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Summary

Coupling behavior exists in every industrial field. There are various

kinds of coupling, wherein coupling between electrostatic and mechan-

ical fields is one of the most common. Electrostriction, one example

of coupled electromechanical behavior, is one of fundamental proper-

ties of insular materials. The principle of coupling mechanism is: An

electric field causes a deformation of the material and this leads to

strains which in turn change the material properties and the deforma-

tion. Some of these materials such as EAP(Electro Active Polymers)

is used in developing robotic arms, and piezoelectric ceramics or com-

posites has been applied in precision machine tools, aviation actuators,

medical imaging systems and bionics aircrafts. In these applications,

electrostriction plays an very important role. In reality, however, it is

challenging to understand these coupling behaviors properly from the

analytical point of view. Therefore, appropriate numerical methods

should be employed to model the coupling behavior accurately.

This thesis aims to generate an effective, efficient and robust finite el-

ement approach for two dimensional coupled electrostatic mechanical

problem, in particular, for electrostriction. The task involves electric

field simulation, mechanical field simulation, and finally electrostric-

tion coupling simulation. When Poisson’s ratio close to 0.5, there is

volumetric locking in mechanical field with displacement finite element

formulation, which may result in an inaccurate solution. In order to

overcome locking, hp finite element method is chosen in this thesis,

whose advantage is obtaining accurate results with either exponential

or algebraic convergence rate. Also mixed finite element method is

developed to overcome locking. Thus, we can combine hp with dis-

placement or mixed finite element method to achieve accurate results.
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In each stage of simulation, the performance of developed hp finite el-

ement methods are tested in some benchmark problems.

In conclusion, the developed hp finite element methods can model elec-

tric field, mechanical field accurately with good convergency. For the

electrostriction benchmark problem, because of the lack of analytical

solution, convergence couldn’t be tested. However, with one way cou-

pling algorithm of electrostriction, the developed hp methods present

exponential convergence rate with p refinement.
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Chapter 1

Introduction

1.1 Background

Frequently two or more physical systems interact with each other, with

the independent solution of any one system being impossible without

simultaneous solution of the others. Such systems are known as cou-

pled systems[1]. The common systems of multi-physics (or coupled-

physics)include such as electric-mechanical, fluid-structure, and thermal-

mechanical interactions. The applications for multi-physics systems

cover every industry, including automotive, aerospace, electronics, semi-

conductor, telecommunications, pharmaceutical, and biomedical. Many

such applications include sensors, transducers, and actuators, where

one physical phenomenon is converted into another: electricity into

motion, for example, or fluid pressure into electricity[2]. Coupled elec-

trostatic mechanical system is one of the common systems of multi-

physics and has wider applications. To illustrate this, some application

areas are now considered.

The micro-electro-mechanical system(MEMS) industry has grown
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incredibly fast over the past few years. MEMS devices have been widely

used in various industries such as aerospace, automobile and biomedi-

cal industries. Multi-physics systems are often present in MEMS. The

coupling between electrostatic and mechanical fields is one of the most

common and fundamental phenomena in MEMS. There are many types

of microsensors and microactuators distinguished by the coupling be-

tween electrostatic and mechanical fields. These MEMS sensors and

actuators have various applications. Micropumps, for example are

widely used in transport of small accurately measured liquid and gas

in chemical and biomedical fields[3, 4]; Micromirros are used in display

technology and optical switches[5]; Comb-drive actuators are used in

microgrippers and force-balanced accelerometers[6]; Microswitches[7]

are used in microwave. These are shown in figure(1.1).

  

 

 

Figure 1.1: MEMS Engineering Applications, Micropumps, Micromirrors,

Comb-drive actuaotrs, Microswitches
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Moreover, the coupled electrostatic and mechanical behavior can be

found in some kinds of material properties. Electrostriction,for exam-

ple, is the fundamental mechanism of electromechanical coupling in

all insulator materials[8]. An electric field applied to a dielectric pro-

duces a deformation which has been observed to be an even function

of the intensity[9]. This is known as the electrostriction property of

insulator materials. This property of materials can be applied in many

industries. Smart materials like Electro Active Polymers (EAP)[10],

exhibit large displacements, and change their mechanical behavior in

response to the application of electric field. An important application

of these smart materials can be found in developing robotic arms that

are actuated by artificial muscles, where the smart materials are used

as actuators. Piezoelectric ceramics or composites[11], because of its

good dielectric and electrostriction properties, has been applied in pre-

cision machine tools, aviation actuators, medical imaging systems and

bionics aircrafts.

Only a few applications for coupled electrostatic mechanical systems

have been mentioned, but already it is possible to observe these appli-

cations are wide ranging and can be applied in various industries.

1.2 Numerical Methods

As discussed above, coupled electrostatic mechanical behavior can be

found in the various industrial applications. Therefore, it is important

to obtain an accurate prediction of the behavior of such coupling ap-

plications. However, modeling and analysis of these applications are

difficult, because the coupling mechanism is highly nonlinear and an-

alytical solutions are not available in most cases[12]. A more effective

approach is the simulation of behavior based on numerical method.
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Several approximate numerical analysis methods have evolved over the

years such as finite volume, finite difference, boundary element and

finite element method. Finite difference method is, one of the most

popular methods, used in various fields due to its efficiency. However,

this method suffers from the drawback that it only provides a pointwise

approximation of the solution[13]. This means when we encounter ir-

regular geometries or an unusual specification of boundary conditions,

finite difference method can not provide accurate solutions.

In engineering problems, finite element method(FEM), as the standard

numerical calculation scheme for the computer simulation of physical

systems, is most widely used, which has the advantages[14] of numerical

efficiency, treatment of non-linearities, complex geometry, and analysis

possibilities.

The question of accuracy and reliability of numerical solutions has led

to the development of a large number of efficient and accurate error

estimators in engineering mechanics. These error estimators are then

employed to adaptively refine until a desired accuracy is reached. h-

, p- and hp finite element methods are belonged to these estimators

and can be used to simulate a number of problems accurately. Each

finite element is characterized by its size h and order of approximation

p. In the h-adaptive version of FEM, element size h may vary from

element to element, while order of approximation p is fixed. In the p-

adaptive version of the FEM, p may vary locally, while h remains con-

stant throughout the adaptive procedure. Finally, a true hp-adaptive

version of FEM allows for varying both h and p locally. The main

motivation for the use of hp FEM is given by the following result[15]:

an optimal sequence of hp-grids can achieve exponential convergence,

whereas h- or p-FEM converge at best algebraically.
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From previous discussions, we can find that it is of vital importance to

investigate hp adaptive finite element method to simulate the coupled

electrostatic mechanical behavior accurately, which is the goal of this

thesis.

1.3 The Aim and Overview of the Thesis

1.3.1 The Aim of the Thesis

This thesis aims to generate a effective, efficient and robust hp adaptive

finite element approach for two dimensional coupled electrostatic me-

chanical problem, in particular, for electrostriction. Generally, in the

coupling between electrostatic and mechanical fields problems, the two

domains overlap(totally or partially) and the coupling occurs through

the differential governing equations describing the field quantities for

electrostatics depend on mechanics and vice versa. In the electrostric-

tion, the electrostatic force generated by electrostatic field will con-

tribute to the volume force component of the differential governing

equations in the mechanical field and the strains generated by mechan-

ical field will effect the permittivity component in the electrostatic

governing equations.

When we consider the nearly incompressible elastic materials, there is

volumetric locking in the mechanical field, which can lead to incorrect

results. It is then hoped that the hp adaptive finite element approach

will be able to overcome locking and provide accurate results.

Using the method provided in the thesis, it is hoped small deformation

electrostriction phenomenon can be simulated accurately. The success

of this task will reveal the method can be extended to large deforma-

tion electrostriction, and further three dimensional coupling problems.
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To achieve the aim, the task is divided into three main parts: elec-

trostatic field simulation; mechanical field simulation; electrostriction

simulation. The detailed work is described in the overview of the thesis.

1.3.2 Overview of the Thesis

This thesis is organized into five chapters as outlined below. The main

body of the work is contained in Chapter 2 to 4, followed by the con-

clusion in Chapter 5.

Chapter 1: The background and numerical methods of the research are

discussed which inspired this research issue. Furthermore, the aim and

overview of the thesis are included.

Chapter 2: The mathematical theory and finite element formulation for

the electrostatic field are discussed. The finite element method devel-

oped in MATLAB tested on a benchmark problem. Further, analytical

solution for the benchmark problem is derived and convergence and

accuracy of the method under h, p refinement is presented.

