
i

Contribution to numerical modeling of fluid-

structure interaction in hydrodynamics applications

by Herry Lesmana

A thesis submitted in partial fulfilment

of the requirements for the degree of

Master of Science in Computational Mechanics

at

Ecole Centrale de Nantes

Supervisors:

Prof. Laurent Stainier

Institut de Recherche en Genie Civil et Mecanique (GeM)

Dr. Alban Leroyer

Laboratoire de Recherche en Hydrodynamique, Énergétique et Environnement

Atmosphérique – Equipe Modélisation Numérique (LHEEA - EMN)

i

Abstract

The thesis presents uncoupled two-dimensional structure and fluid dynamics simulations using

Zorglib and ISIS-CFD solver respectively, a development of computational procedures in

particular for the fluid-structure interface dynamic library to couple the two solvers to solve

fluid-structure interactions (FSI) problems, and eventually benchmark coupled numerical

simulations. The Zorglib solver is based on the finite element discretization method whereas the

ISIS-CFD solver is based on the unstructured finite volume discretization method. The coupling

of the two solvers adopts the implicit strongly coupled partitioned approach to ensure stable

solutions in the case where added-mass effects take place [16].

The initial phase of the work in this thesis is to ensure the mesh convergence of the solid

simulation by comparing different two-dimensional solid elements to solve an analytical static

problem. Following after that is a numerical test performed on a benchmark solid dynamic [13]

and the results were found to agree well. For the ISIS-CFD solver a numerical test is performed

on the classical case of a two-dimensional laminar incompressible flow past a fixed square

cylinder based on [17] and the results also agree well. The second phase of the work is to

integrate Zorglib, an object oriented based solver, in ISIS-CFD solver to enable the stable

coupling of the two solvers. The computational stability is ensured by implementing an internal

convergence loop with under-relaxation on the fluid forces and solid displacements as part of

ISIS-CFD non-linear iterations. By using this approach the total CPU time depends only on the

CPU time of ISIS-CFD. Eventually in the last phase of the work the verification of the coupling

strategy is done by performing FSI simulations which show good agreements with the work

done in [7] [12] [13].

ii

Acknowledgements

I would like to thank Prof. Laurent Stainier and Dr. Alban Leroyer for giving the opportunities

to do this research project and guiding the learning process with full supports. It has been my

pleasure to work under their guidance and learn many new things in the computational solid and

fluid area.

I would like also to thank Prof. Nicolas Chevaugeon for his support during the Master course

and his recommendation so that I could pursue an internship in Nantes.

During the last two semesters of the master course I have been fortunate to have Hector, Mattia,

and Cyril who share their thesis experience and in a way work alongside to achieve the same

purposes.

Contents

Abstract ... i

Acknowledgements .. ii

1 Introduction .. 1

2 Conservation Equations .. 4

2.1 Conservation of Mass ... 4

2.2 Conservation of Momentum ... 5

2.3 Conservation of Energy ... 6

3 Computational Fluid Dynamics (CFD) Solver...................................... 7

3.1 Introduction ... 7

3.1 Governing Equations ... 7

3.2 Finite Volume Discretization .. 8

3.3 Numerical Example .. 11

4 Computational Structure Dynamics (CSD) Solver 15

4.1 Introduction ... 17

4.2 Governing Equations ... 17

4.3 Linear Elasticity ... 18

4.4 Hyperelasticity ... 19

4.5 Finite Element Discretization ... 21

4.5 Two-dimensional Plane Stress and Plane Strain Elements 22

4.6 Generalized- Time Integration Method .. 22

4.7 Newton-Raphson Nonlinear Solver ... 24

4.8 Mesh Sensitivity Analysis ... 24

4.9 Numerical Tests .. 30

5 Fluid-Structure Coupling ... 36

5.1 Fluid-Structure Interface .. 36

5.2 Coupling Strategy .. 38

5.3 Coupling Interface Library .. 39

5.3.1 initGENERIC_ifs .. 41

5.3.2 GENERIC_ifs ... 43

5.3.3 saveGENERIC_ifs .. 44

5.4 Mesh Update Technique .. 44

6 FSI Numerical Results .. 45

6.1 Flow Induced Excitation of Vertical Flexible Thin Plate 45

6.2 Flow Induced Excitation of Horizontal Flexible Thin Plate 49

7. Conclusions .. 58

Appendix A FSI Simulations Procedures .. 59

Appendix B Interface Dynamic Library .. 62

B.1 initGENERIC_ifs.cpp .. 62

B.2 GENERIC_ifs.cpp .. 65

B.3 saveGENERIC_ifs.cpp .. 68

B.4 Read_FSI_Input ... 70

B.5 Build_FSI_Arrays .. 73

B.6 init_ISIS.cpp ... 81

B.7 init_ISIS.h ... 86

B.8 Zorglib_FE_Initialization.cpp ... 90

B.9 Zorglib_Integrator_Initialization.cpp ... 92

B.10 Zorglib_Archival_Initialization.cpp .. 95

B.11 FSI_Run_Type.cpp ... 96

B.12 IFSFunction.h ... 99

References .. 101

1

1 Introduction

There have been numerous international publications and practical applications of numerical

simulations concerning the fluid-structure interactions problems. The knowledge of the

numerical procedure in these areas has been steadily growing in the past decades as the problems

increasingly become more complicated and different numerical treatments are required to ensure

stable and accurate solutions. The application of fluid-structure interactions encompasses a wide

range of engineering and life science, to name a few:

 Structural engineering design for designing long-span bridges, high-rise buildings, and

lightweight roof structures with wind flow interactions.
 Aerospace engineering analyses such as analysis of airfoil oscillations, flutter prediction,

and parachute dynamics.
 Biomechanics design such as cardiovascular mechanics, cerebrospinal mechanics, and

artificial heart valves design.

In most cases to model the real world problems, the numerical simulations have to be able to

characterize large solid deformations as a result of interactions with viscous fluids. When the

structure is very light or the flow is highly compressible, this becomes a highly non-linear

problem and to model an efficient, accurate, and stable computational procedure for this kind of

problem is quite challenging and it is still pursued by many researchers in this area.

There are a number of different numerical strategies to couple the fluid and solid discretized

solutions to solve FSI problems. In particular [6] proposed a simultaneous solution procedure

where the discretized model equations for fluid, structure and coupling conditions are unified in

a single non-linear system of equations and combined with the mesh dynamics equation to be

solved in every iteration loop. This solution procedure is often called the monolithic solution

procedure. In general the monolithic solution procedure is stable and the solution can converge

relatively fast when solving large solid deformations interacting with viscous fluid. The drawback

is that it does not have the flexibility to utilize the readily established solvers with different solid

and fluid discretizations.

