the element whereas the fourth one is in the center). This lets pressure values

to be linearly interpolated. Mini element satisfies the LBB compatibility condition

which guarantees the solvability of the system. (after Ladyzhenskaya (1969), Babuka

(1971), Brezzi (1974)).

To complete the statement of the space discretization the technique used to track
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the location of the material phases should also be stated. This is done in the section

4.5.

4.4 Derivation Of X-FEM For Two–Phase Stokes

Flow

Standard Finite Elements method approximation of the function u(−→x ) which is

represented as uh(−→x ) is:

uh(−→x ) = Ni(
−→x ) ∗ ui (4.24)

In equation 4.24:

• i is the nodes in the finite elements mesh

• N is the shape functions used in classical finite elements

• ui is the values of the unknown at the nodes of the mesh

Adding the local enrichment to this approximation given in 4.24 it is possible to

obtain the approximation used by the Extended Finite Elements Method as:

uh(−→x ) =
∑

i∈I

Ni(
−→x ) ∗ ui︸ ︷︷ ︸

Standard Finite Elements Part

+
∑

j∈I+

Mj(
−→x ) ∗ aj︸ ︷︷ ︸

Extended Finite Elements Part

(4.25)

in equation 4.25 :

• N is the shape functions used in classical finite elements

• ui is the values of the unknown of the standard finite elements part at the

nodes of the mesh

• aj is the extra degrees of freedoms that is assigned only to the enriched

elements

• Mj is the local enrichment function used with the aim of getting a better

solution where there is a discontinuity or singularity
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In equation 4.25, it is important to note that I+ here represents the enriched nodes

only. When equation 4.25 is used the Extended Finite Elements part of the equation

written modifies the approximation using Classical Finite Elements Method at

the positions defined by the scalar level set function. For a multiphase flow this

corresponds to the elements which include more than one phases.

To exemplify this in one dimension, it is appropriate to give an example which

includes both the solution using Classical Finite Elements Method and Extended

Finite Elements method. See the figure 4.2 where solutions in one dimensional case

using FEM and X-FEM are illustrated. X-FEM allows a discontinuous solution

across the interface of the problem.

Figure 4.2: Comparison Of Different Solution Techniques In One And Two
Dimensional Case

In the thesis to get a better numerical solution across the interface of the

multiphase Stokes flow the local enrichment function to be used in order to improve

the ability of the interpolation to include the gradient discontinuities across the
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interface includes a ridge function (R given in equation 4.26) defined by Moës et al.

(2003). In the literature there are other ridge functions defined as well for example

see Chessa and Belytschko (2003a). In the solution, the interpolation of the pressure

and velocity are also enriched using a partition of the unity concept.

R(−→x ) =
∑

j∈I+

|φj|Nj(
−→x ) −

∣
∣
∣
∣
∣
∣

∑

j∈I+

φj Nj(
−→x )

∣
∣
∣
∣
∣
∣

(4.26)

in equation 4.26 φj represents the nodal values of the Level Set function.

The Ridge function given in equation 4.26 is defined in such a way that it vanishes

in all the elements except the ones which contain a part of the interface. In equation

4.26 the definition of j only includes the nodes that are on the vertex nodes of the

elements. As a natural result, the enrichment included in the solution using equation

4.26 only affects the degrees of freedoms that are on the vertex nodes of the enriched

elements.

Using the main idea of Extended Finite Elements Method the enriched version of

interpolations of velocity and pressure can be written using the information provided

in equation 4.25 :

−→v h(−→x ) =
∑

i∈I

−→v i × Ni(
−→x ) +

∑

j∈I+

−→a j × Mj(
−→x ) (4.27)

ph(−→x ) =
∑

k∈Ip

pk × Nk(
−→x ) +

∑

j∈I+

bj × Mj(
−→x ) (4.28)

where:

• I is the set of velocity nodes

• I+ is the vertex nodes of the enriched elements

• Ip is the set of pressure nodes

• Mj is the enrichment function

• −→a j is the extra velocity degree of freedoms added to the solution by X-FEM

• bj is the extra pressure degree of freedoms added to the solution by X-FEM

34 HAYRULLAH KERİM BOZKUŞ
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here enrichment function M is defined as :

Mj(
−→x ) = R(−→x ) Nj(

−→x ) (4.29)

where R is the ridge function defined in equation 4.26.

Using the information provided in equations 4.27 and 4.28 for fluid velocity and

pressure distribution can be approximated by using the vectorial form as :

−→v h(−→x , t) = Nv

−→
V (4.30)

ph(−→x , t) = Np

−→
P (4.31)

where the terms in equations can be explicitly written as:

−→
Nv = [N1, N2, . . . , Nnv ,M1, . . . ,Mne ]

V = [−→v 1,
−→v 2, . . .

−→v nv ,
−→a 1, . . . ,

−→a ne ]
>

−→
Np = [N1, N2, . . . , Nnp ,M1, . . . ,Mne ]

−→
P = [p1, p2, . . . , pnp , b1, . . . bne ]

>

It is important to emphasize here that nv and np are the total number of nodes

used in velocity and pressure meshes. Since in a two dimensional problem there are

two degrees of freedom in one node of the velocity mesh. These unknowns in the

same node have to be written explicitly as well. The new vector of unknowns which

includes the velocities is shown as
−→
Vrs to emphasize that this is the reshaped form

of the vector
−→
V . For example the velocity degree of freedoms in x and y direction

in global node number 17 are represented by vx
17 and vy

17. Explicitly writing these

unknowns requires also reshaping Nv accordingly and calling it Nrs
v :

Nrs
v =



 N1 0 N2 0 . . . Nnv 0 M1 0 . . . Mne 0

0 N1 0 N2 . . . 0 Nnv 0 M1 . . . 0 Mne



 .

−→
Vrs = [vx

1 , vy
1 , v

x
2 , vy

2 , . . . , v
x
nv

, vy
nv

, ax
1 , a

y
1, . . . , a

x
ne

, ay
ne

]>
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Using the same logic of Galerkin Finite Elements with the one that is used

in section 4.3 to derive the Classical Finite Elements Method Solution of Stokes

Flow, replacing the unknown functions with their approximations in the weak form

of the problem derived in section 4.2 and using the weighting functions as the

shape functions used in the interpolation of unknowns the linear system of algebraic

equations obtained can be written in a neat form as :

K
−→
Vrs + GT−→P =

−→
f (4.33)

G
−→
Vrs = 0 (4.34)

where the matrices K, G and vector
−→
f can be explicitly written as :

K =

∫

Ω

B>CB dΩ

G = −
∫

Ω

−→
N>

p (∇ ∙
−→
Nrs

v dΩ

−→
f =

∫

Ω

(
−→
Nrs

v )>ρ
−→
b dΩ

where:

• C is defined in equation 4.21

• The gradient matrix B is defined as:

B = [B1,B2, . . . , Bnv , B́1, . . . , B́ne ]

Bi =







∂Ni

∂x1
0

0 ∂Ni

∂x2

∂Ni

∂x2

∂Ni

∂x1





 and B́i =







∂Mi

∂x1
0

0 ∂Mi

∂x2

∂Mi

∂x2

∂Mi

∂x1







Note that the spatial derivatives of Mi contained in matrices B̃i, for i = 1, . . . , ne

account for the enrichment and depend on the level set φ. Therefore, the chain rule

must be employed to evaluate the material those functions.
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Lastly, the system of linear equations to be solved for the solution of multiphase

flow can be expressed as :



 K GT

G 0








−→
Vrs

−→
P



 =




−→
f

0





Also a Matlab code that calculates the elements of the system is submitted with

the thesis and results of the code are presented in chapter 6.

4.5 Explanation Of Level Set Method For Multi-

phase Problems Interface Tracking

Eulerian framework is usually used for the solution of fluid flow problems. In

this approach computational mesh is fixed and fluid moves with respect to this

fixed mesh. As a result, the position of interface should be updated throughout the

solution. When Eulerian framework is used the tracking of the interface of multiphase

flow problems becomes a problem and the tracking of the interface should be done

using an additional method because of the fact that the physical properties belonging

to each specific point will change throughout the solution in case interface moves.