Chapter 3: The mathematical theory for linear elasticity is discussed

followed by the displacement finite element formulation. Locking phe-

nomena which can lead to inaccurate results is presented and mixed

finite element formulation is derived to avoid locking. Furthermore,

implementation of both displacement and mixed finite element meth-

ods is tested on a benchmark problem under h, p refinement in both

plain strain and plain stress cases.

Chapter 4: The mathematical theory related to electrostriction is dis-

cussed. The methods for calculating electrostatic force are discussed

also. Further, two algorithms with respect to one-way coupling and

two-ways coupling are presented, respectively. Finally, results of the

benchmark problem for both one-way coupling and two-ways coupling
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are presented to show the effectiveness of the proposed hp adaptive

finite element approach.

Chapter 5: This chapter discusses the summary, relevant conclusions

of the thesis and some further research.
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Chapter 2

Electrostatic Field

The full system of partial differential equations describing the electro-

magnetic field was published for the first time by James Clerk Maxwell

in his work A Treatise on Electricity and Magnetism[16, 17] in the year

1862. He based his theory on the work and experiments of Ampere,

Gauss, and Faraday. His great contribution lies in the unification of the

different equations to a set of partial differential equations[14] which

known as Maxwell’s equations. For the static case, Maxwell’s equa-

tions with constitutive laws can be separated into a magnetic and an

electric subsystem. The electric subsystem is called the electrostatic

case. In this chapter, electrostatic field problem is discussed without

considering the effect from the mechanical field.

2.1 Mathematical Theory

For the electrostatic field, from Maxwell’s equation, we obtain the fol-

lowing system of partial differential equations:

∇ × E = 0 (2.1)

∇ · D = ρv (2.2)
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D = εE (2.3)

where E represents electric field intensity (V/m), D is electric flux

density (As/m2), ρv is charge density (As/m3), and ε is electric per-

mittivity (As/Vm).

Since the curl of the electric field intensity E is zero, we can express

it by the gradient of a scalar potential Φ, which is called the electric

scalar potential

E = −∇Φ (2.4)

. Thus, by combining (2.2), (2.3) and (2.4), we obtain:

−∇ · ε∇Φ = ρv (2.5)

. The electrostatic boundary value problem can be written as:

∇ · (ε∇Φ) = −ρv in Ω (2.6)

Φ = fD on ΓD (2.7)

n · (ε∇Φ) = fN on ΓN (2.8)

As we know, there are two kinds of boundaries, Dirichlet boundary ΓD

where the potential value is defined and Neumann boundary ΓN where

the normal derivative of the potential is defined. In general, permittiv-

ity ε is a second order tensor. But for the problem considered in this

chapter, we assume the domain consists of a linear, isotropic(but not

necessarily homogeneous) medium. So ε is taken as a scalar function

of position.

2.2 Finite Element Formulation

Let us consider the situation of a domain with given electric volume

charges ρv, where we want to compute the generated electrostatic field.
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The problem can be stated with (2.6, 2.7, 2.8). To obtain the weak form

of the problem, we multiply (2.6) with an appropriate test function

w ∈ H1
0 and obtain: ∫

Ω
(∇ · (ε∇Φ))wdΩ = −

∫
Ω

ρvwdΩ (2.9)∫
Ω
∇ · (ε∇Φw)dΩ −

∫
Ω

ε∇Φ · ∇wdΩ = −
∫
Ω

ρvwdΩ

Here, H1(Ω) is defined as:

u ∈ H1(Ω) :
∫
Ω
|u|2 + |∇u|2dΩ < ∞ (2.10)

Recall divergence theorem
∫
Ω ∇ · bdΩ =

∫
Γ n · bdS and w = 0 on ΓD,

the weak form reads as: Find Φ ∈ H1
d such that∫

Ω
ε∇φ · ∇wdΩ =

∫
ΓN

n · ε∇φwdS +
∫
Ω

ρvwdΩ (2.11)

for any w ∈ H1
0 . An approximation to the electric scalar potential Φ

as well as the test function w can be introduced as

Φ =
m∑

i=1

φiNi (2.12)

w =
m∑

i=1

wiNi (2.13)

where φi are constant coefficients, Ni are shape functions and m rep-

resents the number of degrees of freedom. Therefore, the weak form is

transformed into the following discrete formulation

m∑
i=1

m∑
j=1

(
∫
Ω

ε(∇Ni)
T∇NjdΩφj −

∫
Ω

NiρvdΩ −
∫

ΓNNin · (ε∇φ)ds) = 0

(2.14)

In matrix form, it may be written as

Kφ = r (2.15)
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where φ = (φ1, φ2, ..., φm)T and K, r are the global stiffness matrix and

residual vector respectively, expressed as:

K =
E∑

e=1

ke
ij; ke

ij =
∫
Ωe

(ε∇Ni · ∇Nj)dΩ (2.16)

r =
E∑

e=1

re
i ; re

i =
∫
Ω

ρvNidΩ +
∫
ΓN

Nin · (ε∇φ)ds (2.17)

where ke
ij and re

i are elemental stiffness matrix and residual vector, re-

spectively. E represents the number of elements in global mesh.

2.3 Higher Order Shape Functions

The domain is discretised into a set of non-overlapping triangular or

quadrilateral elements. Usually the higher order shape functions are

defined on reference elements and mapped to a general elements using

a linear(bilinear) mapping. In the hp approach, the choice of the shape

functions is different to the choice of the functions used for the map-

ping.

There are two common approaches to define higher order elements,

which consist of the nodal approach and the hierarchic approach. In

the nodal approach, the degrees of freedom corresponds to a specific

solution at points within the element. Unfortunately, if the degree of

element is increased, all shape functions must be replaced. In the hi-

erarchic approach, the degrees of freedom do not correspond to the

solution at a specific point, however, the existing shape functions are

retained if the degree of the element is increased[18]. Therefore, the

hierarchic shape functions are preferred in this thesis.

Schoberl and Zaglmayr[19, 20] have developed sets of triangular and

quadrilateral finite element basis functions for the two dimensional
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problem. In particular, to discretise the electrostatic finite element

formulation, their basis functions for order p H1 conforming elements

are employed. A triangulation of Ω denoted by ΓH is constructed us-

ing either quadrilaterals or triangles. The set of vertices is denoted by

νH and the set of edges by εH . For the hierarchic scalar H1 conform-

ing finite element space a low order-vertex, high order edge-cell based

splitting is adopted:

Wh,p+1 := Wh,1 ⊕
∑

edges E∈εH

WE
p+1 ⊕

∑
cells I∈ΓH

W I
p+1 ⊂ H1 (2.18)

The relevant basis functions for Schoberl and Zaglmayr’s quadrilateral

and triangular discretization can be found in [19, 20].

2.4 Computational Implementation

This section discusses issues related to computational implementation

of the hp finite element formulation.

2.4.1 Evaluation of Elemental Integrals

In the same way as standard finite element shape functions, the pre-

viously defined shape functions are defined in a piecewise area, which

means that when evaluating integrals such as ke
ij or be

i , we only need

to consider the set of shape functions associated with element e. How-

ever recall that shape functions Ni is defined in the reference element,

whereas we need to integrate over the general physical element. To

overcome this problem, a mapping between a physical element and

a reference element is employed, denoted as Jacobian matrix J. J is

expressed as:

J =

 ∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

 (2.19)
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where, x and y represent general coordinates whereas x̂ and ŷ are ref-

erence coordinates.

For shape functions, there is mapping as follows:

∇N = J−T ∇̂N (2.20)

In practice, most of these integrals is approximated by using Gauss

quadrature[21].

2.4.2 Static Condensation

By numbering the degrees of freedom in a consistent manner, for ex-

ample, grouping the all vertex functions, the all edge based functions,

and the all interior functions. Denoting the group of vertex functions

and edge based functions by C and the group of interior functions as

I, then the linear equations system of structure can be expressed as: KCC KCI

KIC KII


 φC

φI

 =

 rC

rI

 (2.21)

The interior degrees of freedom have no inter-element connectivity.

Therefore, by using static condensation[22], it is possible to reduce the

number of unknowns in the global system by eliminating the interior

unknowns. Eliminating φI yields:

˜KCCφC = b̃C (2.22)

with

˜KCC = KCC − KCIK
−1
II KIC (2.23)

b̃C = bC − KCIK
−1
II bI (2.24)

Moreover, as KII is block-diagonal this procedure can be applied during

assembling so that:

˜KCC
e

= Ke
CC − Ke

CIK
e−1
II Ke

IC (2.25)
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Figure 2.1: A conducting trough

b̃C
e

= be
C − Ke

CIK
e−1
II be

I (2.26)

2.5 Benchmark Numerical Example

The electrostatic benchmark problem we discuss here is determining

the potential for the region inside the rectangular trough of infinite

length. The cross section of the trough and boundary conditions are

shown in Figure(2.1). All the boundaries are Dirichlet boundaries and

V=1. This problem has singularities in the corners and is chosen to

discuss the convergence rate of hp refinement.