Introduction

2

A weak coupling partitioned solution procedure is proposed by [18] to solve transient aero elastic

problems where the solution advances in time without any iteration to ensure the convergence of

the coupling. Some additional correction strategies can be adapted to limit the accumulation of

the errors. This procedure is relatively simple and the CPU time can be significantly low but the

procedure is only first order accurate. It is conditionally stable and in some cases the time step

constraint to achieve a stable solution means the CPU time advantage does not exist anymore.

When the fluid density is comparable or higher than the solid density, there exists an added mass

effect which cannot be solved by the reducing the time step anymore [8].

A more elaborate partitioned solution procedure is proposed in [7] with strong coupling where

an iterative procedure is performed on the FSI interface computation to achieve a specified

accuracy requirements. The strategy is relied on the Newton-Raphson full exact linearization

procedure to solve the incremental problem. Several numerical examples which are shown in [7]

have robust solutions when dealing with highly non-linear FSI problems.

Taking advantage of the well-established computational structural dynamics (CSD) solver,

Zorglib, and computational fluid dynamics (CFD) solver, ISIS CFD, developed in Ecole

Centrale de Nantes, a postdoctoral work commenced the development of computational

procedures to couple the two solvers to perform two-dimensional fluid-rigid body interactions

simulations by adopting the strongly coupled implicit partitioned procedure. The main objective

of this thesis is to develop further the existing computational procedures to be able to perform

two dimensional fluid-structure interactions simulations of elastic and flexible body.

The outline of the following chapters is as follows:

Chapter 2: This chapter discusses the main conservation equations which are the

fundamental principle equations used in the solid and fluid computational

models.

Chapter 3: The fundamental aspects of ISIS CFD solver i.e. governing equations,

discretization strategy, and computation algorithm are discussed briefly in this

chapter. Numerical examples are presented at the end of the chapter compared to

the referenced international publication.

Chapter 4: The fundamental aspects of Zorlib solver are discussed in the same manner like

in Chapter 2 but with additional short explanations of the time integration strategy

and Newton Raphson method to solve non-linear equations. A mesh sensitivity

Introduction

3

analysis and numerical tests compared to the analytical solution and referenced

international publication are presented at the end of the chapter.

Chapter 5: This chapter firstly explained different conditions that have to be satisfied on the

fluid-structure interface and followed with the coupling strategy adopted in this

work. Eventually the coupling interface library is explained at the end of the

chapter.

Chapter 6: In this chapter several fluid-structure numerical results are presented. The

simulations are based on the test cases in the international publications and the

current results are compared to the ones in the publications.

Chapter 7: The conclusion of the work done in the thesis.

4

2 Conservation Equations

The section is synthesized from [1]. The following two mathematical expressions will be used to

derive the balance principles.

Material time derivative:

																																																											
݂ܦ
ݐܦ

ൌ
߲݂
ݐ߲

൅ Ԧݒ ∙ ሺ2.1ሻ																																																																				ሬሬԦ݂׏

Reynold’s Transport Theorem:

																																																		
ܦ
ݐܦ

න ݂
ஐ

݀Ω ൌ න ൬
݂ܦ
ݐܦ

൅ ሬሬԦ׏	݂ ∙ Ԧ൰ݒ ݀Ω
ஐ

																																									ሺ2.2ሻ

where ݂ can be a scalar, vector, or tensor function, ݒԦ is the velocity vector field, ׏ሬሬԦሺ∎ሻ is gradient

operator, ׏ሬሬԦ ∙ ሺ∎ሻ is divergence operator, and Ω is the material domain.

2.1 Conservation of Mass

The mass of any material domain in the body is constant and this implies that the material time

derivative of the mass has to be zero:

																																																						
݉ܦ
ݐܦ

ൌ
ܦ
ݐܦ

න Ω݀	ߩ
ஐ

ൌ 0																																																															ሺ2.3ሻ

Using Eq. (2.1) and (2.2):

																																					
ܦ
ݐܦ

න Ω݀	ߩ
ஐ

ൌ න ൬
ߩܦ
ݐܦ

൅ ሬሬԦ׏	ߩ ∙ Ԧ൰ݒ 	݀Ω
ஐ

ൌ 0																																													ሺ2.4ሻ

																																						න ൬
ߩ߲
ݐ߲

൅	ݒԦ ∙ ߩሬሬԦ׏ ൅ ሬሬԦ׏	ߩ ∙ Ԧ൰ݒ 	݀Ω
ஐ

ൌ 0																																																							ሺ2.5ሻ

Because Eq. (2.5) holds for any sub-domain, the integral can be omitted:

																																								
ߩ߲
ݐ߲

൅	ݒԦ ∙ ߩሬሬԦ׏ ൅ ሬሬԦ׏	ߩ ∙ Ԧݒ ൌ 0																																																																								ሺ2.6ሻ

																																								
ߩ߲
ݐ߲

൅		׏ሬሬԦ ∙ ሺ	ߩ	ݒԦ	ሻ ൌ 0																																																																																		ሺ2.7ሻ

Eq. (2.7) is also known as the conservative form of the conservation of mass equation.

Conservation Equations

5

2.2 Conservation of Momentum

The basis of the conservation of linear momentum equation is that the rate of change of linear

momentum is equal to the total applied force. The linear momentum is the product of the

density, ߩ, and the velocity vector, ݒԦ , over an arbitrary domain, Ω, and the conservation of

momentum is defined as the following:

																																					
ܦ
ݐܦ

න ݀Ω	Ԧݒߩ
ஐ

ൌ න ݀Ω	ሬܾԦߩ
ஐ

൅ න ݀Γ	Ԧݐ
୻

																																																						ሺ2.8ሻ

where ߩሬܾԦ is the body forces vector and ݐԦ is the surface traction vector. The left hand side of

Eq. (2.8) can be derived further using the Reynold’s Transport Theorem as defined in Eq. (2.2) and

combined with Eq. (2.6):

																																					
ܦ
ݐܦ

න ݀Ω	Ԧݒߩ
ஐ

ൌ න ቆ
Ԧሻݒߩሺܦ
ݐܦ

൅ ሬሬԦ׏	Ԧݒߩ ∙ Ԧቇݒ 	݀Ω
ஐ

																																																		

																																					
ܦ
ݐܦ

න ݀Ω	Ԧݒߩ
ஐ

ൌ න ൭ߩ
Ԧݒܦ
ݐܦ

൅ Ԧݒ ൬
ߩܦ
ݐܦ

൅ ሬሬԦ׏	ߩ ∙ Ԧ൰൱ݒ 	݀Ω
ஐ

																											ሺ10ሻ

																																					
ܦ
ݐܦ

න ݀Ω	Ԧݒߩ
ஐ

ൌ න ߩ
Ԧݒܦ
ݐܦ

݀Ωቆ൅ݒԦ ൬
ߩܦ
ݐܦ

൅ ሬሬԦ׏	ߩ ∙ 	Ԧ൰ቇݒ
ஐ

																												ሺ2.9ሻ

Using the Gauss’s divergence theorem, the boundary integral for the surface traction can be

transformed into the following formulation:

																																					න ݀Γ	Ԧݐ
୻

ൌ න ሬሬԦ׏ ∙ Ω݀	࣌
ஐ

																																																																														ሺ2.10ሻ

where ࣌ is the Cauchy stress tensor. By substituting Eq. (2.9) and (2.10) into (2.8) and omitting

the volume integral because it holds for any sub-domain, the conservation of momentum

equation becomes:

ߩ																																														
Ԧݒܦ
ݐܦ

ൌ ሬܾԦߩ	 ൅ ሬሬԦ׏ ∙ ሺ2.11ሻ																																																																													࣌

Eq. (2.11) is expressed in current configuration and includes the material time derivative. This is

usually used in the solid mechanics problem and it can be expressed in terms of the spatial

coordinates in the current configuration to give the following formulation:

ߩ																																														
Ԧݒ߲
ݐ߲

ൌ ሬܾԦߩ	 ൅ ሬሬԦ׏ ∙ ሺ2.12ሻ																																																																													࣌

0, Eq. (4) of conservation of mass

Conservation Equations

6

Eq. (2.12) is known as the updated Lagrangian formulation in non-linear solid mechanics problems.

Another formulation which is known as the total Lagrangian formulation is obtained by defining the

momentum equation in the reference configuration using the material coordinates:

଴ߩ																																														
Ԧݒ߲
ݐ߲

ൌ ଴ߩ	 ሬܾԦ ൅ ሬሬԦ଴׏ ∙ ሺ2.13ሻ																																																																							ࡼ

where the subscript 0 refers to the reference configuration and P is the first Piola-Kirchhoff stress

tensor.

The Eulerian formulation of Eq. (2.11) can be obtained by deriving the velocity material time

derivative using Eq. (2.1):

ߩ																																														
Ԧݒܦ
ݐܦ

ൌ ߩ	 ቆ
Ԧݒ߲
ݐ߲

൅	ݒԦ ∙ ԦቇݒሬሬԦ׏ ൌ ሬܾԦߩ ൅ ሬሬԦ׏ ∙ ሺ2.14ሻ																																							࣌

Eq. (2.14) is usually used in the fluid mechanics problem.

2.3 Conservation of Energy

For thermomechanical process, the conservation of energy or known as well as the first law of

thermodynamics states that the power of the internal and kinetic energy is equal to the external

power and the power supplied by heat sources:

																																																					ℙ௜௡௧ ൅ ℙ௞௜௡ ൌ ℙ௘௫௧ ൅ ℙ௛௘௔௧																																																					ሺ2.15ሻ

Each of the powers in Eq. (2.15) can be expanded as follows:

																												
ܦ
ݐܦ

න ݀Ω	௜௡௧ݓߩ
ஐ

൅	
ܦ
ݐܦ

න
1
2
Ԧݒ	ߩ ⋅ ݀Ω	Ԧݒ

ஐ
																																																													

ൌ න Ԧݒ ⋅ ݀Ω	ሬܾԦ	ߩ
ஐ

൅ න Ԧݒ ⋅ ݀Γ	Ԧݐ
୻

൅ න Ω݀	ݏ	ߩ
ஐ

െ න ሬ݊Ԧ ⋅ ݀Γ	Ԧݍ
୻

																							ሺ2.16ሻ

where ݓ௜௡௧ is the specific internal energy, ݏ is the heat sources, and ݍԦ is the heat flux. Eq. (2.16)

can be derived further into Eulerian and Lagrangian partial differential equations and considering

only mechanical process as follows:

ߩ																																																											
௜௡௧ݓܦ

ݐܦ
ൌ ࣌	 ∶ ሺ2.17ሻ																																																																			ࢊ

ሶݓ௢ߩ																																																													 ௜௡௧ ൌ ࡼ	 ∶ ሶࡲ ்																																																																	ሺ2.18ሻ

where ࢊ and ࡲሶ is the rate of deformation tensor and deformation gradient tensor respectively.

7

3 Computational Fluid Dynamics (CFD) Solver

3.1 Introduction

The CFD solver used in this thesis is ISIS-CFD flow solver which is developed by Equipe

Modélisation Numérique (EMN) in Ecole Centrale de Nantes [10]. It is based on the unsteady

incompressible Reynolds-Averaged Navier Stokes Equations (RANSE) which is discretized using

the finite volume method to build the spatial discretization of the transport equations. The

velocity field is obtained from the momentum conservation equations and the pressure field is

extracted from the mass conservation equation transformed into a pressure-equation. The face-

based method is generalized to two-dimensional or three dimensional unstructured meshes

where non-overlapping control volumes are bounded by an arbitrary number of constitutive

faces.

In this thesis the flow regime under investigation is limited to the laminar flow but ISIS-CFD is

capable to model the turbulent flows using additional transport equations which are discretized

and solved in the same manner as the momentum conservation equations.

3.1 Governing Equations

The assumptions taken to model the fluid dynamics problem are:

- Incompressible flow

- Uniform density

- Viscous fluid

- Isothermal condition

Using index notation, the mass conservation equation for a moving domain is formulated as:

																							
߲
ݐ߲
න ܸ݀	ߩ ൅	න ௜ݒ൫ߩ െ ௜ݒ

ௗ൯	݊௜	݀ܵ ൌ 0																																																														ሺ3.1ሻ
ௌ௏

whereas the momentum conservation equation is formulated as the following:

߲
ݐ߲
න ܸ݀	௜ݒߩ ൅	න ௜ݒ௝൫ݒߩ െ ௜ݒ

ௗ൯	 ௝݊	݀ܵ ൌ 	න ൫߬௜௝ܫ௝ െ ௜൯ܫ݌
ௌ

	 ௝݊	݀ܵ ൅ න ܸ݀	௜ܾߩ
௏

											ሺ3.2ሻ
ௌ௏

Computational Fluid Dynamics (CFD) Solver

8

The fluid domain which is represented by a control volume ܸ is bounded by a surface ܵ which

moves with a velocity ݒԦௗ and an outward normal vector ሬ݊Ԧ. The pressure and velocity of the flow

field are represented by ݒԦ and ݌ respectively. The viscous component of the stress tensor and

body force vector are represented by ߬௜௝ and ܾ௜. ܫ௝ is a vector whose components vanish, except

for the component ݆ which is equal to unity. ߬௜௝ for a Newtonian fluid is defined as:

																					߬௜௝ ൌ ௜௝ܦ	ߤ	2 ൌ 	ߤ ቆ
௜ݒ߲
௝ݔ߲

൅
௝ݒ߲
௜ݔ߲

ቇ																																																																																	ሺ3.3ሻ

where ܦ௜௝ is the strain rate tensor.