Level Set Method includes the implicit representation of the interface and is

used to decide where to apply the local enrichment of approximation spaces in the

domain to get a solution with a better quality. From the invention of the technique

by Osher and Sethian (1988) and application of it on the solution of two–phase flows

(Sussman et al. (1994)) there has been many articles written using the method. For

example see these papers: Sethian and Smereka (2003); Osher and Fedkiw (2001).

Level Set Method is widely used to track the interface location such as in Chessa and

Belytschko (2003a); Moës et al. (2003) and crack propagation (Belytschko and Black

(1999); Stolarska et al. (2001)) and permeability calculations in reservoir simulations

(Karlsen et al. (2000); Nielsen et al. (2008)). Its power to track the changes in the

topology of the problem is well known. (Mulder et al. (1992)) Also there are other

fields where the method is used such as grid generations and computer vision.

Level Set Method, actually, is a scalar function that is introduced to the problem

and it is used to track the location of singularities and discontinuities. This can be
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considered as a factor that slows down the calculations since Level set Technique add

another dimension to the problem in consideration. However, this property gives the

technique a great generality and makes it possible to deal with problems in which the

front is not only moving forward or backwards. This is the main reason why Level

Set Method is usually coupled with Extended Finite Elements Method to solve

problems. Level set function is capable of representing the changes in the topology

of the different phases that exist in the problem. So, representing merging bubbles,

breaking sets ,detaching drops or cracks with this technique is not a problem at all.

It is advantageous compared to other methods. For example comparing it to the

fast marching methods it can be concluded that fast marching methods are designed

to track the front velocity that never changes sign which means that the front is

going always forward or backward only. To deal with the front which is moving

forward in some places and backwards in some places depending on the location

Level set Methods are designed to track the front in which the speed can be negative

or positive depending on the location.

Hereby, we emphasize that other techniques to track the location of the

discontinuities and singularities in engineering problems can be used with Extended

Finite Elements Method. For a quick comparison of Level Set Method with Markers

method it is possible to state that using Level Set Method compared to using markers

method is very advantageous because it uses the same same number of points in the

mesh to describe the location of the interface. In addition to this, Level Set method

does not require averaging the material properties from markers to nodes. This is a

very nice computational property.

In Level Set Method, the zero level of the Level Set Function is considered

to be the location of discontinuities. As a result, the domain Ω is divided into

two subregions in one of which the Level Set function takes the positive values in

material one and in the other region the Level Set Function takes negative values

in second material. So, it can be concluded that Level Set Method is used to handle

the multiphase character of the multiphase problems. The beauty of using the Level

Set Method is that it allows to find the location of the interface without requiring it

to conform with the mesh. When used with Extended Finite Elements Method the

solution obtained is expected to have a discontinuous gradient on the interface. The

reason for the discontinuity is the change of material properties across the interface.
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In many researches the Level Set Function is considered to be the signed distance

to the interface which can be defined as in the equation 6.1 :

φ(−→x ) = ± min ‖ −→x −−→xΓ ‖, ∀x ∈ Ω (4.36)

Here in equation 6.1 :

• φ(−→x ) is the Level Set function

• −→x is the position of the point in the domain

• −→xΓ is the positions of the points on the interface

• ‖ ∙ ‖ is the norm of the vector

It is also a common practice to truncate the level set function at positions that

are considered to be far enough from the interface. According to the definition of the

Level Set Function the sign of it gives the information about in which subdomain

the point under consideration is so that the material in each point in the domain

can be determined easily :

φ(−→x ) =






> 0 for −→x ∈ Ω1

= 0 for −→x ∈ Γ

< 0 for −→x ∈ Ω2

(4.37)

where −→x is the point under consideration in the domain. What equation 4.37 tells is

that the discontinuity in a problem (it is the interface in a two–phase flow problem)

can be expressed as :

Γ = {−→x ∈ Rd | φ(−→x ) = 0} (4.38)

In equation 4.38 the interface is stated as the isocontour (φ = 0) of the Level Set

function. In figure 4.3 an example Level Set function for a two dimensional problem

(so that the plot is a 3D plot) is illustrated.
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Figure 4.3: An Example Level Set Function

In Finite Elements Analysis values of the functions are approximated using the

values of the functions in the nodes of the elements used. Consequently, it is also

possible to write the approximation of the Level Set function as in equation 4.39 :

φh(−→x ) =
∑

i

Ni φi (4.39)

where i is the nodes to which the Level Set function is assigned and Ni is the linear

shape functions that are used to interpolate the Level Set values.

In this thesis, the same mesh for the pressure and Level Set function is used.

It is a common practice to use the mechanical computational mesh used in the

numerical solution for the Level Set function. It makes sense because in the end same

resolution is obtained for approximation of interface and the factors that effect how

this interface evolves. So, the quality of the approximated interface is dependant

on the quality of mesh used for the pressure. The same mesh for the Level Set can

be used throughout the whole simulation the reason is it represents interface which

does not necessarily coincide with element edges.

At any location on the interface the unit normal vector, in case it is needed,

can be calculated using the equation given in equation 3.9. Lastly, before giving

the evolution of the Level Set function it is important to state that using smaller
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CHAPTER 4. FEM AND X-FEM SOLUTION OF STOKES FLOW

elements at the positions near the interface makes it possible to get a better solution

for the location of the interface.

Lastly, some of the publications that can give further insight on Level Set Method

is also listed in Appendix B.5.4.

4.6 Accurate Numerical Integration Of Enriched

Elements

Gauss Quadrature Method is the most preferred numerical integration scheme

in Finite Element Analysis because of the fact that this method can calculate the

results exactly when the integrand is a polynomial as it is the case for most of the

Finite Elements Method applications. See Appendix A.3 for more details.

Now imagine a case where there is a discontinuity in material properties in the

domain and the integral that is to be calculated include this material property.

In our problem, it is the viscosity. The viscosity of two fluids are different and this

introduces a discontinuity in the gradient of the solution in elements that are crossed

by the interface.

See the figure 4.4 where how the real interface (Γ) and the approximation of the

interface shown using the symbol Γh divides a triangular element into two pieces. In

the same figure, the area colored in pink belongs to the first domain. However, since

linear shape functions are used to interpolate the interface in the code assumes that

this area is belongs to domain 2. In the numerical calculation of the integral terms

in case there is a gauss point in this area the contribution will be calculated wrong.

To fix this error a higher order approximation space can be used or the number

of elements used in the Level Set mesh can be increased until the error becomes

negligible.

For numerical calculation of a general integral stated in equation 4.40 on an

element which is cut by the interface as stated picture 4.4 different material

properties depending on the spatial position of the each Gauss point used should be

used. However, this approach does not give the accurate result since the integrand

in this case is not a polynomial and has got a discontinuity. Writing the general

integral to be calculated where Ωe represent the elemental area of the element given
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Figure 4.4: Real Interface Γ And The Approximation Of The Interface Γh When
Linear Shape Functions Are Used

in the same figure :

∫

Ωe

ν(−→x )f(x, y) dΩ (4.40)

To fix this problem what is suggested is the division of the enriched elements

into smaller integration cell elements which have the only one value of the material

properties on them and calculating the contributions coming from these smaller

elements. It should be emphasized that the aim of this division is obtaining smaller

elements with the same material properties so that the position of the interface

becomes very important. The positions of the points where the interface cuts the

interface has to be stored and used.

Also in this approach, according to how the interface cuts the elements the

number of subelements used will differ and how many subelements will be used

should be determined for every element that is cut by the interface. Figure 4.5

explains this in color where the green color represent the first material used and the

grey color corresponds to the second material. Blue line is the extra border added

to the problem.