2.5.1 Analytical Solution

The permittivity ε is constant in the whole region and no variation

in Z direction, so the governing equations for above problem can be

expressed as:
∂2Φ

∂x2
+

∂2Φ

∂y2
= 0 (2.27)

The potential Φ can be divided into two parts using the technique of

separation of variables,

Φ = X(x)Y (y) (2.28)
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thus,

Y X
′′

+ XY
′′

= 0

−X
′′

X
=

Y
′′

Y
= λ (2.29)

where λ must be a constant, since it is a function of X only, and a

function of Y only as well.

There are three cases, λ = 0, λ < 0, and λ > 0.

For the case λ = 0, then from (2.20), we can find X
′′

should be zero.

Thus X can be expressed as:

X = Ax + B (2.30)

Introducing boundary conditions X(x = 0) = 0, X(x = b) = 0, we can

get:

X(x = 0) = B = 0 (2.31)

X(x = b) = Ab = 0 ⇒ A = 0 (2.32)

Thus X=0, which is incorrect. So λ 6= 0.

For the case λ < 0, say λ = −α2, then:

d2X

dx2
− α2X = 0 (2.33)

Thus, the solution can be expressed as:

X = A1e
αx + A2e

−αx (2.34)

Since,

sinh αx =
eαx − e−αx

2
(2.35)

cosh αx =
eαx + e−αx

2
(2.36)

then X can transform into:

X = B1 cosh αx + B2 sinh αx (2.37)

15



with B1 = A1 + A2 and B2 = A1 − A2.

Introducing boundary conditions X(x = 0) = 0, X(x = b) = 0, we can

get:

X(x = 0) = B1 = 0 (2.38)

X(x = b) = B2 sinh αb = 0 ⇒ B2 = 0 (2.39)

Again, X=0, this case leads to incorrect solution.

So λ should be grater than zero and it can be written λ = α2. Then

we can get:
d2X

dx2
+ α2X = 0 (2.40)

The solution of above equation can be expressed as:

X = A1 cos αx + A2 sin αx (2.41)

Introducing boundary conditions X(x = 0) = 0, X(x = b) = 0, we can

get A1 = 0, sin αb = 0. α is expressed as:

α =
nπ

b
, n = 1, 2, 3, 4... (2.42)

where the negative value of n would give rise to the same result as

positive value, and when n=0, it leads to case 1, which gives incorrect

solution, so n is considered as positive value here.

Thus λ is:

λ = α2 =
n2π2

b2
, n = 1, 2, 3, 4... (2.43)

The next step is to solve Y
′′ − λY = 0. Following the similar process

as shown in above, we can get:

Y = Bn sinh
nπ

b
(2.44)

Thus Φn can be written as:

Φn = Cn sin
nπx

b
sinh

nπy

b
(2.45)
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The general solution of potential Φ can be given as:

Φ =
∞∑

n=1

Cn sin
nπx

b
sinh

nπy

b
(2.46)

Introducing boundary condition Φ(x, a) = V , then Cn can be obtained

as:

Cn =


4V

nπ sinh(nπa/b)
n is odd

0 n is even

Finally, if we assume V=1, potential Φ can be expressed as:

Φ =
4

π

∞∑
n=1,3,5...

sin(nπx
b

) sinh(nπy
b

)

n sinh(nπa
b

)
(2.47)

2.5.2 Numerical Results and Error Estimate

The numerical results of electrostatic potential are shown in Figure(2.2)

and Figure(2.3). From these two figures, we can observe there are sin-

gularities near the top two corners of the domain.
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Figure 2.2: Contour plot of electrostatic potential

The analytical solution for this benchmark has been obtained in the
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Figure 2.3: Quiver plot of electrostatic potential

previous section. Therefore, the magnitude of the error can be deter-

mined through comparing the finite element results with exact analyt-

ical solutions. Here, L2 norm of the potential error is introduced to

measure the error. It can be written as:

||eΦ||L2 = [
∫
Ω
(Φ − Φhp)

2dΩ]1/2 (2.48)

where Φhp represents the numerical solution obtained from the finite

element method.

Figure(2.4) and Figure(2.5) shows L2 norm of the potential error with

h and p refinement, respectively, where x axis represents log(number

of degrees of freedom) and y axis is log(L2 norm of potential error).

From the two figures, we can conclude the error converges algebraically

fast with both h, p refinements as expected. Because there are sin-

gularities in top two corners, only algebraic convergence rate can be

observed with uniform h or p refinement. However, if the domain has

smooth solution, then p refinement may present exponential conver-

gence rate. With general case, appropriate combination of h,p refine-

ment (hp FEM) will lead to exponential convergence rate. If we want
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Figure 2.4: L2 norm of the potential error with h refinement

to obtain exponential convergence rate for this benchmark which has

singularities, we need to combine h and p refinement. That means

instead of uniform mesh, we can use nonuniform mesh in Figure(2.6)

to refine the two corners which have singularities more properly. The

combination of these kinds of nonuniform mesh and p refinement may

obtain exponential convergence rate. But due to time constraint, we

haven’t obtained the results with exponential convergence rate. This

can be considered and tried in future work.
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Figure 2.6: Uniform mesh and specified nonuniform mesh

20



Chapter 3

Mechanical Field

3.1 Mathematical Theory

The elastostatic boundary value problem can be written as

∇ · σ + f = 0 inΩ

u = uD onΓD (3.1)

σ · n = tN onΓN

This partial differential equation system represents “translational equi-

librium”, in which σ represents the Cauchy stress tensor, f is body

force vector, u is displacement vector and t is the traction vector. The

displacement value is defined on Dirichlet boundary and the traction

is defined on the Neumann boundary.

Recall that strain tensor ε can be expressed as

ε =
1

2
(∇u + ∇uT ) (3.2)

Recall also that “rotational equilibrium” yields σ = σT . In order to

close the system, an equation of state ( so called “constitutive equation”

) must also be added. This equation which will relate σ with ε is
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expressed as

σ = c : ε (3.3)

where c is the fourth order constitutive elasticity tensor.

The simplest hyperelastic material–St. Venant–Kirchhoff model can be

defined by a strain energy function Ψ as

Ψ(ε) =
λ

2
(Iε)

2 + µIIε (3.4)

where invariants Iε = tr(ε) and IIε = ε : ε. λ and µ are so called Lame

constants, and expressed in terms of the Poisson ratio(ν) and Young’s

modulus(E) as:

λ =
Eν

(1 + ν)(1 − 2ν)
(3.5)

µ =
E

2(1 + ν)
(3.6)

There are two cases in two dimensional mechanical problems. One is

plain strain case, the other is plain stress case.

The plain strain case is a simplification of the general case and can

be used when the third dimension(assumed as the z-direction) is very

large and within each cross section the same boundary conditions as

well as forces act on the body[14]. Therefore, ε33 = ε23 = ε13 = ε31 =

ε32 = 0. Thus, the strain energy function is transformed into:

Ψ(ε2×2) =
λ

2
(Iε2×2

)2 + µIIε2×2
(3.7)

where,

ε =


ε11 ε12 0

ε21 ε22 0

0 0 0

 , ε2×2 =

 ε11 ε12

ε21 ε22

 (3.8)

The plain stress case can be used when a thin sheet is loaded by me-

chanical forces at the boundary and the forces act within the defined
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plane[14]. Therefore, σ33 = σ23 = σ13 = σ31 = σ32 = 0. Thus, the

strain energy function is transformed into:

Ψ(ε2×2) =
λ̂

2
(Iε2×2

)2 + µIIε2×2
(3.9)

where,

λ̂ =
2λµ

λ + 2µ
(3.10)

For a hyperelastic material, the Cauchy stress tensor σ can be deduced

from:

σ =
∂Ψ

∂ε
(3.11)

Thus the Cauchy stress tensor can be written as:

σ2×2 = λ̃Iε2×2
I + 2µε2×2 (3.12)

where λ̃ = λ for plain strain case and λ̃ = λ̂ for plain stress case.

In this case, the constitutive elasticity tensor is given as

c =
∂σ2×2

∂ε2×2

= λ̃I ⊗ I + 2µi (3.13)

where i is the fourth-order identity tensor. That means for any second

order tensor s, it satisfies i : s = s.

3.2 Displacement Finite Element Formulation

The strong form of the linear elastostatic problems is written as (3.1),

where we want to compute the displacement field u. In the small strain

linear elasticity considered in this chapter, the principle of virtual work

can be derived by finding the stationary position of a total energy

potential.