3.2 Finite Volume Discretization

The finite volume method is used to discretize spatially the governing equations. The

fundamental aspect of a finite volume method lies in the approximation of a volume integration

of a function ܨ in a domain ܸ by the product of the volume ܸ by the value of the function ܨ at

the center of the domain ܥ:

																																																					න ܨ
௏

ܸ݀ ൎ ሺ3.4ሻ																																																																														஼ܸܨ

For two functions ܨሺݔԦ, ,Ԧݔሺܩ ሻ andݐ the finite volume ,ܥ ሻ in a control volume ܸ and its centerݐ

approximate the following products:

																																																					න ܩ	ܨ
௏

ܸ݀ ൎ ሺ3.5ሻ																																																																					஼ܸܩ஼ܨ

																																																					න
ܨ
௏ܩ
ܸ݀ ൎ

஼ܨ
஼ܩ

ܸ																																																																												ሺ3.6ሻ

A second order approximation can be achieved if the location of ܥ is at the geometric barycenter

of the domain.

The finite volume method also requires evaluations of fluxes across the cell faces which means

surface integrations have to be utilized. All the variables are located at the geometric center of

cells so values of functions at center of cell faces have to be built from cell-centered values of the

functions from each side of the cell face.

If the density is uniform and constant, Eq. (2.1) becomes:

Computational Fluid Dynamics (CFD) Solver

9

																							
߲
ݐ߲
න ܸ݀ ൅	න ൫ݒ௜ െ ௜ݒ

ௗ൯	݊௜	݀ܵ ൌ 0																																																																				ሺ3.7ሻ
ௌ௏

The following formula has to be imposed for a displacement of a surface bounding a control

volume:

																											
߲
ݐ߲
න ܸ݀ െ	න ௜ݒ

ௗ	݊௜	݀ܵ ൌ 0																																																																														ሺ3.8ሻ
ௌ௏

With this constraint, finally the mass conservation equation for a moving domain with uniform

and constant density becomes:

																															න ܵ݀	݊௜	௜ݒ	 ൌ 0																																																																																																		ሺ3.9ሻ
ௌ

and after discretization it becomes:

																																		෍ݒ௜	 ௜ܵ	
௙

ൌ 0																																																																																																			ሺ3.10ሻ

For a generic variable ܳ for a cell ॽ with its center ܥ and bounded by an arbitrary number of

faces ݂, the discretization of the momentum conservation equation is formulated as the

following:

																											
߲
߲߬
ሺܸܳߩሻ஼ ൅

߲
ݐ߲
ሺܸܳߩሻ஼ ൅෍൫ܨܥ௙ െ ௙൯ܨܦ

௙

ൌ ൫ܵொ
ॽ൯ ൅෍൫ܵொ

௙൯
௙

														ሺ3.11ሻ

௙ܨܥ																																											 ൌ ሶ݉ ௙ܳ௙					; ௙ܨܦ					 ൌ ൫Γொ൯௙൫׏
ሬሬԦܳ௙ ∙ ଓ௞ሬሬሬԦ൯ሺܵ௞ሻ௙																										ሺ3.12ሻ

The terms ܨܥ௙ and ܨܦ௙ are the convective and diffusive fluxes through the face ݂. ܵொ
ॽ is the

source term of the cell volume and ܵொ
௙ is the source term of the cell face. ߬ is a local fictitious

time variable and the vector ଓ௞ሬሬሬԦ is a generic unit vector where ଓଵሬሬԦ = (1, 0, 0). The present of ߬ is to

enforce the diagonal dominance for the linearized equations that are solved successfully in a non-

coupled way. Γொ is an isotropic or anisotropic diffusion coefficient.

The mass fluxes ሶ݉ ௙ is formulated as the following:

																																																					 ሶ݉ ௙ ൌ Ԧݒሺߩ െ Ԧௗሻ௙ݒ ∙ Ԧܵ௙																																																																	ሺ3.13ሻ

																																																							 Ԧܵ௙ ൌ ௙ܵ	 ሬ݊Ԧ௙																																																																																			ሺ3.14ሻ

where Ԧܵ௙ is the oriented surface vector.

The temporal derivatives are evaluated by the upwind second-order discretization using the

following formulation:

Computational Fluid Dynamics (CFD) Solver

10

																																																				
ܣ߲
ݐ߲

≅ ݁௖ܣ௖ ൅ ݁௣ܣ௣ ൅ ݁௤ܣ௤																																																							ሺ3.15ሻ

where the superscript ܿ refers to the current time ݐ௖, ݌ is one time step before ݐ௖, and ݍ two

time steps before ݐ௖. The coefficients (݁௖ , ݁௣, and ݁௤) are obtained from the Taylor series

expansion from ݐ௖ and depend on a possibly prescribed variable time step law ∆ݐሺݐሻ.

The fictious local time derivative is needed to stabilize the solution procedure for steady flows

and evaluated as the following:

																																																												
ܣ߲
߲߬

≅
௖ܣ െ ௖଴ܣ

∆߬
																																																																					ሺ3.16ሻ

where ܣ௖଴ is the previous estimation of ܣ௖ in the non-linear loop.

The final form of the generic discrete transport equation is the following:

		൬݁௖ ൅
1
∆߬
൰ ሺܸܳߩሻ஼

௖ ൅෍൫ܨܥ௙ െ ௙൯ܨܦ
௙

																	

ൌ ൫ܵொ
ॽ൯ ൅෍൫ܵொ

௙൯
௙

െ ሺܸ݁ܳߩሻ஼
௣ െ ሺܸ݁ܳߩሻ஼

௤ ൅
ሺܸܳߩሻ஼

௖଴

∆߬
																														ሺ3.17ሻ

In ISIS-CFD, the quantities on the face center can be built using either the centered face

reconstruction or the upwinded face reconstruction. The upwinded face reconstruction

numerically more stable and prevents unphysical oscillations with the order of accuracy between

1 and 2.

The computation of the gradient in a cell uses either the Weighted Least-Square and Gauss method

in ISIS-CFD. For the pressure equation, the pseudo-physical Rhie & Chow mass flux

reconstruction is used to avoid the chequerboard oscillations.

The computation algorithm used in ISIS-CFD is similar to the Semi-Implicit Method for Pressure-

Linked Equations (SIMPLE) algorithm which solved a segregated decoupled momentum and

pressure equations. The linear systems resulting from the momentum and pressure equations are

solved with the help of iterative linear solvers.