As it is seen in the figure 4.5, there are two different cases for a triangular element:

when the interface crosses one of the nodes using two subelements is enough whereas

if the interface cuts the edges of the elements an extra subelement has to be created

to create areas which have the same material properties so that all the Gauss points

on the same element uses the properties of the same material. Accordingly, the

written integral is dived into two or three domains depending how the interface cuts

the element. Assuming it is divided into two subelements rewriting equation 4.40 in
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Figure 4.5: Different Division Of The Multiphase Elements According To How
Interface Cuts Them

two terms showing the the subelements domains as Ωe1 and Ωe2:

∫

Ωe

ν(−→x )f(x, y) dΩe =

∫

Ωe1

ν(−→x )f(x, y) dΩ +

∫

Ωe2

ν(−→x )f(x, y) dΩ (4.41)

The key point here is, when mapping the x-y coordinate system to the master

element the positions of the Gauss points of the subelement according to the main

element in the master coordinate system should be determined and used as it is

done in the code to calculate the integrals numerically. Also, the Jacobian matrixes

of the subelements should be used since determinant of Jacobian is a ratio of the

area between the master element and the element in x-y coordinate system and the

contributions coming from the subelements are only calculated in their own areas.
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Chapter 5

CONTINUITY OF STRESS ON

THE INTERFACE

5.1 Why X-FEM Needs To Be Improved?

Classical Finite Elements Method is not able to capture the discontinuous

gradients in the element if the used computational mesh is not aligned with interface

in two–phase problems. In addition to the Classical Finite Elements Method Theory,

Extended Finite Elements Method includes introducing an enrichment technique via

partition of the unity concept to obtain a solution with discontinuous gradient across

the interfaces in two–phase flows or in problems where discontinuities or singularities

exist in the problem domain. This means, for our two–phase problem it becomes

possible to get a better solution with discontinuous gradient inside the elements

crossed by the interface and also this enrichment that Extended Finite Elements

Method makes it possible to enforce other equations.

The main problem mentioned above related to Finite Elements Analysis can be

expressed in another words as using a general point P defined on the interface of

a two–phase flow. Refer to figure 5.2b for the illustration of the point mentioned.

Writing the fluxes for the first domain and second domain in a case where a mesh

that doesn’t conform the interface:

−→q 1 = −ν1∇
−→v |Ω1 (5.1)

−→q 2 = −ν2∇
−→v |Ω2 (5.2)
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In equations 5.1 and 5.2, the gradient of the velocity function −→v calculated at

the general point P on the interface is the same when Classical Finite Elements

approximation spaces is used. The flux jump at this point reads:

–ν1∇
−→v |Ω1 + ν2∇

−→v |Ω2 6= 0 (5.3)

as long as ν1 6= ν2 or ∇−→v 6= 0 this happens. Because of the fact that Classical

Finite Elements Method gradient of velocity has the same in an enriched element.

So equation 5.3 can be rewritten also as in the form:

(ν2 − ν1)∇
−→v |x=P 6= 0 (5.4)

In our two–phase problem this is the continuity of the normal component of stress

which (as it is stated before in equation 3.15) is:

Jσ−→n K = 0 on Γ (5.5)

that is desired to be satisfied to make the stress continuous along the interface of

two–phase problem. But as it explained before it is not possible using only Finite

Elements Analysis. According to the results obtained in section 6, equation 5.5 is

not still satisfied even when X-FEM is used as the solution technique. So Using

X-FEM the continuity of the normal component of stress along the interface should

be enforced in the global solution. The details related to this process is given in

section 5.3. It is useful to emphasize that it is not possible to get such a solution

using Classical Finite Elements Method only if the mesh used does not conform the

interface in the domain. So, in this part the different part of the Extended Finite

Elements Method from the Classical Finite Elements is emphasized assuming that

the derivation for the Classical Finite Elements part is the same with the one derived

in section 4.3 using also the basics provided in Appendix A.
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5.2 Imposing The Continuity Of Fluxes Along

The Interface

In order to introduce the ideas that will be used next to impose the normal stress

continuity across the interface, we describe here the solution of a simpler problem:

The continuity of fluxes in a two–phase Poisson problem. It is mentioned before

that for cases where a discontinuous solution exist across the interface Classical

Finite Elements Method can not capture the solution if the mesh is not aligned with

the interface but X-FEM can capture these discontinuities. However still when the

results are checked it is seen that the continuity of fluxes are not still satisfied and an

additional enforcement of continuity of across the interface is needed. The general

form of bimaterial Poisson problem after imposing the continuity of fluxes along the

interface can be stated as :

∇ ∙ (−νi∇u) = f in Ωi (5.6)

−νi∇u ∙ −→n1 = gn on ΓN (5.7)

u = uD on ΓD (5.8)

Jν∇uK−→n2 = 0 on Γ (5.9)

Where:

• The variable that represent different subdomains (i) goes from one to two for

a bimaterial problem

• J K is the jump term

• −→n1 is the unit outwards normal vector to the domain Ω i

• −→n 2 is the normal vector to the interface

It becomes possible to get a discontinuous solution when X-FEM is used. However

according to the results obtained it is still needed to enforce the continuity of fluxes

across the interface. The condition enforced to get a continuous flux solution in

the problem in this case is given in 5.9. The results obtained from the paper in

preparation Diez et al. (2011) are given in figure 5.1. See the continuity of the fluxes

across the interface when the continuity of fluxes along the interface are enforced.
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Figure 5.1: Comparison Of Different Solution Techniques For Two Dimensional
Poission’s Problem

Notice in the figure that the derivatives of the solution are plotted and they are

inaccurate in the vicinity of the interface when extra condition is not enforced.

5.3 Enforcing Continuity of Normal Component

Of Stress Across The Interface

The same concept to get a more accurate numerical solution is applied here to a

two–phase flow problem. The representation of a random point on the interface in

a two–phase flow is given in picture 5.2. The stresses at this general point P on the

interface for the first and the second fluid can be expressed as:

−→σ 1 = −p|Ω1 I − ν1∇
s−→v |Ω1 (5.10)

−→σ 2 = −p|Ω2 I − ν2∇
s−→v |Ω2 (5.11)
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Figure 5.2: a)Problem Domain, b) A Random Point Taken On The Interface Of A
Two–Phase Flow With Definition Of Normal And Tangential Vectors

Because of the fact that pressure is continuous across the interface, only enforcing

the rest in equations 5.10 and 5.11 will make it possible to get a continuous normal

component of stress on the interface. At this point the reason why only the values

of one part of the stress is traced in results section (section 6) is given. In addition

to this, imposing the normal component of stress continuity reads:

(
ν1 ∇

s−→v |Ω1 − ν2 ∇
s−→v |Ω2

)−→n =
−→
0 (5.12)

where −→n is the unit normal vector to the interface. Since the right-hand side here is a

zero vector, the normal vector to the interface can be taken as vectors facing outward

of the first domain or the second domain, namely −→n1 or −→n2. Multiplying equation

5.12 with a weighting function and integrating along the interface the equation that

will be added to the equation system is obtained:

∫

Γ

ti ∙
(
ν1 ∇

s−→v |Ω1 − ν2 ∇
s−→v |Ω2

)−→n dΓ =
−→
0 (5.13)

where ti is the linear weighting function used in the analysis which takes the value

unity at the locations where interface cuts the elements. See figure 5.3 where

the points that are cut by the interface is named as 1 and 2. Notice that ti

is discontinuous between different elements. The figure shows the values of the
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two weighting functions for the enriched elements with different colors along the

approximation of the real interface.

Figure 5.3: Illustration of the Shape Function Used to Enforce Continuity of Normal
Component Of Stress Along The Interface

Equation 5.13 is the equation that forces stresses across the interface to be

continuous in the numerical solution. The next step is replacing the velocity with

its Extended Finite Elements approximation as in section 5.1.