A total potential energy functional can be defined as:[23]

Π(φ) =
∫
Ω

ΨdΩ −
∫
Ω

f · φdΩ −
∫
ΓN

t · φdΓ (3.14)
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Equating the derivative of the functional to zero in an arbitrary direc-

tion δu gives the stationary position. This means the principle virtual

work is obtained as

δW (φ, δu) = DΠ(φ)[δu] =
∫
Ω

σ : δεdΩ −
∫
Ω

f · δudΩ −
∫
ΓN

t · δudΓ

(3.15)

where,

δWint(φ, δu) =
∫
Ω

σ : δεdΩ (3.16)

δWext(φ, δu) =
∫
Ω

f · δudΩ +
∫
ΓN

t · δudΓ (3.17)

Linearized principle of virtual work with respect to a displacement field

u renders

DδW (φ, δu)[u] = DδWint(φ, δu)[u] − DδWext(φ, δu)[u] = 0 (3.18)

Linearized the internal virtual work renders:

DδWint(φ, δu)[u] = D(
∫
Ω

σ : δεdΩ)[u] =
∫
Ω
(δε : c : ε)dΩ (3.19)

On the other hand, linearized external virtual work renders:

DδWext(φ, δu)[u]DδWint(φ, δu)[u] = D(
∫
Ω

f ·δudΩ+
∫
ΓN

t·δudΓ)[u] = 0

(3.20)

Thus:

δW (φ, δu) + DδW (φ, δu)[u] = 0 (3.21)

which when discretized yields,

R + Ku = 0 (3.22)

where, K is stiffness matrix and -R is residual vector.

The unknown displacement field u can be approximated in terms of a
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series of shape functions as

u ≈ uh =
m∑

a=1

Naua (3.23)

δu ≈ δuh =
m∑

a=1

Naδua (3.24)

The virtual work expression can be expended for an element (e) as:

δW e(φ, Naδua) = δua ·
∫
Ωe

σ∇NadΩ

− δua · [
∫
Ωe

NafdΩ +
∫
ΓN(e)

NatdΓ] = 0 (3.25)

or equivalently,

δW e(φ, Naδua) = δua · (T e
a − F e

a ) = 0 (3.26)

where, T e
a and F e

a are equivalent internal force and external force, re-

spectively, and is written as:

T e
a =

∫
Ωe

σ∇NadΩ (3.27)

F e
a =

∫
Ωe

NafdΩ +
∫
ΓN(e)

NatdΓ (3.28)

Therefore, the elemental residual force vector re
a is equal to -Re

a and

can be expressed as:

re
a = F e

a − T e
a (3.29)

Analogously, the linearized virtual work expression renders for an ele-

ment (e):

DδW (φ, Naδua)[Nbub] =
∫
Ωe

δε : c : εdΩ

=
∫
Ωe

(δua ⊗∇Na) : csym : (∇Nb ⊗ ub)dΩ (3.30)

or in index notation, above equation can be expressed as:

δua(i)[
∫
Ωe

2∑
k,l=1

∂Na

∂xk

csym
ikjl

∂Nb

∂xl

dΩ]ub(j); i, j = 1, 2

= δua(i)[[Kab]
e
ij]ub(j) (3.31)
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Here, [Kab]
e
ij is elemental constitutive stiffness matrix,and has the fol-

lowing expression:

[Kab]
e
ij =

∫
Ωe

2∑
k,l=1

∂Na

∂xk

csym
ikjl

∂Nb

∂xl

dΩ; i, j = 1, 2 (3.32)

After suitable assemble of the elemental constitutive stiffness matrix

and elemental residual force vectors, we can obtain a linear system of

equations:

KU = r (3.33)

where U = (u1, u2, ..., um), K is the global stiffness matrix and r is the

residual force vector. K and r are the assemblage of elemental stiffness

matrix and residual vectors, respectively.

K =
E∑

e=1

Ke
ab (3.34)

r =
E∑

e=1

re
a (3.35)

where E represents the number of elements in global mesh.

For displacement formulation, the same shape functions as used in

electrostatic field are also used here.

3.3 Locking and Efficient Solution Approaches

3.3.1 Locking Phenomena

For many problems in computational mechanics, various quantities of

engineering interest like displacements and stresses can be accurately

calculated by using the displacement finite element formulation. How-

ever, for some problems, displacement finite element method will pro-

vide inaccurate results and show slow convergence when reducing mesh

size. We will refer to this effect as locking. In general, there are
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three main locking phenomena and they are shear locking, volumet-

ric(Poisson) locking, and membrane locking. In this thesis, we will

concentrate on the volumetric locking. For nearly incompressible ma-

terials(Poisson ratio ν close to 0.5, which means Lame constant λ close

to ∞), displacement based finite element method can lead to volu-

metric locking[14]. Then displacements and stresses may be computed

inaccurately[24]. Next, we start with a mathematical investigation of

the volumetric locking[25]. Recall that the expression of strain tensor:

ε =
1

2
(∇u + ∇uT ) (3.36)

The volumetric strain is defined as the trace of the strain tensor as:

εv = tr(ε) = Iε = div(u) (3.37)

Thus the strain can be additively decomposed into their deviatoric and

volumetric components as follows:

ε = ε
′
+

1

3
tr(ε)I = ε

′
+

1

3
div(u)I (3.38)

where, the former term is deviatoric component and the latter one is

volumetric component.

Analogously, the stress tensor can also be decomposed as:

σ = σ
′
+ PI (3.39)

where, the former term is deviatoric component and the latter one is

volumetric component. Here, p = 1
3
tr(σ) is the so-called hydrostatic

pressure.

For a standard linear elastic model, the stress tensor is:

σ = λtr(ε)I + 2µε (3.40)

Substituting ε with (3.38), stress can be written as:

σ = [λ +
2µ

3
]tr(ε)I + 2µε

′
(3.41)
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where, the first term is volumetric component and the second one is

deviatoric component.

Introducing bulk modulus k,

k = λ +
2µ

3
=

E

3(1 − 2ν)
(3.42)

then σ = PI + σ
′
, where

σ
′

= 2µε
′

(3.43)

P = k tr(ε) = k div(u) (3.44)

Here, k can be also understand as a penalty term, introduced with a

purpose of satisfying incompressibility.

Thus, as k → ∞ (ν → 0.5), the problem becomes ill-conditioned and

volumetric locking occurs.

It’s been demonstrated as below.

Recall internal virtual work from formula,

δWint(φ, δu) =
∫
Ω

σ : δεdΩ (3.45)

Notice that:

σ : δε = (σ
′
+ PI) : (δε

′
+

1

3
div(δu)I)

= σ
′
: δε

′
+ P div(δu) (3.46)

Thus, internal virtual work form is transformed into:

δWint(φ, δu) =
∫
Ω

σ
′
: δε

′
dΩ +

∫
Ω

P div(δu)dΩ (3.47)

where the first term is deviatoric internal virtual work defined as δW
′
int(φ, δu),

and the second term is volumetric internal virtual work defined as

δW P
int(φ, δu).

After applying the constitutive relationship P = k div(u), the volu-

metric component of the internal virtual work renders:

δW P
int(φ, δu) =

∫
Ω

k div(u)div(δu)dΩ (3.48)
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Again, as k grows (k → ∞), δW P
int(φ, δu) locks the problem.

Therefore, we will:

• Define a constitutive equation which is only a function of the

distortional component of the deformation, Ψ
′
(ε) = Ψ(ε

′
)

• Enforce explicitly the incompressibility constraint div(u) = 0

3.3.2 Efficient Solution Approaches

hp FEM is one of the efficient approaches to avoid locking. As dis-

cussed in the previous chapter, solution with required accuracy can

be achieved by proper combination of h and p refinement. There are

also other approaches discussed in the book[23]. Among them, HU-

WASHIZU principle is one of efficient solutions to deal with locking

problem. Further, mixed finite element formulation will be derived

based on this principle. The objective of this principle is to minimize

the total potential energy functional defined as following expression:

ΠHW (φ, ε̄v, P ) =
∫
Ω

Ψ
′
(ε)dΩ+

∫
Ω

U(ε̄v)dΩ+
∫
Ω

P (εv− ε̄v)dΩ−Πext(φ)

(3.49)

where, Ψ
′
(ε) represents deviatoric energy, U(ε̄v) represents volumetric

energy, and εv = div(u).

U(ε̄v) can be expressed as:

U(ε̄v) =
k

2
(ε̄v)2 (3.50)

Other functions U might be used.