The computation algorithm can be summarized as the following:

1. Initialization of quantities ܣ଴ at ݐ ൌ ଴ݐ

Computational Fluid Dynamics (CFD) Solver

11

2. New time step ݐ ൌ ݐ ൅ ݐ∆

3. Start the non-linear loop

4. If needed, compute turbulence fields from ܣ଴

5. Solve the discretized momentum equations to obtain a new prediction of the velocities

6. Solve the pressure equation to obtain a new pressure field

7. Update the velocity fluxes and correct the velocity components with new pressure field

8. If the non-linear residuals are still above the tolerance, update the non-linear fields and

return to step 4

9. Go to step 2 and update the time

3.3 Numerical Example

This section presents a CFD simulation example of an unsteady two dimensional flow pass a

square cylinder based on the work of [17] for the unsteady case with a blockage ratio of 1/8 and

several Reynolds’ number, Re, of 75, 100, 150, and 200. The simulation set up is depicted in

Figure 3.1 with the fluid dynamic viscosity of 1.0 Pa s, the time step of 0.01 s, and the fluid

density varied from 75, 100, 150, and 200 kg/m3 to obtain the corresponding Reynolds’ number

where it is based on the cylinder diameter, D of 1 m, and the maximum flow velocity of the

parabolic inflow profile, ܷ௠௔௫ of 1 m/s.

Figure 3.1 Simulation set up for the two dimensional flow pass a square cylinder

1 m 37 m12 m

3.5 m

3.5 m

No Slip

No Slip

Z
er

o
Pr

es
su

re

U∞ = U∞ (y)

y

x

No Slip

Computational Fluid Dynamics (CFD) Solver

12

The parabolic velocity profile is defined with the following equation:

																																																ܷஶሺݕሻ ൌ ܷ௠௔௫
ܪሺݕ െ ሻݕ
ሺܪ 2⁄ ሻଶ

																																																														 ሺ3.18ሻ

where ܪ is the channel height.

The fluid mesh is shown in Figure 3.2 where it has 17,380 cells and 36,426 nodes. Specific

refinements are applied to regions close to the cylinder body and on the top and bottom wall to

capture the boundary layer phenomena as the boundary conditions are ‘no slip’ for those regions.

Figure 3.2 (a) Full view of the fluid mesh (b) Zoomed view on the square cylinder body

Figure 3.3 and 3.4 show the streamlines and pressure for Reynolds number of 100 and 200

respectively at three different times when the lift force reaches the minimum, maximum, and

then minimum amplitude again. Figure 3.5 compares the lift coefficient, CL , of each Reynolds

number and it shows that the oscillation of the lift occurs earlier with higher amplitude when the

Reynolds number increased. An important parameter to be analyzed is the Strouhal number

defined as follows:

(a)

(b)

Computational Fluid Dynamics (CFD) Solver

13

ݐܵ																																																																						 ൌ
ܦ	݂
ܷ௠௔௫

																																																																			ሺ3.19ሻ

where ݂ is the measured frequency of the vortex shedding which is determined by using the Fast

Fourier Transform (FFT) analysis of the time series of the lift coefficient. Figure 3.6 shows the

results of Strouhal number and average drag coefficient, CD , against the Reynolds number which

agrees well with the result in [17] as shown in Figure 3.7. As explained in [17] the increase and

decrease of the Strouhal number is due to the fact that when the Reynolds number increases the

initial separation point moves from the trailing edge to the leading edge and this in turn change

the frequency of the vortex shedding.

Figure 3.3 Streamlines and pressure contour plots for Re = 100 at (a) t = 401 s (b) t = 405 s

(c) t = 408 s

(a)

(b)

(c)

Computational Fluid Dynamics (CFD) Solver

14

Figure 3.4 Streamlines and pressure contour plots for Re = 200 at (a) t = 284 s (b) t = 287 s

(c) t = 291 s

(a)

(b)

(c)

Computational Fluid Dynamics (CFD) Solver

15

Figure 3.5 Lift coefficient from different Reynolds number

Figure 3.6 (a) Strouhal number vs Reynolds number (b) Average CD vs Reynolds number

0 100 200 300 400 500 600 700 800 900

-0.500

-0.250

0.000

0.250

0.500

-0.500

-0.250

0.000

0.250

0.500

0 100 200 300 400 500 600 700 800 900

L
if

t
 C

oe
ff

ic
it

en
t

 C
L

Time (s)

Re = 75
Re = 100
Re = 150
Re = 200

0.100

0.110

0.120

0.130

0.140

0.150

0 50 100 150 200 250

St

Re

1.200

1.300

1.400

1.500

0 50 100 150 200 250

A
ve

ra
ge

 C
D

Re

(a) (b)

16

Figure 3.7 Results from [17] (a) Strouhal number vs Reynolds number (b) Average CD vs Reynolds

number (c) Streamlines for Re = 200

(a) (b)

(c)

17

4 Computational Structure Dynamics (CSD) Solver

4.1 Introduction

The CSD solver used in this thesis is Zorglib CSD solver developed by Prof. Laurent Stainier in

Institut de Recherche en Genie Civil et Mecanique (GeM), Ecole Centrale de Nantes. Zorglib is

currently used to develop and test new constitutive models and algorithms in computational

solid mechanics. It contains a library of various constitutive models, discrete formulations, and

time-integration algorithms for coupled problems in general. It is based on object oriented

modular software architecture to provide flexibility and compatibility with external software

where for instance a constitutive model library can be plugged into other solvers. The algorithms

available in Zorglib can be used for discrete systems of implicit or explicit dynamics and non-

linear quasi-stationary problems. The finite element formulations are mostly for volume elements

but also for linear shells and mixed boundary conditions. The constitutive models available in

Zorglib are:

 Small and finite strain elasticity

 Visco-elasticity

 Visco-plasticity

 Damage model

 Thermo-mechanical model

4.2 Governing Equations

In the case of pure mechanical problem, the Zorglib solver uses finite element method to

discretize the following linear momentum equation which if expressed in the current

configuration using the material coordinates:

	ߩ																																																						
߲ଶݑ௜
ݐ߲

ൌ
௜௝ߪ߲
௝ݔ߲

൅ ߩ ௜݂
௕																																																																			ሺ4.1ሻ

where ݑ௜ is the displacement vector, ߪ௜௝ is the Cauchy stress tensor, ߩ is the density, and ௜݂
௕ is

the body force vector. For stationary problems where the inertial effect can be neglected, the

Computational Structure Dynamics (CSD) Solver

18

acceleration term
డమ௨೔
డ௧

 can be neglected. A proper constitutive equation, which relates the stress

and strain, needs to be defined to complete the problem definition. The constitutive equation

depends on the material behavior under consideration.