The normal vector here can be calculated using the values of the Level Set

Function in the vertex nodes using the formula given in equation 3.9. Lastly, it should

be emphasized that for numerical calculation of the integral when the interface on

the enriched element is mapped onto a master element of [-1,1] the linear shape

functions are selected as :

t1 = (1 − ξ)/2 (5.14)

t2 = (1 + ξ)/2 (5.15)

So according to the information provided in this section totally four equations

are added to the global system of equation for one enriched element. This slows
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the computation but gives a solution in which continuity of normal component

of stress is weakly satisfied.
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Chapter 6

NUMERICAL RESULTS

In the previous chapters the basic numerical techniques that are used to obtain

solution to the coupled equations of multiphase fluid flow problem are described. The

proposed numerical approach is tested in this section on a test case using MATLAB.

6.1 Definition Of The Test Problem

The problem is the setup of a cell growth experiment where the a group of cells

(cell culture) is attached to the one of the walls and a fluid is flowing around them.

The aim is increasing the shear stress on the cell culture to trigger an increase in the

rate of proliferation. Domain is considered as a square which has got sides of unity

length. The flow into the domain is defined with a unity length vertical velocity

defined only in the bottom side of the square domain. Left and right sides are

assumed to have a no-slip condition. Left bottom corner of the domain is assumed

to be origin. In addition to this, only the pressure value of the node at the left bottom

corner is given as zero with the aim of finding the relative pressure distribution in

the domain.

Cell culture is modelled as another fluid which has got 10 times of viscosity of

water and water is assumed to be the fluid flowing around the cells. Cell culture is

modelled as a half circle attached to the left wall (The Level Set and the problem

set up is shown in figures 6.1 and 6.2) using the Level Set function :

φ(−→x ) = x2 + (y − 0.5)2 − 0.252 (6.1)
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Figure 6.1: Level Set Used In 2D
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Figure 6.3: Computational Mesh Used In Numerical Solution

The computational mesh used in the solution is shown in figure 6.3.

6.2 Results

The velocity distribution when the continuity of normal component of stress across

the interface is not enforced is illustrated in figure 6.4

To show that the scheme could enforce the continuity of the stress along the

interface in the problem defined in section 6.1, a comparison of the jump of stresses

along the interface is given in this section. For this purpose a function is written

with the aim of checking the values of norm of normal component of stress jump

on Gauss points on the interface and maximum element of absolute of the weighted

continuity of stress condition. It is mentioned in section 5.3 that since the pressure

is continuous only the deviatoric part of the stress on the interface is taken into

consideration. (In other words stress jump in the graphs given in this section is

calculated using the formula 2×(ν1∇s−→v |Ω1 − ν2∇s−→v |Ω2)
−→n ).

When the continuity of normal component of stress is not enforced the jump of

norm of normal component of stress on Gauss points on the interface are illustrated

in 6.5 and the maximum element of the weighted continuity of stress condition

(calculated value of expression in equation 6.3) is illustrated in 6.6. Note that figure
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Figure 6.4: Enriched Elements and Velocity Distribution In Problem Domain When
Continuity of Normal Component Of Stress Condition Is Not Enforced
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Figure 6.5: Norm Of Normal Component Of Stress Jump On Gauss Points On The
Interface When The Continuity Of Stress Is Not Enforced In The Numerical Solution

6.6 is the maximum element of absolute of the weighted continuity of stress condition

calculated on each element. The velocity distribution with the enriched elements in
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Figure 6.6: Maximum Element Of Absolute Of The Weighted Continuity Of Stress
Condition For Each Enriched Element When The Continuity Of Stress Is Not
Enforced In The Numerical Solution

the domain when the continuity of normal component of stress across the interface

is enforced are given in figure 6.7.

The horizontal axes of the figure 6.5, 6.8, 6.6 and 6.9 are given as Gauss point

numbers and vertical axes of the same figures are Norm Of Normal Component Of

Stress Jump On Gauss Points On The Interface which can be stated as:

norm
(
2 ×

(
ν1∇

s−→u − ν2∇
s−→u
)−→n

)
(6.2)

The horizontal axes of the figure 6.6 and 6.9 are given as enriched element

numbers and vertical axes of the same figures are Maximum Element Of Absolute

Of The Weighted Continuity Of Stress Condition For Each Enriched Element which

can be stated as the maximum value of the elements in the result of the integral

stated below:

∫

Γe

−→
ti (ν1∇

s−→u − ν2∇
s−→u
)
−→n (6.3)

Note that in equation 6.3 the integral is calculated along the interface of the element

only.
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Figure 6.7: Enriched Elements and Velocity Distribution In Problem Domain When
Continuity of Normal Component Of Stress Condition Is Enforced
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Figure 6.8: Norm Of Normal Component Of Stress Jump On Gauss Points On The
Interface When The Continuity Of Stress Is Enforced In The Numerical Solution

According to the results obtained: norm of normal component of stress jump

on Gauss points on the interface decreases by a factor of nearly 6 and values in

maximum element of absolute of the weighted continuity of stress condition or each
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Figure 6.9: Maximum Element Of Absolute Of The Weighted Continuity Of Stress
Condition For Each Enriched Element When The Continuity Of Stress Is Enforced
In The Numerical Solution

enriched element graph decreases by a factor of 1013 and according to the results

obtained the continuity of normal component of stresses is satisfied in the solution

since it effectively decreases the stress jumps observed along the interface when only

Extended Finite Elements Method is used in the solution. The value of the jump

in normal component of stress does not become exactly zero since the condition is

weakly enforced in the numerical solution. Lastly, the MATLAB function that is

used to check if the desired continuity of stress condition is satisfied is given:

1 function plotFlux(X,T,LS,enrElem,stdElem,enrNode,velo, ...

2 nu1,nu2,interphasePoints)

3 % Gr = [x y, u_x u_y v_x v_y]

4 % velo = full velocity (std+enr) in 2 columns (u,v)

5

6 global useSym

7 nGeometryNodes = 3; %Number of geometry nodes

8 typeOfElement = 2; %Triangular element

9 ngaus = 7; % Number of gauss points used in the analysis

10 nNode = size(X,1) + size(T,1);

11

12 [pospg,pespg] = quadrature(typeOfElement,ngaus);

13 %Gauss quadrature points and weights

14 [N,Nxi,Neta] = shapeFunctions(typeOfElement,4,pospg);
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15 % Shape functions and derivatives at Gauss points

16

17 Gr = [];

18

19 for I = 1:length(stdElem)

20 Te = T(stdElem(I),:); %local to global vector

21 Xe = X(Te(1:3),:); %element coordinates

22 Ve = velo(Te,:); %solution for the element

23

24 if LS(Te(1)) > 0 %selection of viscosity

25 %depending on the location of Gauss point

26 nu = nu1; % mat 1

27 else

28 nu = nu2; % mat 2

29 end

30

31 for igaus = 1:ngaus %Gauss point loop

32 jacob = [Nxi(igaus,1:nGeometryNodes); ...

33 Neta(igaus,1:nGeometryNodes)] * Xe;

34 %Jacobian matrix

35 res = jacob\[Nxi(igaus,:);Neta(igaus,:)];

36 %Derivatives of shape functions calculated

37 %at Gauss points

38 Nx = res(1,:);

39 Ny = res(2,:);

40

41 pos = N(igaus,1:nGeometryNodes) * Xe;

42 %Gauss points in xy coordinates

43 dUdx = Nx* Ve(:,1);

44 dVdx = Nx* Ve(:,2);

45 dUdy = Ny* Ve(:,1);

46 dVdy = Ny* Ve(:,2);

47

48 Gr = [Gr; pos [dUdx dUdy dVdx dVdy] * nu];

49 end

50 end

51

52

53 for I = 1:length(enrElem) %Enriched elements loop

54 Te = T(enrElem(I),:); %Local to global vector
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55 Re = vectorFind(enrNode, Te(1:nGeometryNodes));

56 %Local to global vector for enriched degree of freedoms

57

58 Xe = X(Te(1:3),:); %Element coordinates

59 Ve = velo(Te,:); %Solution for the element

60 LSe = LS(Te(1:3)); %Level Set values on the element

61 Vee = velo(Re+nNode,:); %Local to global vector

62 %for enriched degree of freedoms iterated version

63

64 [R,Rxi,Reta] = buildRidge( LSe, ...