ε̄v and P are independent of the motion defined by φ, that means:

ε̄v 6= div(u) (3.51)

p 6= (λ +
2

3
µ)div(u) (3.52)
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The stationary point of above energy functional yields:

DΠHW (φ, ε̄v, P )[δu] =
∫
Ω

∂Ψ
′

∂ε
: δεdΩ +

∫
Ω

Pdiv(δu)dΩ

− DΠext(φ)[δu] = 0 (3.53)

DΠHW (φ, ε̄v, P )[δε̄v] =
∫
Ω
(
dU(ε̄v)

dε̄v

− P )δε̄vdΩ = 0 (3.54)

DΠHW (φ, ε̄v, P )[δP ] =
∫
Ω
(εv − ε̄v)δPdΩ = 0 (3.55)

Let’s assume that P, ε̄v (and thus δP , δε̄v) are function which remain

constant within the domain Ω, thus:

From(3.54), we can obtain:

(
dU(ε̄v)

dε̄v

− P )δε̄vΩ = 0 ⇒ P =
dU(ε̄v)

dε̄v

= kε̄v (3.56)

From(3.55), we can obtain:

[
∫
Ω

εvdΩ − ε̄vΩ]δP = 0 ⇒ ε̄v =

∫
Ω εvdΩ

Ω
(3.57)

Thus:

ε̄v =
1

Ω

∫
Ω

div(u)dΩ (3.58)

P = kε̄v =
k

Ω

∫
Ω

div(u)dΩ (3.59)

Recall that:

σ = σ
′
+ pI (3.60)

where

σ
′
=

∂Ψ
′

∂ε
= 2µε

′
(3.61)

and P is stated above.

Constitutive tensor c is now replaced by c
′
and can be deduced from:

c
′
=

∂2Ψ
′

∂ε∂ε
=

∂σ
′

∂ε
(3.62)
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We can deduce for the plain strain case and plain stress case as:

In plane strain case:

k = λ + µ (3.63)

σ
′

2×2 = 2µε2×2 − µ tr(ε2×2)I2×2 (3.64)

c
′

=
∂σ

′
2×2

∂ε2×2

(3.65)

csym
ijkl = µ(δikδjl + δjkδil) − µδijδkl (3.66)

In plane stress case:

k = (µ +
3

2
λ)

2µ

λ + 2µ
(3.67)

σ
′

2×2 = 2µε2×2 − µ tr(ε2×2)I2×2 (3.68)

c
′

=
∂σ

′
2×2

∂ε2×2

(3.69)

csym
ijkl = µ(δikδjl + δjkδil) − µδijδkl (3.70)

3.4 Mixed Finite Element Formulation

Now, we describe the mixed formulation which based on HU-WASHIZU

principle. A modified total potential energy functional can be defined

as:

Π(φ, p) =
∫
Ω

Φ
′
dΩ +

∫
Ω

pdiv(u)dΩ −
∫
Ω

p2

2k
dΩ − Πext(φ) (3.71)

where Πext =
∫
Ω f · φdΩ +

∫
ΓN

t · φdΓ.

The stationary point of above functional yields:

DΠ(φ, p)[δu] =
∫
Ω

δΦ
′

δε
: δεdΩ +

∫
Ω

pdiv(δu)dΩ − DΠext(φ)[δu](3.72)

DΠ(φ, p)[δp] =
∫
Ω

δpdiv(u)dΩ −
∫
Ω

δp
p

k
dΩ

=
∫
Ω

δp(div(u) − p

k
)dΩ (3.73)
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Linearizing above two equations respect to u and p will yield:

D2Π(φ, p)[δu][u] =
∫
Ω

δε :
∂σ

′

∂ε
: εdΩ (3.74)

D2Π(φ, p)[δu][p] =
∫
Ω

div(δu)pdΩ (3.75)

D2Π(φ, p)[δp][u] =
∫
Ω

δpdiv(u)dΩ (3.76)

D2Π(φ, p)[δp][p] = −1

k

∫
Ω

δp pdΩ (3.77)

The unknown displacement field u and p can be expressed in terms of

a series of shape functions respectively as:

u =
N∑

a=1

Na
uua, p =

N∑
a=1

Na
p pa (3.78)

For an element Ωe, the elemental stiffness component and residual ma-

trices are expressed as:

[Ke
c′ ,ab]ij =

∫
Ωe

2∑
k,l=1

∂Na
u

∂xk

c
′sym
ikjl

∂N b
u

∂xl

dΩ; i, j = 1, 2 (3.79)

Ke
up,ab =

∫
Ωe

∇Na
uN b

pdΩ (3.80)

Ke
pu,ab =

∫
Ωe

Na
p (∇N b

u)
T dΩ (3.81)

Ke
pp,ab = −1

k

∫
Ωe

Na
p N b

pdΩ (3.82)

re
a =

∫
Ωe

NafdΩ +
∫
Γe

Natds −
∫
Ωe

σ∇NadΩ (3.83)

This will lead to the following system of equations on the element level: Ke
c′

Ke
up

Ke
pu Ke

pp


 u

p

 =

 re

0

 (3.84)

If shape functions Na
p are chosen such that static condensation can

be performed, then according to the static condensation results from

chapter 2, we can obtain condensed stiffness elemental matrix as:

Ke,condensed

c′
= Ke

c′ − Ke
upK

e−1
pp Ke

pu (3.85)
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In mixed formulation, the same shape functions as used in electro-

static field and displacement finite element formulation will be used

to approximate the displacement field in mixed formulation. For stress

field(p), shape function for p-1 L2[19, 20] conforming elements are used.

Here, L2 space is defined as:

u ∈ L2(Ω) :
∫
Ω
|u|2dΩ < ∞ (3.86)

3.5 Benchmark Numerical Example

In this section, we address the question of performance of both displace-

ment finite element formulation and mixed finite element formulation

in plain strain and plain stress cases by discussing the convergence of

error estimators with h and p refinement for a benchmark problem

with known analytical solutions. In this section, the following error

measures were investigated.

• L2 Norm of error in displacement:

||u − uhp||0 = (
∫
Ω
|u − uhp|2dΩ)1/2 (3.87)

• Error measured in the Energy Norm:

||u − uhp||E = (2µ||ε(u − uhp)||20 + λ||div(u − uhp)||20)
1
2 (3.88)

which for mixed finite element method becomes:

||u − uhp||E = (2µ||ε(u − uhp)||20 + λ−1||p − php||20)
1
2 (3.89)
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• Error in the sum of normal stress:

||u−uhp||SNS = [
∫
Ω
|(σxx + σyy)− (σhp,xx + σhp,yy)|2dΩ]

1
2 (3.90)

Here, uhp, php and σhp represent the numerical solution obtained from

the hp finite element methods while u, p, and σ represent the exact

analytical solutions.

3.5.1 Problem description

The problem is illustrated in the Figure(3.1) which is the case of a rigid

circular inclusion in an infinite plate subjected to unidirectional tension

σ∞. Because of the symmetry of the plate, one quarter of the domain

is considered here. In order to model the problem accurately, a finite

element domain is chosen and exact analytical values are applied on

Neumann boundary. Here, Young’s modulus E is considered as 1, and

Poisson’s ratio ν is considered as 0.4999 to observe locking phenomena.

3.5.2 Analytical Solution

The exact solution for the plain strain case can be found in the Ref-

erence [24]. The exact displacement components which is given in

Cylindrical coordinates are:

ur =
σ∞

8Gr
{(κ − 1)r2 + 2γa2 + [β(κ + 1)a2 + 2r2 +

2δa4

r2
] cos 2θ}(3.91)

uθ = − σ∞

8Gr
[β(κ − 1)a2 + 2r2 − 2δa4

r2
] sin 2θ (3.92)

and the exact stress components are:

σr =
σ∞

2
[1 − γa2

r2
+ (1 − 2βa2

r2
− 3δa4

r4
) cos 2θ] (3.93)

σθ =
σ∞

2
[1 +

γa2

r2
− (1 − 3δa4

r4
) cos 2θ] (3.94)

τrθ = −σ∞

2
(1 +

βa2

r2
+

3δa4

r4
) sin 2θ (3.95)
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Figure 3.1: Rigid circular inclusion in an infinite plate

where κ, β, γ, δ are constants which depend on Poisson’s ratio ν only.