4.3 Linear Elasticity

In linear elasticity model, the assumption taken is that materials undergo small deformation when

subjected to applied forces and when the forces are removed the materials will return to their

initial shapes. This implies that the current stress at a point depends only of the current strain at

the point and not the past history of strain rates at the point [1]. The strain is assumed to be

infinitesimal and related to the stress by the following generalized Hooke’s law formulation: 	

௜௝ߪ																																																										 ൌ ԧ௜௝௞௟	ߝ௜௝																																																																													ሺ4.2ሻ

where ߪ௜௝ is the Cauchy stress tensor, 	ߝ௜௝ is the infinitesimal strain tensor, and ԧ௜௝௞௟ is well

known to be the fourth order Hooke’s tensor and due to symmetries can be represented by 21

scalar components. This results in the representation of Hooke’s tensor by 6 x 6 symmetric

tensor and often called the stiffness tensor. The expanded form of Eq. (4.2) is the following:

																																			

ە
ۖ
۔

ۖ
ۓ

		

ଵଵߪ
ଶଶߪ
ଷଷߪ
ଶଷߪ
ଵଷߪ
ଵଶߪ

		

ۙ
ۖ
ۘ

ۖ
ۗ

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

		

ଵ଺ܥ		ଵହܥ		ଵସܥ		ଵଷܥ		ଵଶܥ		ଵଵܥ
ଶ଺ܥ		ଶହܥ		ଶସܥ		ଶଷܥ		ଶଶܥ									
ଷ଺ܥ		ଷହܥ		ଷସܥ		ଷଷܥ																	
ସ଺ܥ		ସହܥ		ସସܥ										.݉ݕݏ						
ହ଺ܥ		ହହܥ																																		
଺଺ܥ																																										

		

ے
ۑ
ۑ
ۑ
ۑ
ې

	

ە
ۖ
۔

ۖ
ۓ

		

ଵଵߝ
ଶଶߝ
ଷଷߝ
ଶଷߝ2
ଵଷߝ2
ଵଶߝ2

		

ۙ
ۖ
ۘ

ۖ
ۗ

																										ሺ4.3ሻ

The above formulation takes into account the anisotropy property of the material where its

properties are not the same in all the three principal directions. In the case of isotropic material

the properties are assumed to be the same in all directions so ԧ࢒࢑࢐࢏ can be simplified as:

																																																		ԧ௜௝௞௟ ൌ ௞௟ߜ௜௝ߜߣ ൅ ௝௟ߜ௜௞ߜ൫ߤ ൅ ሺ4.4ሻ																																												௝௞൯ߜ௜௟ߜ

where ߣ and ߤ are called the Lamé constants and in practice are represented by the following

constants that can be measured physically:

ߤ																																																									 ൌ
ܧ

2ሺ1 ൅ ߭ሻ
																																																																														ሺ4.5ሻ

ߣ																																																									 ൌ
ܧ	߭

ሺ1 ൅ ߭ሻሺ1 െ 2߭ሻ
																																																																ሺ4.6ሻ

Computational Structure Dynamics (CSD) Solver

19

where ܧ is the Young’s modulus and ߭ is the Poisson’s ratio. Using these two constants, the

expanded form of Eq. (4.2) for isotropic materials can be formulated as:

				

ە
ۖ
۔

ۖ
ۓ

		

ଵଵߪ
ଶଶߪ
ଷଷߪ
ଶଷߪ
ଵଷߪ
ଵଶߪ

		

ۙ
ۖ
ۘ

ۖ
ۗ

ൌ ா

ሺଵାజሻሺଵିଶజሻ
		

ۏ
ێ
ێ
ێ
ێ
ۍ
1 െ ߭

		

߭
1 െ ߭

		.݉ݕݏ

߭
߭

1 െ ߭
		

0
0
0

1 െ 2߭
		

0
0
0
0

1 െ 2߭

		

0
0
0
0
0

1 െ ے2߭
ۑ
ۑ
ۑ
ۑ
ې

	

ە
ۖ
۔

ۖ
ۓ

		

ଵଵߝ
ଶଶߝ
ଷଷߝ
ଶଷߝ
ଵଷߝ
ଵଶߝ

		

ۙ
ۖ
ۘ

ۖ
ۗ

											ሺ4.7ሻ

4.4 Hyperelasticity

The knowledge of hyperelasticity in this section is synthesized from [2]. When the material

deformation is considered to be large but still able to return to its initial shape after the applied

forces are removed, the linear elasticity model cannot be used anymore. Instead a hyperelastic

material behavior has to be enforced. In the context of hyperelasticity, the strain is a finite strain

and in Lagrangian description can defined as the Green-Lagrange strain tensor:

ࡱ																																																													 ൌ
1
2
ሺ்ࡲ ∙ ࡲ െ 	ሺ4.8ሻ																																																																	ሻࡵ

ࡲ																																																													 ൌ
߲࢞
ࢄ߲

																																																																																				ሺ4.9ሻ

where ࡲ is the deformation gradient tensor which transform the vector in the reference

configuration ࢄ to its corresponding current configuration ࢞. It is also necessary to introduce the

following definitions:

࡯																																																													 ൌ ሺ4.10ሻ																																																																																ࡲ்ࡲ

࢈																																																													 ൌ ሺ4.11ሻ																																																																															்ࡲ	ࡲ

ܬ																																																														 ൌ ࡲ	ݐ݁݀ ൌ ሺ݀݁ݐ	࡯	ሻ૚/૛																																																			ሺ4.12ሻ

ࡼ																																																													 ൌ ଵିࡲ	ܬ ∙ ሺ4.13ሻ																																																																								࣌

ࡿ																																																														 ൌ ࡼ ∙ ଵିࡲ	ܬ்ିࡲ ∙ ࣌ ∙ ሺ4.14ሻ																																															்ିࡲ

࣌																																																														 ൌ ࡲଵିܬ ∙ ࡼ ൌ ࡲଵିܬ ∙ ࡿ ∙ ሺ4.15ሻ																																											்ࡲ

where ࡯ is the right Cauchy-Green deformation tensor, ࢈ is the left Cauchy-Green deformation

tensor, ܬ is the Jacobian, ࡼ is the first Piola-Kirchhoff stress tensor, ࡿ is the second Piola-Kirchhoff stress

tensor, and ࣌ is the Cauchy stress tensor. To derive the constitutive strain-stress relation of

hyperelastic materials, firstly it is defined that a strain energy function of hyperelastic materials,

શ, is related to the Piola-Kirchhoff stresses using the following formulas:

ܬ ൌ ݐ݁݀ ࡲ ൌ ሺ݀݁ݐ ࡯ ሻ૚/૛

ࡼ ൌ ܬ ଵିࡲ ∙ ࣌

ࡿ ൌ ࡼ ∙ ்ିࡲ ൌ ܬ ଵିࡲ ∙ ࣌ ∙ ்ିࡲ

࣌ ൌ ࡲଵିܬ ∙ ࡼ ൌ ࡲଵିܬ ∙ ࡿ ∙ ்ࡲ

Computational Structure Dynamics (CSD) Solver

20

,ሻࢄሺࡲሺࡼ																																												 ሻࢄ ൌ
߲શሺࡲሺࢄሻ, ሻࢄ

ࡲ߲
																																																													ሺ4.16ሻ

 	

,ሻࢄሺ࡯ሺࡿ																																													 ሻࢄ ൌ 2
߲શሺ࡯ሺࢄሻ, ሻࢄ

࡯߲
	ൌ

߲શሺ࡯ሺࢄሻ, ሻࢄ

ࡱ߲
																										ሺ4.17ሻ	

For isotropic hyperelasticity, શ is only a function of the invariants of ࡯:

																																																								શሺ࡯ሻ ൌ શሺܫ૚, ,૛ܫ ሺ4.18ሻ																																																															૜ሻܫ

૚ܫ																																																															 ൌ tr	࡯																																																																														ሺ4.19ሻ

૛ܫ																																																															 ൌ ሺݎݐ	࡯ሻ	࡯																																																																						ሺ4.20ሻ

૜ܫ																																																															 ൌ det ࡯ ൌ ሺ4.21ሻ																																																																		૛ܬ

and using this constraint, the second Piola-Kirchhoff stress tensor now can be formulated as:

ࡿ																																													 ൌ 2
߲શ
࡯߲

	ൌ 2
߲શ
૚ܫ߲

ࡵ	 ൅ 4
߲શ
૛ܫ߲

࡯	 ൅ ૛ܬ2
߲શ
૜ܫ߲

 ሺ4.22ሻ																												૚ି࡯

A particular hyperelastic material model that will be used in the current fluid-structure interaction

simulation is the compressible Neo-Hookean material model. The strain energy function for this

material model is defined as: c 	

																																												શ ൌ
ߤ
2
ሺܫ૚ െ 3ሻ െ ߤ ln ܬ ൅

ߣ
2
ሺln 																																																														ሻ૛ܬ

																																																	ൌ
ߤ
2
ሺܫ૚ െ 3ሻ െ ߤ ln ଷܫ

ଵ
ଶൗ ൅

ߣ
2
൬ln ଷܫ

ଵ
ଶൗ ൰

૛

																																						ሺ4.23ሻ

where ߣ and ߤ are Lamé constants as defined the linear elasticity model. Using Eq. (4.22) the second

Piola-Kirchhoff stress tensor for Neo-Hookean material model is defined as: 5444444444444444444 	

ࡿ																																			 ൌ 2
߲શ
૚ܫ߲

ࡵ	 ൅ 4
߲શ
૛ܫ߲

࡯	 ൅ ૛ܬ2
߲શ
૜ܫ߲

 																																																																			૚ି࡯

																																						ൌ ࡵ	ߤ ൅ ૚ି࡯	૜ܫ	2 ቌ
ߣ ln ଷܫ

ଵ
ଶൗ

૜ܫ2
െ

ߤ
૜ܫ2

ቍ																																																																				

																																						ൌ ࡵሺߤ െ ૚ሻି࡯ ൅ ߣ ln ଷܫ
ଵ
ଶൗ ૚ି࡯ ൌ ࡵሺߤ െ ૚ሻି࡯ ൅ ߣ ሺln ሻܬ ሺ4.24ሻ												૚ି࡯

The Cauchy stress tensor for the Neo-Hookean material model can be obtained by combining Eq.

(4.24) and (4.15):

࣌																																																		 ൌ
ߤ
ܬ
ሺ࢈ െ ሻࡵ ൅

ߣ
ܬ
ሺln ሻܬ ሺ4.25ሻ																																																													ࡵ

Computational Structure Dynamics (CSD) Solver

21

4.5 Finite Element Discretization

This section is synthesized from [3] and [4]. The finite element formulation is derived by

developing the weak form of Eq. (4.1). from the principle of virtual work which states that the

virtual kinetic work plus the external virtual work is equal to the internal virtual work:

ߜ																																									 ௞ܹ௜௡௘௧௜௖ ൅ ߜ ௜ܹ௡௧௘௥௡௔௟ ൌ ߜ ௘ܹ௫௧௘௥௡௔௟																																																ሺ4.26ሻ

For infinitesimal strain, Eq. (4.26) is expanded as follows:

										න 	ߩ	ࢀ࢛ߜ
߲ଶ࢛
ࢂݐ߲

ܸ݀ ൅	න ࣌ ∶ ܸ݀	ࢿߜ ൌ න ܸ݀࢈ࢌ	ߩ	ࢀ࢛ߜ ൅
ࢂ

න ࢙࢚ܵ݀	ࢀ࢛ߜ
ࢂࡿ

																	ሺ4.27ሻ

where ࢛ߜ is the virtual displacement vector, ࢿߜ is the virtual strain tensor, ࢈ࢌ is the body force

vector, and ࢙࢚ is the surface traction vector. By imposing the equilibrium equations of the

principal of virtual work to each element and assemble it for the all the finite elements, the

following formula is obtained for linear elasticity finite element formulation:

																										൥෍න ௘ࡺ௘்ࡺ	௘ߩ
ࢇ

೐ࢂ
ܸ݀௘

௘

൩ ሷ෡࢛ 		൅ 	൥෍න ௘࡮	ࢋԧ	்ࢋ࡮
ࢇ

ࢋࢂ
ܸ݀௘

ࢋ

൩	࢛ෝ

ൌ෍න ࢈ࢌ	௘்ࡺ	௘ߩ
௘
	

ࢇ

೐ࢂ
ܸ݀௘

௘

൅෍න 	௦௘࢚	௘்ࡺ
ࢇ

೐ࡿ
݀ܵ௘

௘

																																							ሺ4.28ሻ

where ࡺ௘ is the element displacement interpolation matrix, ࡮௘ is the element strain-

displacement matrix, ࢛ෝ	 is the nodal displacement vector, and ࢛ሷ෡ is the nodal acceleration vector.