65 N(:,1:nGeometryNodes), Nxi(:,1:nGeometryNodes), ...

66 Neta(:,1:nGeometryNodes) );

67 %calculation of Ridge function

68 for igaus = 1:ngaus %Gauss points loop

69 jacob = [Nxi(igaus,1:nGeometryNodes); ...

70 Neta(igaus,1:nGeometryNodes)] * Xe;

71 res = jacob\[Nxi(igaus,:);Neta(igaus,:)];

72 resR = jacob\[Rxi(igaus,:);Reta(igaus,:)];

73 Nx = res(1,:);

74 Ny = res(2,:);

75 Rx = resR(1,:);

76 Ry = resR(2,:);

77 Mx = Nx(1:nGeometryNodes) * R(igaus) + ...

78 N(igaus,1:nGeometryNodes) * Rx;

79 My = Ny(1:nGeometryNodes) * R(igaus) + ...

80 N(igaus,1:nGeometryNodes) * Ry;

81

82 pos = N(igaus,1:nGeometryNodes) * Xe;

83 dUdx = Nx* Ve(:,1) + Mx * Vee(:,1);

84 dVdx = Nx* Ve(:,2) + Mx * Vee(:,2);

85 dUdy = Ny* Ve(:,1) + My * Vee(:,1);

86 dVdy = Ny* Ve(:,2) + My * Vee(:,2);

87 %

88 if N(igaus,1:nGeometryNodes) * LSe > 0 %selection

89 %of viscosity depending on the location

90 %of Gauss point

91 nu = nu1; % mat 1

92 else

93 nu = nu2; % mat 2

94 end
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95 if useSym

96 Gr = [Gr; pos [dUdx 0.5 * (dUdy+dVdx) ...

97 0.5 * (dUdy+dVdx) dVdy] * nu];

98 else

99 Gr = [Gr; pos [dUdx dUdy dVdx dVdy] * nu];

100 end

101 end

102 end

103

104

105 %%

106 figure

107 plotLShis(X,LS');

108 hold on

109 % grad U

110 quiver( Gr(:,1), Gr(:,2), Gr(:,3), Gr(:,4), 1, ...

111 'color' , 'b' );

112 % grad V

113 quiver( Gr(:,1), Gr(:,2), Gr(:,5), Gr(:,6), 1, ...

114 'color' , 'r' );

115 legend( 'Interface' , 'grad U' , 'grad V' )

116 %Plot of grad U and grad V

117

118

119

120

121 %% compute the stress jump across the interphase

122 [pg,wg]=quadrature(0,5);

123 N1d = shapeFunctions(0,2,pg);

124 icountt=0;

125 for I = 1:length(enrElem) %enriched elements loop

126 pts = [interphasePoints(2 * I-1,:); ...

127 interphasePoints(2 * I,:)];

128 %positions of points cut by levelset the normal

129 dist = pts(1,:)-pts(2,:);

130 h = norm(dist);

131

132 Te = T(enrElem(I),:);

133 Re = vectorFind(enrNode, Te(1:nGeometryNodes));

134
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135 Xe = X(Te(1:3),:);

136 Ve = velo(Te,:);

137 LSe = LS(Te(1:3));

138 Vee = velo(Re+nNode,:);

139

140 xy = N1d * pts;

141 [xi,eta] = invMap(Xe, xy(:,1), xy(:,2));

142 [N,Nxi,Neta] = shapeFunctions(typeOfElement, ...

143 4,[xi,eta]);

144

145 % Ridge evaluated in the positive side

146 [Rp,Rxip,Retap] = buildRidge( LSe, ...

147 N(:,1:nGeometryNodes), Nxi(:,1:nGeometryNodes), ...

148 Neta(:,1:nGeometryNodes), 1 );

149 % Ridge evaluated in the negative side

150 [Rn,Rxin,Retan] = buildRidge( LSe, ...

151 N(:,1:nGeometryNodes), Nxi(:,1:nGeometryNodes), ...

152 Neta(:,1:nGeometryNodes), 2 );

153

154 fprintf( '\nElement %d' , I);

155 int = 0;

156 for igaus = 1:length(pg)

157 jacob = [Nxi(igaus,1:nGeometryNodes); ...

158 Neta(igaus,1:nGeometryNodes)] * Xe;

159 res = jacob\[Nxi(igaus,:);Neta(igaus,:)];

160 resRp = jacob\[Rxip(igaus,:);Retap(igaus,:)];

161 resRn = jacob\[Rxin(igaus,:);Retan(igaus,:)];

162 nn=gausspointnfinder(Nxi(igaus,1:nGeometryNodes), ...

163 Neta(igaus,1:nGeometryNodes),jacob,LSe);

164 %Ridge function is converted into xy coordinates here

165 %both for negative and positive side of the domain

166 Nx = res(1,:);

167 Ny = res(2,:);

168 Rxp = resRp(1,:);

169 Ryp = resRp(2,:);

170 Rxn = resRn(1,:);

171 Ryn = resRn(2,:);

172 Mxp = Nx(1:nGeometryNodes) * Rp(igaus) + ...

173 N(igaus,1:nGeometryNodes) * Rxp;

174 Myp = Ny(1:nGeometryNodes) * Rp(igaus) + ...
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175 N(igaus,1:nGeometryNodes) * Ryp;

176 Mxn = Nx(1:nGeometryNodes) * Rn(igaus) + ...

177 N(igaus,1:nGeometryNodes) * Rxn;

178 Myn = Ny(1:nGeometryNodes) * Rn(igaus) + ...

179 N(igaus,1:nGeometryNodes) * Ryn;

180 %Enrichment functions are calculated for

181 %all possibilities

182 pos = N(igaus,1:nGeometryNodes) * Xe;

183 dUdxp = Nx* Ve(:,1) + Mxp * Vee(:,1);

184 dVdxp = Nx * Ve(:,2) + Mxp * Vee(:,2);

185 dUdyp = Ny* Ve(:,1) + Myp * Vee(:,1);

186 dVdyp = Ny * Ve(:,2) + Myp * Vee(:,2);

187 %

188 dUdxn = Nx* Ve(:,1) + Mxn * Vee(:,1);

189 dVdxn = Nx * Ve(:,2) + Mxn * Vee(:,2);

190 dUdyn = Ny* Ve(:,1) + Myn * Vee(:,1);

191 dVdyn = Ny * Ve(:,2) + Myn * Vee(:,2);

192 %elements of symmetric gradient of

193 %velocity is calculated here

194 if useSym

195 gradSp = [dUdxp 0.5 * (dVdxp+dUdyp); ...

196 0.5 * (dVdxp+dUdyp) dVdyp];

197 %symmetric gradient of velocity for positive side

198 gradSn = [dUdxn 0.5 * (dVdxn+dUdyn); ...

199 0.5 * (dVdxn+dUdyn) dVdyn];

200 %symmetric gradient of velocity for negative side

201 else

202 gradSp = [dUdxp dUdyp; ...

203 dVdxp dVdyp];

204 %symmetric gradient of velocity for positive side

205

206 gradSn = [dUdxn dUdyn; ...

207 dVdxn dVdyn];

208 %symmetric gradient of velocity for negative side

209 end

210

211 % jump

212 z = 2 * (gradSp * nn* nu1 - gradSn * nn* nu2);

213 %normal component of stress jump

214 fprintf( '\n\tz = [%e %e]' , z(1), z(2));
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215 icountt=icountt+1;

216 znorm(icountt)=norm(z); %norm of normal

217 %component of stress jump

218 int = int + z * N1d(igaus,:) * wg(igaus) * h/2;

219 %continuity of stress condition

220 end

221 inttrace(I)=max(max(abs(int)));

222 fprintf( '\n\tint = [%e %e; %e %e]\n' , ...