In the case of plain strain:

κ = 3 − 4ν, β = − 2

3 − 4ν
, γ = −2 − 4ν

2
, δ =

1

3 − 4ν
(3.96)

In plain stress case, the exact solution for displacement and stress com-

ponents can be expressed as[26]:

ur =
σ∞

2
[

r

2(λ̂ + µ)
− a2

2(λ̂ + µ)r
]

+
σ∞

4µr
[Ba2 λ̂ + 2µ

λ̂ + µ
+ r2 +

Ca4

r2
] cos 2θ (3.97)

uθ = − σ∞

4µr
[Ba2 µ

λ̂ + µ
+ r2 − Ca4

r2
] sin 2θ (3.98)

σr =
σ∞

2
[1 +

µa2

(λ̂ + µ)r2
] +

σ∞

2
[1 − 2Ba2

r2
− 3Ca4

r4
] cos 2θ(3.99)

σθ =
σ∞

2
[1 − µa2

(λ̂ + µ)r2
] − σ∞

2
[1 − 3Ca4

r4
] cos 2θ (3.100)

τrθ = −σ∞

2
[1 +

Ba2

r2
+

3Ca4

r4
] sin 2θ (3.101)
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where B and C are constants which depend on λ̂ and µ only. B and C

is given as:

B =
−2(λ̂ + µ)

λ̂ + 3µ
, C =

λ̂ + µ

λ̂ + 3µ
(3.102)

3.5.3 Error Estimate with h, p refinement

We have plotted L2 norm of error in displacement, error measured in

the energy norm, and error in the sum of the normal stresses(SNS),

vs. NDF, the number of degrees of freedom. Through these log-log

plots, the locking phenomenon and numerical convergence rates are

discussed.

Plain Strain Case

Figure(3.2) shows the convergence of ||u − uhp||0, ||u − uhp||E and

||u − uhp||SNS when uniform h refinement for meshes of quadrilateral

and triangular elements is performed with displacement formulation.

This figure clearly exhibit the poor convergence behavior of low order

elements (p=1). Locking occurs in the sum of normal stresses when

p=1 for both quadrilateral and triangular elements. For p ≥ 2 the

expected algebraic rates of convergence are obtained.

Figure(3.3) shows the convergence of ||u − uhp||0, ||u − uhp||E and

||u − uhp||SNS when uniform h refinement for meshes of quadrilateral

and triangular elements is performed with mixed formulation. This fig-

ure exhibit the poor convergence behavior of low order elements (p=1)

as well. There is still locking in the sum of normal stresses when p=1

for both quadrilateral and triangular elements. However, the magni-

tude of error in the sum of normal stresses is much smaller than that

obtained with displacement formulation. For p ≥ 2 the expected alge-

braic rates of convergence are obtained.
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The results of p refinement for the displacement formulation are shown

in Figure(3.4). From these results, the exponential convergence rates

can be observed. Although, the magnitude of the error in the sum of

normal stresses is much larger than the other two measures. The error

in the sum of normal stresses is nearly 100 when p=1, which is out of

tolerant range. Thus there is locking when p=1 for the sum of normal

stresses.

The results of p refinement for the mixed formulation are shown in Fig-

ure(3.5). These results illustrates the exponential rates of convergence.

With mixed formulation, now, the magnitude of the error in the sum

of normal stresses when p=1 decreases a lot and is similar to the other

two measures.

Figure(3.6) shows the comparison results of the displacement and mixed

formulations for p refinement discretised by triangles. From the results,

it is observed that there is no locking with either method where the en-

ergy norm error is concerned since the curves for ν = 0.3 and ν = 0.4999

are very close. But for the error in the sum of normal stresses, there

is marked decrease in accuracy with displacement formulation when

Poisson’s ratio is from 0.3 to 0.4999. On the other hand, the mixed

formulation shows no change as ν → 0.5. Hence, no locking can be

seen for the mixed formulation for p refinement.

Plain Stress Case

Figure(3.7) shows the convergence of ||u − uhp||0, ||u − uhp||E and

||u − uhp||SNS when uniform h refinement for meshes of quadrilateral

and triangular elements is performed with displacement formulation.

The convergence behavior of low order elements is much better than
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that in plain strain case. Also, there is no locking in three error mea-

sures for both quadrilateral and triangular discretization. For p ≥ 1

the expected algebraic rates of convergence are obtained.

Figure(3.8) shows the convergence of ||u − uhp||0, ||u − uhp||E and

||u − uhp||SNS when uniform h refinement for meshes of quadrilateral

and triangular elements is performed with mixed formulation. This

figure exhibit the much better convergence behavior of displacement

and energy norm error for low order elements compared to plain strain

case as well. Although there is locking in the sum of normal stresses

when p=1 for both quadrilateral and triangular elements. For p ≥ 2

the expected algebraic rates of convergence are obtained.

The results of p refinement for the displacement formulation are shown

in Figure(3.9). From these results, the exponential convergence rates

can be observed. Also, the accuracy of the sum of normal stresses is

similar to accuracy of the energy norm error.

The results of p refinement for the mixed formulation are shown in

Figure(3.10). These results illustrates the exponential rates of conver-

gence. With mixed formulation, the magnitude of the error in the sum

of normal stresses is larger than the other two measures when p=1.

But from p=2, the error in the sum of normal stresses is similar to the

error of the other two measures.

Summary

To conclude the results above, plain strain case suffers from locking

more than plain stress case, which is understandable from the theoret-

ical point of view, because in plain strain case, there is no deformation

in Z direction, but for plain stress case, it allows the deformation in Z
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direction. Mixed hp finite element method(p¿1) is the best choice to

be taken since it can overcome locking and at the same time present

exponential convergence rate.

39



0 1 2 3 4 5
−7

−6

−5

−4

−3

−2

−1

0

log(NDF)

lo
g(

D
is

pl
ac

em
en

t N
or

m
 E

rr
or

)

 

 

p=1
p=2
p=3

1 2 3 4 5
−7

−6

−5

−4

−3

−2

−1

0

log(NDF)

lo
g(

D
is

pl
ac

em
en

t N
or

m
 E

rr
or

)

 

 

p=1
p=2
p=3

0 1 2 3 4 5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(NDF)

lo
g(

E
ne

rg
y 

N
or

m
 E

rr
or

)

 

 

p=1
p=2
p=3

1 2 3 4 5
−5

−4

−3

−2

−1

0

log(NDF)

lo
g(

E
ne

rg
y 

N
or

m
 E

rr
or

)

 

 

p=1
p=2
p=3

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

log(NDF)

lo
g(

S
N

S
)

 

 

p=1
p=2
p=3

1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

log(NDF)

lo
g(

S
N

S
)

 

 

p=1
p=2
p=3

Figure 3.2: Convergence of ||u−uhp||0, ||u−uhp||E and ||u−uhp||SNS for

h refinement using the displacement formulation in plain strain case
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Figure 3.3: Convergence of ||u−uhp||0, ||u−uhp||E and ||u−uhp||SNS for

h refinement using the mixed formulation in plain strain case
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Figure 3.4: Convergence of ||u−uhp||0, ||u−uhp||E and ||u−uhp||SNS for

p refinement using the displacement formulation in plain strain case
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Figure 3.5: Convergence of ||u−uhp||0, ||u−uhp||E and ||u−uhp||SNS for

p refinement using the mixed formulation in plain strain case
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Figure 3.6: Displacement formulation vs. Mixed Formulation for p refine-

ment using triangular elements in plain strain case
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Figure 3.7: Convergence of ||u−uhp||0, ||u−uhp||E and ||u−uhp||SNS for

h refinement using the displacement formulation in plain stress case
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Figure 3.8: Convergence of ||u−uhp||0, ||u−uhp||E and ||u−uhp||SNS for

h refinement using the mixed formulation in plain stress case
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Figure 3.9: Convergence of ||u−uhp||0, ||u−uhp||E and ||u−uhp||SNS for

p refinement using the displacement formulation in plain stress case
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Figure 3.10: Convergence of ||u−uhp||0, ||u−uhp||E and ||u−uhp||SNS for

p refinement using the mixed formulation in plain stress case
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Chapter 4

Coupled

Electrostatic-Mechanical

Problem

As mentioned in chapter 1, this thesis concentrates on electrostriction,

one example of coupled electrostatic mechanical behaviors. The key

point of electrostriction can be described as: Electric field leads to

stresses in the material, which leads to deformation and strains in the

material, in turn this leads to changes in the electrical properties of

the material. In the previous chapters, we have already discussed elec-

trostatic field and mechanical field separately. In this chapter coupling

mechanism between these two fields is discussed. The mathematical

principle, coupling algorithms, and simulation results of an electrostric-

tion benchmark are presented in the following sections.
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Figure 4.1: Electrostriction problem domain

4.1 Mathematical Theory

The electrostriction problem is considered on the domain shown in

Figure(4.1), where ΩE represents the electric domain, ΩM is the me-

chanical domain, and ΩE ∩ ΩM represents the domain where electric

field domain and mechanical field domain overlap. The two fields do-

main can overlap either totally or partially. The coupling occurs only

on the overlapping domain.