223 int(1,1), int(1,2), int(2,1), int(2,2));

224 end

225 title( 'Plot Of Gradients The Components Of Velocity Vector' , ...

226 'fontsize' ,14)

227 xlabel( 'X Axis' , 'fontsize' ,14)

228 ylabel( 'Y Axis' , 'fontsize' ,14)

229

230 figure

231 plot(1:icountt,znorm, '-xr' , 'linewidth' ,3, 'markersize' ,9)

232 title( 'Plot Of Norm Of Normal Component Of Stress Jump On Gauss ...

Points' , 'fontsize' ,13)

233 xlabel( 'Gauss Point Number' , 'fontsize' ,13)

234 ylabel( 'Norm of Normal Component Of Stress Jump' , 'fontsize' ,13)

235 legend( 'Normal Component Of Flux Jump On Gauss Points' )

236

237

238 figure

239 plot(1:I,inttrace, '-xb' , 'linewidth' ,3, 'markersize' ,9)

240 title( 'Plot Of Maximum of Absolute Of The Weighted Continuity Of ...

Stress Condition' , 'fontsize' ,13)

241 xlabel( 'Enriched Element Number' , 'fontsize' ,13)

242 ylabel( 'Maximum of Absolute Of The Weighted Continuity Of Stress ...

Condition' , 'fontsize' ,13)

243 legend( 'Maximum of Absolute Of The Weighted Continuity Of Stress ...

Condition' )
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CONCLUSION

In this work we have proposed a modification to the well-known Extended Finite

Elements Method (X-FEM) used in combination with Level Set Method to improve

the accuracy of the stresses close to the interface in multiphase flow problems. The

proposed scheme is motivated by several observations :

1) Despite X-FEM provides an enhanced solution (with respect to Classical Finite

Elements Method) close to the interface, the derivatives of the X-FEM solution are

not better than the those provided by FEM. Consequently, the stress jump across

the interphase is not zero.

2) In some practical problems the quantity of interest are the fluxes/stresses at

the interface. Two examples of these problems are:

i) The update of the interface location based on the fluxes (See Cordero and Dı́ez

(2010) )

ii) The simulation of cell growth in a flow channel. In this case one of the

important factors is measuring the stresses exerted by the flow at the surface of

the growing cells. The proposed scheme is based in the explicit solution of the stress

continuity equation across the interface. This equation is solved in a weak form

and implemented as a restriction of the solution space using Lagrange multipliers.

The interpolation space used in the discretization of the stress continuity equation

is discontinuous between elements. While this increases the size of the system, it

provides a much better approximation of the stress continuity.

Also a MATLAB code which can enforce the continuity of normal component of

the stresses in a two–phase flow is developed and submitted with the thesis.
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Appendix A

Extra Information

A.1 Integration By Parts

Integration by parts is a rule that transforms the integral of products of functions

into (generally) simpler integrals. Expanding the differential of a product of two

functions f and g:

d(fg) = f dg + g df (A.1)

And integrating both sides over the domain where f and g are defined:

∫
d(fg)dΩ = fg =

∫
f dgdΩ +

∫
f dgdΩ (A.2)

Equation A.2 can be written as:

∫
f dgdΩ = fg −

∫
g dfdΩ (A.3)

Equation A.3 is known as integration by parts rule in mathematical analysis and it

is mainly used to calculate the integrals using simpler integrals. The integral that is

going to be calculated can be indefinite or definite. The same rule can be used for

the vectorial functions.
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A.2 Change Of Variables In Double Integrals

With the aim of calculating the results of integrals that come from the derivation

of the finite elements formulations, it is a frequent application to use numerical

techniques among which the most popular one is Gauss Quadrature Integration.

For this purpose the limits of the integrals need to be defined over the reference

domain. For example, in 2D applications where triangular elements are used this is

a reference triangle which has got unity length sides. From calculus a define integral

formula when the main variable is changed from x to u can be expressed as:

∫ b

a

f(x) dx =

∫ d

c

f(x(u))
dx

du
du (A.4)

in equation A.4 it is assumed that x(u) is a continuous function where:

• a and b are the limits of variable x

• c and d are the corresponding limits of variable u

When the same change is done for a double integral in which two variables are

defined, namely x and y, the same expression can be expressed as:

∫∫

Ω

f(x, y) dx =

∫∫

Ω∗

f(x(u, v), y(u, v))

∣
∣
∣
∣
∂(x, y)

∂(u, v)

∣
∣
∣
∣ du dv (A.5)

where

[
∂(x, y)

∂(u, v)

]

is called the Jacobian matrix.

In this case the determinant of the Jacobian matrix can be stated as:

|J | =

∣
∣
∣
∣
∂(x, y)

∂(u, v)

∣
∣
∣
∣ =

∣
∣
∣
∣
∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

∣
∣
∣
∣ (A.6)

Determinant of Jacobian Matrix is know as a ratio between the area of the element

in real domain and the area of the element in reference domain in a two dimension

problem.
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A.3 Gauss Quadrature Integration

There are many numerical tools that are used to calculate the definite integrals.

For example: Rectangular rule, Trapezoidal rule and Simpson’s rule . . . However,

Gauss Quadrature Method is the one that is mostly preferred in Finite Element

Analysis because of the fact that this method can calculate the results exactly when

the integrand is a polynomial as it is the case for most of the Finite Elements Method

applications.

In this method the result is expressed as a weighted sum of the integrand at

specific points in the domain of integration. If n points are used in the integration

the exact solution is obtained up to polynomials which have an order up to 2n-1 in

one dimensional case.

Simply writing the integral in 1D assuming that the limits of integral is already

converted into the limits in the reference element as stated in section A.2:

∫ +1

−1

f(x) dx =
n∑

i=1

wi ∗ f(xi) (A.7)

In equation A.7 n is the number of points used in the integration. As n changes the

weights and the positions at which the function is calculated changes. The tables

that include the Gauss points and corresponding weights used in one dimensional

case and two dimensional cases are taken from Liu and Trung (2010) and given in

sections A.3.1 and A.3.2. The total number of gauss points used in the numerical

integration should change according to the integrand. So, the accuracy order for

selection of a total number of gauss points is also given in the same tables.

Since the simulations provided in this thesis is for a two dimensional case, all

the positions needed in the reference element and weights are also coded in the

MATLAB code submitted in the function quadrature.m.

Find the Gauss Integration Points in Reference Element And Corresponding

Weights in the following two sections for a one dimensional and two dimensional

case.
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A.3.1 One Dimensional Case For One Dimensional Quadra-

ture Domain of [−1, 1]

When 2 integration points are used :

Table A.1: List Of Gauss Quadrature Points And Weights For 2 Points For One
Dimensional Case, Order Of Accuracy:3

Point Weight Position in Reference Element

1 1.0000000000000000 -0.5773502691896257

2 1.0000000000000000 0.5773502691896257

When 3 integration points are used :

Table A.2: List Of Gauss Quadrature Points And Weights For 3 Points For One
Dimensional Case, Order Of Accuracy:5

Point Weight Position in Reference Element

1 0.8888888888888888 0.0000000000000000

2 0.5555555555555556 -0.7745966692414834

3 0.5555555555555556 0.7745966692414834

When 4 integration points are used :

Table A.3: List Of Gauss Quadrature Points And Weights For 4 Points For One
Dimensional Case, Order Of Accuracy:7

Point Weight Position in Reference Element

1 0.6521451548625461 -0.3399810435848563

2 0.6521451548625461 0.3399810435848563

3 0.3478548451374538 -0.8611363115940526

4 0.3478548451374538 0.8611363115940526
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When 5 integration points are used :

Table A.4: List Of Gauss Quadrature Points And Weights For 5 Points For One
Dimensional Case, Order Of Accuracy:9

Point Weight Position in Reference Element

1 0.5688888888888889 0.0000000000000000

2 0.4786286704993665 -0.5384693101056831

3 0.4786286704993665 0.5384693101056831

4 0.2369268850561891 -0.9061798459386640

5 0.2369268850561891 0.9061798459386640

A.3.2 Two Dimensional Case for a Isosceles Right Triangu-

lar Quadrature Domain

When 3 integration points are used:

Table A.5: List Of Gauss Quadrature Points And Weights For 3 Points For Two
Dimensional Case, Order Of Accuracy:2

Point Weight ξ η

1 1/6 1/6 1/6

2 4/6 1/6 1/6

3 1/6 4/6 4/6

When 4 integration points are used:

Table A.6: List Of Gauss Quadrature Points And Weights For 4 Points For Two
Dimensional Case, Order Of Accuracy:3

Point Weight ξ η

1 25/96 1/5 1/5

2 25/96 3/5 1/5

3 25/96 1/5 3/5

4 -9/32 1/3 1/3
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When 6 integration points are used:

Table A.7: List Of Gauss Quadrature Points And Weights For 6 Points For Two
Dimensional Case, Order Of Accuracy:4

Point Weight ξ η

1 0.0549758718 0.0915762135 0.0915762135

2 0.0549758718 0.8168475729 0.0915762135

3 0.0549758718 0.0915762135 0.8168475729

4 0.1116907948 0.4459484909 0.4459484909

5 0.1116907948 0.1081030181 0.4459484909

6 0.1116907948 0.4459484909 0.1081030181

When 7 integration points are used:

Table A.8: List Of Gauss Quadrature Points And Weights For 7 Points For Two
Dimensional Case, Order Of Accuracy:5

Point Weight ξ η

1 0.0629695902 0.1012865073 0.1012865073

2 0.0629695902 0.7974269853 0.1012865073

3 0.0629695902 0.10128650732 0.7974269853

4 0.0661970763 0.47014206410 0.05971587178

5 0.0661970763 0.47014206410 0.47014206410

6 0.0661970763 0.05971587178 0.47014206410

7 0.1125000000 0.33333333333 0.33333333333

A.4 Lagrangian , Eulerian And ALE Descriptions

Of Motion

For the mathematical description of flow problems it is certain that a kinematical

description of the flow field is required. In continuum mechanics, there are mainly

three descriptions of motion. They are:

1. Lagrangian description of motion

2. Eulerian description of motion
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3. ALE description of motion

In Lagrangian description, each node of the mesh follows a specific particle

throughout the motion. This approach is mainly used in solid mechanics appli-

cations. The Lagrangian description lets tracking interfaces and the free surfaces

easily. The bad side of this approach is that it is unable to follow large distortions

in the domain unless a frequent remeshing is used. Figure A.1 taken from Donea

and Huerta (2002), shows the Lagrangian description in reference and last configu-

rations. In the figure given φ is a point to point mapping function which relates the

material coordinates to the spatial coordinates in such a way that :

(
−→
X, t) → φ(

−→
X, t) = (−→x , t) (A.8)

where:

• −→x is the spatial coordinates

•
−→
X is the material coordinates

• t is time

Using mapping function φ the material coordinates are related to the spatial

coordinates which makes it possible to write the spatial coordinates as a function of

material coordinates and time directly :

−→x = −→x (
−→
X, t) (A.9)

Eulerian description of motion uses a fixed computational mesh and the fluid

moves with respect to the fixed mesh. In this case, large deformations is not a

problem and it is very appropriate for turbulent flow simulation. The bad side of

this approach is that it is difficult to track free surfaces and interfaces between

different types of materials.

ALE description includes the introduction of a mesh which can move with a

velocity independent of the velocity of the particles in the problem. This approach

is pretty helpful in flow problems which include a large amount of distortion and in

presence of moving boundaries in the problems. Mentioning the interaction between

a flexible structure and a fluid would be a good example.
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Figure A.1: Lagrangian Description Of Motion

In all the calculations throughout this thesis an Eulerian Framework is used

which means that the problem includes a fixed mesh and physical quantities

associated with the fluid flow is passing through a fixed region in space. Accordingly,

in all the computations spatial coordinates are used.

Last information to be given under this headline is the expression of the relation

between the time derivative of a scalar quantity f in spatial and material coordinates.

The relation can be expresses as in the equation A.10

Df

dt
=

∂f

∂t
+ −→v ∙ ∇f (A.10)

A.5 Integral Theorems

A.5.1 Reynolds Transport Theorem

To get the integral form of the basic equations, such as conservation of mass

momentum and energy, it is required to know the rate of change of integrals which

are defined on non-stationary volumes. Imagine a material volume Vm and this

volume is bounded by a closed surface Sm. The points on this surface move with a

material velocity defined as −→v = −→v (−→x , t). The material time derivative (sometimes

referred as total time derivative) of a smooth enough scalar function f(−→x , t) over
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the mentioned non-stationary material volume is expressed by Reynolds Transport

Theorem:

d

dt

∫

Vm

f(−→x , t) dV =

∫

Vm≡Vt

∂f(x, t)

∂t
dV

︸ ︷︷ ︸
variation of f inside Vt

+

∫

Sm≡St

f(−→x , t)−→v ∙ −→n dS

︸ ︷︷ ︸
flux across St

(A.11)

Here:

• The first integral on the right hand side is defined over a fixed volume in space

and it is the same volume of the moving material volume Vm

• St is the surface that bounds the volume St at the considered time instant

• −→n is the unit normal vector to the surface St at the considered time instant

• −→v is the velocity in St

In equation A.11, the first term on the right-hand side is the local time derivative

of the scalar function f and the second term represent the flux across the fixed surface.

This equation can be considered as taking a snapshot of a control volume at time

instant t since the first term on right-hand side of equation A.11 represents the total

change at a specific location in space and the second term on the right-hand side

represents the change due to the movement of the control volume. The integrals on

the right-hand side of the equation A.11 are calculated in a control volume which

coincides with the moving volume Vt

A.5.2 Divergence Theorem

If
−→
F is a vector function of position and V is a volume surrounded by a closed

surface S then,

∫

V

∇ ∙
−→
F dV =

∫

S

−→
F ∙ −→n dS (A.12)

where −→n is the unit outward normal vector to the closed surface S.
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A.6 Main Equations Used For The Solution Of

Fluid Flow Problems

A.6.1 Conservation Of Mass (Continuity Equation)

In non-relativistic mechanics, a basic law is the conservation of mass in a material

volume. Writing the rate of change of mass in a material volume:

Q =
dM

dt
(A.13)

where:

• M is the mass in the material volume

• Q is the rate of injection of material into the material volume.

Assuming that there is no injection of material and writing M in integral form

defined over a moving volume the formula becomes:

0 =
dM

dt
=

d

dt

∫

Vm

ρ dV (A.14)

In equation A.14, ρ is the density of the material. Using Reynolds Transport

Theorem in equation A.14:

0 =
dM

dt
=

∫

Vt

∂ρ

∂t
dV +

∫

St

ρ−→v ∙ −→n dS (A.15)

Applying the divergence theorem to the second term on the right-hand side lastly:

0 =
dM

dt
=

∫

Vt

(
∂ρ

∂t
+ ∇ ∙ (ρ−→v )

)

dV (A.16)

Because of the fact that equation A.16 is valid for all choices of Vt the expression

in the integral must be zero. So, writing the final expression, the mass conservation

equation is obtained as:

∂ρ

∂t
+ ∇ ∙ (ρ−→v ) = 0 (A.17)
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At this point, it is useful to note that in cases where the density is constant

equation A.17 reduces to the simple form:

∇ ∙ (−→v ) = 0 (A.18)

Equation A.18 gives the information which gives the information that velocity

field of an incompressible fluid is divergence free.

A.6.2 Conservation Of Momentum (Cauchy Equation)

Momentum equation, known as equation of motion, is the equation that relates

the forces acting on a selected part of fluid and the rate of change of momentum

in that part of the fluid using Newton’s second law. According to this law, mass

multiplied by the acceleration is equal to the vectorial sum of all the forces acting

on that portion of mass.