The electrostatic boundary value problem has been discussed in chapter

2, where we concentrate on the domain consists of a linear, isotropic(but

not necessarily homogeneous) medium. So ε is taken as a scalar func-

tion of position, which is precise constant. However, for the problem of

electrostriction, the overlapping domain doesn’t keep isotropic always,

which means in the overlapping domain permittivity ε is no longer a

precise constant scalar but a tensor that is a function of position. For

anisotropic medium, permittivity ε is a second order tensor.This means

in two dimensional electrostriction problem with Cartesian coordinates
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ε can be expressed as:

ε =

 ε11 ε12

ε21 ε22

 (4.1)

In electrostriction, under isothermal conditions the only factors influ-

encing anisotropy are the strains, so that permittivity can be defined

as[27]

εij = ε0
rε0δij + ε1

rε0εij + ε2
rε0εkkδij, i, j = 1, 2 (4.2)

where ε0 represents the permittivity when there is no deformation,

ε0
r,ε

1
r and ε2

r are scalar constants determined experimentally, δij is the

Kronecker delta, and εij is strain tensor coming from the deformation.

The electrostatic stresses can be given as[27]:

σE
ij = aEiEj + bEkEkδij, i, j = 1, 2 (4.3)

where Ei is component of the electrical intensity vector, and a and b

are scalar constants defined as[26, 27]:

a = (2ε0
r − ε1

r)ε0/2 (4.4)

b = −(ε0
r + ε2

r)ε0/2 (4.5)

The electric volume force generated by electric stresses can be expressed

as:

fv = ∇ · σE (4.6)

The electric volume force acts as a body force to influence the overlap-

ping domain in the mechanical part.

Therefore, electrostriction boundary problems can be expressed with
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following governing equations and boundary conditions[26].

∇ · (ε∇Φ) = −ρv in ΩE

ε = ε0
rε0I in ΩE − ΩM

ε = ε0
rε0I + ε1

rε0ε + ε2
rε0trace(ε)I in ΩE ∩ ΩM

Φ = fD on ΓD
E

n · (ε∇Φ) = fN on ΓN
E

E = −∇Φ in ΩE

σE = aEET + b trace(EET )I in ΩE

fv = ∇ · σE in ΩE

∇ · σM + f = 0 in ΩM

∇ · σM = 0 in ΩM − ΩE

∇ · (σM + σE) = 0 in ΩE ∩ ΩM

u = uD on ΓD
M

n · (σM + σE) = tN on ΓN
M

σM = c : ε in ΩM

σ = σM + σE in ΩE ∩ ΩM

(4.7)

where σM stands for the mechanical stress tensor. Other symbols are

already stated before.

4.2 Electrostatic Volume Force Calculation

In general, the electrostatic volume force is obtained by applying the

principle of virtual work. The general formula can be found in several

references[14, 26], and has the following expression:

fv = f 1
v + f 2

v + f 3
v (4.8)

where,

f 1
v = ρvE (4.9)
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f 2
v = −1

2
|E|2∇ε (4.10)

f 3
v =

1

2
∇(|E|2τ ∂ε

∂τ
(4.11)

Here, τ represents the density of matter. f 1
v is generated due to exis-

tence of volume charge, f 2
v is generated due to changes in the permit-

tivity, and f 3
v is generated due to the deformation of the dielectric.

In this thesis, we use another electrostatic force form instead of general

one, whose advantage will be shown in computational implementation.

4.3 Computational Implementation

In the electrostriction problem, when the permittivity is given, then the

electrostatic field can be solved through the finite element approach de-

veloped in chapter 2. In turn, when body force is given, the mechanical

field can be solved through either displacement finite element formula-

tion or mixed finite element formulation developed in chapter 3.

The body force term in the coupled overlapping domain is expressed as

fv = ∇·σE and can be implemented as a internal force term described

in chapter 3 and applied in the Neumann boundary when solving me-

chanical field part. The contribution of fv to the residual force vector

in the overlapping domain of mechanical part transforms (3.27) and

(3.28) into:

T e
a =

∫
(ΩE∩ΩM )e

σE∇NadΩ (4.12)

F e
a =

∫
∂(ΩE∩ΩM )e

Na[n · (σE + σM)]ds (4.13)

From here, we can observe the use of this force calculation method can

led to a easy, natural and efficient computational implementation, while

other force calculation approaches such as we discussed in previous
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section do not. Thus, from the computational point of view, the force

calculation approach used in this thesis has considerable advantages.

4.4 Algorithm for Electrostriction Problem

To summarize the theory in previous sections, the work principle of

electrostriction behavior can be expressed by the following two algo-

rithms, one way coupling and two way coupling.

4.4.1 One Way Coupling

One way coupling considers the situation when permittivity ε = ε0
rε0I

in the electrostatic domain and the permittivity is independent to the

mechanical field. Then the algorithm can be expressed with following

steps.

Step 1: Compute solutions to electrostatic boundary value problem:

∇ · (ε∇Φ) = 0 in ΩE

Φ = fD on ΓD
E (4.14)

n · (ε∇Φ) = fN on ΓN
E

Step 2: Compute electric field, electric stress tensor and electric force

vector in the overlapping domain:

E = −∇Φ in ΩE ∩ ΩM (4.15)

σE = aEET + b trace(EET )I in ΩE ∩ ΩM (4.16)

fv = ∇ · σE in ΩE ∩ ΩM (4.17)

Step 3: Compute solutions to elastostatic boundary value problem:

∇ · σM + f = ∇ · σM = 0 in ΩM − ΩE (4.18)
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∇ · σM + f = ∇ · (σM + σE) = 0 in ΩE ∩ ΩM (4.19)

u = uD on ΓD
M (4.20)

n · (σM + σE) = tN on ΓN
M (4.21)

(4.22)

4.4.2 Two Way Coupling

Two way coupling considers real electrostriction problem, where an

iterative loop is needed to simulate the coupled behavior.

set i=1 and ε = ε0
rε0I in ΩE

while ||εi − εi−1|| > TOL do

Step 1: Compute solutions to electrostatic boundary value problem:

∇ · (εi∇Φ) = 0 in ΩE

Φ = fD on ΓD
E (4.23)

n · (εi∇Φ) = fN on ΓN
E

Step 2: Compute electric field, electric stress tensor and electric force

vector in the overlapping domain:

E = −∇Φ in ΩE ∩ ΩM (4.24)

σE = aEET + b trace(EET )I in ΩE ∩ ΩM (4.25)

fv = ∇ · σE in ΩE ∩ ΩM (4.26)

Step 3: Compute solutions to elastostatic boundary value problem:

∇ · σM + f = ∇ · σM = 0 in ΩM − ΩE (4.27)

∇ · σM + f = ∇ · (σM + σE) = 0 in ΩE ∩ ΩM (4.28)

u = uD on ΓD
M (4.29)

n · (σM + σE) = tN on ΓN
M (4.30)

(4.31)
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Figure 4.2: Electrostriction benchmark problem

set i=i+1

set:

ε = ε0
rε0I in ΩE − ΩM (4.32)

ε = ε0
rε0I + ε1

rε0ε + ε2
rε0trace(ε)I in ΩE ∩ ΩM (4.33)

end while

4.5 Electrostriction Benchmark Example

4.5.1 Benchmark Problem Description

The problem is illustrated in Figure(4.2), which is the case of infinite

plate with rigid dielectric insert subjected to unidirectional tension

(T) and uniform electric field (E∞) in the infinity. In order to simu-

late the coupled behavior accurately, a finite domain from the infinite
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Figure 4.3: Electrostriction finite domain

plate is selected and exact analytical value is applied on both Neumann

and Dirichlet boundaries. The finite domain selected is shown in Fig-

ure(4.3) and electrical and mechanical domains are defined according

to the real problem, respectively.

The electric domain consists of following domains and boundaries.

ΩE = Ω1 ∪ Ω2

∂ΩE = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5 ∪ Γ7

The mechanical domain consists of following domains and boundaries.

ΩM = Ω1

∂ΩM = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5 ∪ Γ6

For one way coupling case, the following values are chosen to simulate
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the problem.

E∞ = E∞
x = 1 (4.34)

ε0
r =

2 in Ω1

1 in Ω2

(4.35)

Ey = 1 , ν = 0.4999 (4.36)

where, E∞ is the electric field in infinity, ε0
r is a scalar constant deter-

mined experimentally, Ey is Young’s modulus and ν is Poisson’s ratio.

For the two way coupling algorithm, material called MP1880 film is

employed to model the real problem. The values of parameters of the

material are from the reference[28].

E∞ = E∞
x = 107V m−1 (4.37)

ε0
r = 2 ε1

r = −4 ε2
r = −12 Ω1

ε0
r = 1 ε1

r = 0 ε2
r = 0 Ω2

(4.38)

Ey = 7.1 × 105pa, ν = 0.4999 (4.39)

4.5.2 Analytical Solution

The analytical solution[26] is available for one way coupling case. The

main derivation steps are stated below.