In general, it is possible to mention about two different types of forces acting on

fluids. They are body (or volume) and surface forces. Body forces act on the whole

material under consideration whereas surface forces act on the surface of the fluid

portion. In general, in analyses gravity is selected as the only body force that exist

in engineering problems unless otherwise stated.

The derivation of momentum equation is also clearly stated in Batchelor (1967),

Ranalli (1995) , Dobretsov and Kirdyashkin (1998), Donea and Huerta (2002) and

Schubert et al. (2001)

According to Newton’s second law the change of momentum in a control volume

is equal to the net forces acting on it. The variation of momentum for a control

volume Vt can be expressed as:

D

Dt

∫

Vt

ρ−→v dV (A.19)

Here, using the Reynolds transport theorem and divergence theorems, the rate of

change of momentum can be expressed as:

D

Dt

∫

Vt

ρ−→v dV =

∫

Vt

∂ρ−→v
∂t

dV +

∫

St

(ρ−→v ⊗−→v ) ∙ −→n dS (A.20)

=

∫

Vt

(
∂ρ−→v
∂t

+ ∇ ∙ (ρ−→v ⊗−→v )

)

dV
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where the tensor product operator is defined as:

[−→v ⊗−→v
]
ij

= vi vj (A.21)

Using the continuity equation and the definition of the material derivative at

this point :

D

Dt

∫

Vt

ρ−→v dV =

∫

Vt

ρ
D−→v
Dt

dV (A.22)

Forces acting on the control volume can be either body forces or surface forces

and they are expressed in equations A.23 and A.24:

Body force =

∫

Vt

ρ
−→
b dV (A.23)

Surface force =

∫

St

σ ∙ −→n dS =

∫

Vt

∇ ∙ σ dV (A.24)

where:

•
−→
b is the body force acting on unit mass of fluid

• σ is the Cauchy stress tensor

Writing the equilibrium for a control volume:

∫

Vt

ρ
D−→v
Dt

dV =

∫

Vt

ρ
−→
b dV +

∫

Vt

∇ ∙ σ dV (A.25)

Since equation A.25 is valid for any control volume it can be written in the form:

ρ
D−→v
Dt

= ρ
−→
b + ∇ ∙ σ (A.26)

Expanding the material derivative on the left-hand side of equation A.26 the

following form of the momentum conservation equation can be obtained :

ρ
∂−→v
∂t

+ ρ
(−→v ∙ ∇

)−→v = ∇ ∙ σ + ρ
−→
b (A.27)

where :
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• −→v is velocity field

• ρ is density of fluid

• t is time

•
−→
b is the body force acting on unit mass of fluid

• σ is stress tensor

The left hand side of equation A.27 is the product of the mass and the

acceleration per unit volume in an elementary parcel. The first term of the right

hand side is the divergence of the net surface forces per unit volume of the elemental

parcel and the last term is the net body force acting unit volume of the elementary

parcel .

A.6.3 Energy Conservation

For incompressible fluids, flow motion can be directly determined by only solving

the continuity equation and the conservation of momentum equation. However, if

the flow is compressible then the energy equation (and also an equation of state)

has to be added to the system of equations to close the equation system and to

determine the flow motion.

Since throughout the thesis flow is assumed to be incompressible, energy

conservation equation is not needed. For this reason, final form is directly written

rather then doing the derivation. A detailed derivation can be found in Lewis et al.

(2004)

ρ
De

Dt
= σ : ∇−→v −∇ ∙ −→q (A.28)

where :

• e is internal energy

• −→q is flux of energy
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Expanding the material derivative in equation A.28 it can be expressed in the

local form :

ρ
∂e

∂t
+ ρ−→v ∙ ∇e

︸ ︷︷ ︸
1

= σ : ∇−→v
︸ ︷︷ ︸

2

−∇ ∙ −→q
︸ ︷︷ ︸

3

(A.29)

In equation A.29 the terms can be explained as:

1. Rate of change of internal energy (Sum of temporal change and local convective

change )

2. Conversion of mechanical energy into thermal energy due to surface stresses

3. Rate at which the heat added externally

A.7 Lagrange Multipliers Method To Impose

Dirichlet Boundary Conditions

To impose Dirichlet boundary conditions in another words Essential boundary

conditions a popular technique used is called Lagrange Multipliers Method. In case

Lagrange Multipliers Method is used the known values of the Dirichlet part of the

boundary are imposed adding linear constraints to the original system which is

generally singular. Let’s say totally nλ unknowns and lines are added to the system

(nλ Lagrange multipliers λ.) . What Finite Elements Method in the end gives us is

a linear system of equations which can be expressed in the general form :

K−→u =
−→
f (A.30)

where:

• K is the stiffness matrix of the global system

• −→u is the vector of unknowns of the global system

•
−→
f is the forcing vector of the global system

Assuming that there are nt lines in this system and some of the elements in the

vector of unknowns are known as essential boundary conditions. After adding the
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mentioned Lagrange multipliers system system can be expressed as:

K−→u + AT−→λ =
−→
f (A.31)

A−→u = −→g (A.32)

where:

• −→g is the given values of the relation of unknowns

• A is a rectangular matrix which contains the coefficients of the relation

between unknowns of the problem (size is nλ × nt)

•
−→
λ is the vector containing added Lagrange multipliers to the problem

So the the global system defined in equation A.30 imposing the essential boundary

conditions can be expressed as :



K AT

A 0








−→u
−→
λ



 =




−→
f
−→g



 (A.33)

defining 0 a zero matrix that will make the system a square.

By usage of Lagrange Multipliers technique it is not only possible to impose the

values of essential boundary conditions given in the problem but also it is possible

to impose the linear relations between unknowns of the problem in consideration.
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BIBLIOGRAPHY

T.Y. Kim, J. Dolbow, and T. Laursen. A mortared finite element method for

frictional contact on arbitrary interfaces. Computational Mechanics, 39:223–235,

2007.

A. Knapen, J. Poesen, G. Govers, G. Gyssels, and J. Nachtergaele. Resistance of

soils to concentrated flow erosion: A review. Earth-Science Reviews, 80:75109,

2007. doi: 10.1016/j.earscirev.2006.08.001.

J. Korsawe, G. Starke, G. Wang, and O. Kolditz. Finite element analysis of poro-

elastic consolidation in porous media. Computer Methods in Applied Mechanics

and Engineering, 195:1096–1115, 2006.

P. Laborde, J. Pommier, Y. Renard, and M. Salaün. High-order extended finite

element method for cracked domains. International Journal For Numerical

Methods In Engineering, 64:354–381, 2005.

O. A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flow.

Gordon and Breach Science Publishers, 1969.

A. Lamb, G. Gorman, O. Gosselin, and A. Onaisi. Coupled deformation and fluid

flow in fractured porous media using dual permeability and explicitly defined

fracture geometry. EAGE, pages 14 – 17, 2010.

R. Larsson and M. Fagerström. A framework for fracture modelling based on the

material forces concept with xfem kinematics. International Journal for Numerical

Methods in Engineering, 62:1763–1788, 2005.

S.H. Lee, J.H. Song, Y.C. Yoon, G. Zi, and T. Belytschko. Combined extended

and superimposed finite element method for cracks. International Journal for

Numerical Methods in Engineering, 59:1119–1136, 2004.

A. Legay, J. Chessa, and T. Belytschko. An eulerian-lagrangian method for fluid-

structure interaction based on level sets. Computer Methods in Applied Mechanics

and Engineering, 195:2070–2087, 2006.
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N. Sukumar, D.L. Chopp, N. Moës, and T. Belytschko. Modeling holes and inclusions

by level sets in the extended finite-element method. Computer Methods in Applied

Mechanics and Engineering, 190:6183–6200, 2001.

N. Sukumar, D.L. Chopp, and B. Moran. Extended finite element method and fast

marching method for three-dimensional fatigue crack propagation. Engineering

Fracture Mechanics, 70:29–48, 2003.
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