Define:

Ex + iEy = − ¯w′(Z) (4.40)

where w(Z) = w(x + iy) is the solution of the electrostatic problem,

and can be expressed as:

w(ζ) = −RĒ∞ζ + RAE∞ζ−1 for |ζ| > R (4.41)

w(ζ) = −BRζĒ∞ for |ζ| < R (4.42)
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where,

A =
ε2 − ε1

ε1 + ε2

(4.43)

B =
2ε1

ε1 + ε2

(4.44)

The stresses are obtained for:

σxx + σyy = 4Kw
′
(Z) ¯w′(Z) + 4(ϕ

′
(Z) + ¯ϕ′(Z)) (4.45)

σyy − σxx + 2iσxy = 4Kw
′′
(Z) ¯w(Z) + 4(Z̄ϕ

′′
(Z) + ψ

′
(Z))(4.46)

where

ϕ(ζ) = ΓRζ + ϕ0(ζ) (4.47)

ψ(ζ) = RΓ
′
ζ + ψ0(ζ) (4.48)

and

κ = 3 − 4ν for plain strain (4.49)

κ =
3 − ν

1 + ν
for plain stress (4.50)

and

K =
1

8

1 − 2ν

1 − ν
(a + 2b) plain strain (4.51)

K =
1

8

λ + 2µ

2λ + 2µ
(a + 2b) plain stress (4.52)

Finally, ϕ0(ζ) and ψ0(ζ) can be determined as:

ϕ0(ζ) =
1

κ
(
Γ̄

′
R

ζ
− KE2

∞AR

ζ
+

1

4

aRE2
∞

ζ
) (4.53)

ψ0(ζ) =
Γ̄R(κ − 1)

ζ
− 1

ζ
ψ

′

0(ζ) − KRE2
∞A

ζ3
− KRE∞Ē∞

ζ

+
KA2RE∞Ē∞

ζ
+

1

12a

RA2E2
∞

ζ3
+

E∞Ē∞ARa

2ζ
(4.54)

with constants:

Γ = Γ̄ =
T

8
− KE∞Ē∞

2
(4.55)

Γ
′

= Γ̄′ = −T

4
(4.56)
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4.5.3 Numerical Results and Error Estimate

For one way coupling, the exact analytical solution can be provided

to verify the performance of overall hp finite element formulation for

both plain strain case and plain stress case. For two way coupling,

there is no exact analytical solution to compare with numerical one.

However, comparing with the analytical solution for one way coupling,

the limitation of exact solution is investigated.

One Way Coupling
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Figure 4.4: Convergence of ||u − uhp||SNS for p refinement in plain strain

and plain stress cases

Figure(4.4) shows p refinement for the plain strain case and plain

stress case with both formulations. In this one way coupling prob-

lem, we have smooth solution over the whole domain. Therefore, p

refinement is more effective to achieve the accuracy. As expected, both

displacement formulation and mixed formulation present exponential

convergence rate in plain strain and plain stress cases. But again, we

observe there is locking for displacement formulation when p=1.
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Figure 4.5: ||u − uhp||SNS vs. iteration

Two Way Coupling

In the two way coupling, as mentioned before, the analytical solution is

not available. Therefore, we cannot obtain convergence performance of

our hp approach for two way coupling. However, two way coupling rep-

resents the real electrostriction problem. Figure(4.5) shows the changes

in the ||u − uhp||SNS when compared with analytical solution for one

way coupling, with iteration steps. The figure illustrates divergence

performance, the error increases with iteration steps and becomes flat.

This is because in every iteration step, we use same analytical solu-

tion to compare, but in reality, the analytical solution doesn’t match

the real problem. However, from the divergence figure, we can observe

how far away the numerical solution of two way coupling is from the

analytical solution of one way coupling.
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Chapter 5

Conclusion and Future Work

Coupled electrostatic mechanical behavior has been found in various

applications. The real challenge is modeling and analysis of coupling

behavior, because the coupling mechanism is highly nonlinear and ana-

lytical solutions are not available in most cases. To obtain an accurate

prediction of the coupling behavior, appropriate numerical methods

are needed. Finite element method(FEM) is a very powerful numerical

tool used to simulate and analyze virtually all engineering problems.

Therefore, it is employed by engineers to model coupling behavior.

In this thesis, electrostriction, based on the fundamental mechanism

of electromechanical coupling, is considered. The key coupling in elec-

trostriction is: stress tensor depends on the permittivity and the per-

mittivity is affected by the strain field. In order to simulate the coupling

behavior accurately with finite element method, this research carried

out simulation of electric field and mechanical field separately first,

making sure simulation of both fields work properly, then combining

the two fields together to carry out the simulation of coupling mecha-

nism.

For simulation of electric field, higher order hierarchic shape functions
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for order p H1 conforming elements[19, 20] are employed to implement

hp adaptive finite element formulation in MATLAB. When the solution

has singularities in some certain points, the choice of h refinement with

low order is more effective, but even so, only algebraic convergence

rate can be obtained. If the solution is smooth, then p refinement can

present exponential convergence rate. Otherwise, only combined hp

FEM can achieve exponential convergence rate. For the benchmark

problem in electric field, the solution has singularities in the two cor-

ners, the developed hp FEM presented algebraic convergence rate as

expected with either h or p refinement. If we use nonuniform mesh

instead of uniform mesh to generate finer mesh near the two corners,

then with p refinement, the developed approach is supposed to present

exponential convergence rate. But due to time constraint, only idea is

shown.

The mechanical field is simulated on both displacement based finite

element formulation and mixed finite element formulation. In displace-

ment formulation, the same shape functions as in electric field are em-

ployed. In mixed formulation, not only the same shape functions for

order p H1 conforming elements but also shape functions for order p-1

L2 conforming elements are employed[19, 20]. There is volumetric lock-

ing when Poisson’s ratio ν is close to 0.5 in displacement formulation.

To overcome locking problem, this thesis adopted mixed formulation.

Both formulations are implemented to hp FEM MATLAB code and

tested to solve a benchmark problem in plain strain case and plain

stress case. For this benchmark problem, with h refinement, both dis-

placement and mixed FEM lock for lower order element (p=1) in plain

strain case, and in plain stress, displacement formulation doesn’t lock,

but mixed formulation presented locking for p=1. Both methods pre-

60



sented algebraic convergence rate from p=2. With p refinement, in

plain strain case, exponential convergence rate can be obtained in both

methods. However, the magnitude of the error in the sum of normal

stresses is much larger than the other two measures(displacement L2

norm and energy norm) with displacement formulation and locking oc-

curs for p=1. With mixed method, we can overcome locking for p=1,

also the magnitude of the sum of normal stresses is similar to that ob-

tained from the other two measures. In plain stress case, no locking

occurs with both methods, and both methods presented exponential

convergence rate. Moreover, comparing with the results when there

is no locking(ν = 0.3), we found mixed FEM is more accurate than

displacement FEM. To conclude, hp mixed FEM (p ≥ 2) is the best

choice to simulate mechanical field accurately, because we can obtain

exponential convergence rate, and no locking occurs as well.

For the simulation of electrostriction, this thesis investigated two cou-

pling algorithms called one way coupling and two way coupling, respec-

tively. One way coupling is the case described as: The stress tensor

depends on the permittivity, but permittivity is independent to me-

chanical field. Two way coupling is for the real electrostriction problem

where not only does stress depend on the permittivity, but also permit-

tivity depends on the strain field. The electric field and the mechanical

field of electrostriction are implemented using the same hp approach as

investigated earlier and coupling mechanism is implemented to obtain

integrated hp FEM for the electrostriction. Then it is tested to solve

a benchmark problem. With one way coupling algorithm, analytical

solution is available, and hp FEM presented exponential convergence

rate for p refinement in both plain strain and plain stress cases. For

two way coupling algorithm, there is no analytical solution available so
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far, however, it represents real electrostriction problem. So this thesis

still presented divergence of the approach with p refinement by com-

paring it with the analytical solution of one way coupling. The results

show that the sum of norm of stresses increases with iteration steps and

become flat after one or two iterations. However, from the divergence

figure, we can observe how far away the numerical solution of two way

coupling is from the analytical solution of one way coupling.

In conclusion, hp adaptive finite element method for two dimensional

electrostriction is developed successfully in this thesis and accuracy of

the approach is demonstrated through some benchmark problems with

known analytical solutions. Because of the lack of analytical solution,

this thesis doesn’t present the convergence of the approach in two way

coupling, but still results from the other benchmark problems show

the approach developed in this thesis is robust and can be extended to

many other applications.

On going work include application to realistic complicated geometries,

extension to three dimensional electrostriction and extension to other

kinds of coupling problems such as magneto-mechanical coupling.
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