In the case of hyperelasticity, the definition is slightly different because the state of the domain

configuration has to be taken into account. Using the Total Lagrangian Formulation, the final form

of the discretized virtual work balance is the following:

																									൥෍න ௘ࡺ௘்ࡺ	଴ߩ

௏బ
೐

݀ ଴ܸ
௘

௘

൩ ሷ෡࢛ ൅෍න
௘்ࡺ߲

ࢄ߲
ࡼ	

௏బ
೐

݀ ଴ܸ
௘

௘

																																									

ൌ ෍න ௕ࢌ	௘்ࡺ	଴ߩ
௘
	

௏బ
೐

݀ ଴ܸ
௘

௘

൅෍න 	௦௘࢚	௘்ࡺ
ௌబ
೐

݀ܵ଴
௘

௘

																																							ሺ4.29ሻ

where the subscript 0 refers to the reference configuration and ࢄ is the material coordinates. The

two formulations above can be simplified into structural dynamics finite element formulation

without velocity-dependent damping forces as the following:

Computational Structure Dynamics (CSD) Solver

22

ሷ෡࢛	ࡹ																																																		 ൅ Ϝ	࢚࢔࢏ ൌ Ϝ	࢚࢞ࢋ																																																																								ሺ4.30ሻ

where ࡹ is the mass matrix, Ϝ	࢚࢞ࢋ is the externally applied force vector, and Ϝ	࢚࢔࢏ is the internal

force vector. For linear elasticity the resulting system of equations is linear whereas in the case of

hyperelasticity is non-linear.

4.5 Two-dimensional Plane Stress and Plane Strain Elements

In the subsequent two-dimensional finite element analysis, either the plane strain or plane stress

states will be used. In the plane strain state, it is assumed that the solid body is long enough in

the third direction so that the displacement and strain components in that direction can be

omitted. In other words, in a linear elastic case:

ଷଷߝ																																																		 ൌ ଵଷߝ	 ൌ ଶଷߝ	 ൌ 0																																																																				ሺ4.31ሻ

																																൝
ଵଵߪ
ଶଶߪ
ଵଶߪ

ൡ ൌ
ܧ

ሺ1 ൅ ߭ሻሺ1 െ 2߭ሻ
		൥
1 െ ߭
߭
0

			
1߭߭
1 െ ߭
0

					
0
0

1 െ 2߭
൩	൝
ଵଵߝ
ଶଶߝ
ଵଶߝ

ൡ																				ሺ4.32ሻ

In the case of plane stress state, it is assumed that the strain and stress are uniform through the

midplane of the body and the normal and shear stress components in the third direction can be

omitted:

ଷଷߪ																																																		 ൌ ଵଷߪ	 ൌ ଶଷߪ	 ൌ 0																																																																			ሺ4.33ሻ

																																൝
ଵଵߪ
ଶଶߪ
ଵଶߪ

ൡ ൌ
ܧ

1 െ ߭ଶ
		൥
1
߭
0
			
1߭߭
1
0
			

0
0

1 െ ߭
൩	൝
ଵଵߝ
ଶଶߝ
ଵଶߝ

ൡ																																																					ሺ4.34ሻ

4.6 Generalized- Time Integration Method

This section is synthesized from [5]. The time integration used for the uncoupled structural

dynamics and coupled fluid-structure simulations in Zorglib is the implicit Generalized- method.

This method is a one-step, three-stage time integration algorithms that optimizes the high and

low frequency dissipation which is controlled by a set of constants. Depending on the proper

selection of constants, this method can recover the Newmark family of time integration

algorithms.

It is a one-step method because the solution at time tn+1 depends only on the solution at time tn

and the three-stage refers to the fact that the method obtains three solution vectors i.e.

Computational Structure Dynamics (CSD) Solver

23

displacement, velocity, and acceleration vectors. The problem of structural dynamics can be

formulated as the following:

ሷ࢛	ࡹ																																													 ൅ ሶ࢛࡯ ൅ ࢛ࡷ ൌ Ϝ	࢚࢞ࢋ																																																																				ሺ4.35ሻ

where ࡯ ,ࡹ, and ࡷ are the mass, damping, and stiffness matrix respectively. ࢛ሷ ሶ࢛ , , and ࢛ are the

acceleration, velocity, and displacement vectors respectively. Ϝ	࢚࢞ࢋ is the applied external force

vector which depends on time. The formulation of the Generalized- method is the following: 	

௡ାଵ࢛																																 ൌ ௡࢛ ൅ ሶ࢛	ݐ∆ ௡ ൅ ૛ݐ∆ ቆ൬
1
2
െ ሷ࢛൰ߚ ௡ ൅ ሷ࢛	ߚ ௡ାଵቇ																														ሺ4.36ሻ

ሶ࢛																																 ௡ାଵ ൌ ሶ࢛ ௡ ൅ 	ݐ∆ ቆ൬
1
2
െ ሷ࢛൰ߛ ௡ ൅ ሷ࢛	ߛ ௡ାଵቇ																																																ሺ4.37ሻ

ሷ࢛	ࡹ																						 ௡ାଵିఈ೘ ൅ ሶ࢛	࡯	 ௡ାଵିఈ೑ ൅ ௡ାଵିఈ೑࢛	ࡷ 	ൌ Ϝ࢚࢞ࢋ ቀݐ௡ାଵିఈ೑ቁ																											ሺ4.38ሻ

and for the definition of the three solution vectors and time with alpha parameters:

௡ାଵିఈ೑࢛																																							 ൌ ൫1 െ ௡ାଵ࢛	௙൯ߙ ൅ ሺ4.39ሻ																																																						௡࢛	௙ߙ

ሶ࢛																																							 ௡ାଵିఈ೑ ൌ ൫1 െ ሶ࢛	௙൯ߙ ௡ାଵ ൅ ሶ࢛	௙ߙ ௡																																																						ሺ4.40ሻ

ሷ࢛																																						 ௡ାଵିఈ೘ ൌ ሺ1 െ ሷ࢛	௠ሻߙ ௡ାଵ ൅ ሷ࢛	௠ߙ ௡																																																				ሺ4.41ሻ

௡ାଵିఈ೑ݐ																																								 ൌ ൫1 െ ௡ାଵݐ	௙൯ߙ ൅ ሺ4.42ሻ																																																									௡ݐ	௙ߙ

The initial conditions are defined as:

଴࢛																																																																		 ൌ ሺ4.43ሻ																																																																								ሺ0ሻ࢛

ሶ࢛																																																																		 ଴ ൌ ሶ࢛ ሺ0ሻ																																																																								ሺ4.44ሻ

ሷ࢛																																											 ଴ ൌ ሺ0ሻ࢚࢞ࢋଵ൫Ϝିࡹ െ ሶ࢛	࡯ ሺ0ሻ െ ሺ4.45ሻ																																								ሺ0ሻ൯࢛	ࡷ

As can be seen from the above formulations if the alpha parameters ߙ௙ ൌ ௠ߙ ൌ 0, the

Trapezoidal Newmark method is recovered. If ߙ௠ ൌ 0, the Hilbert Hughes Taylor -  (HHT-)

method is recovered, and lastly if ߙ௙ ൌ 0, the Wood Bossak Zienkiewiecz -  (WBZ- ) method

is recovered.

The Generalized- method is second-order accurate and achieves optimal high-frequency

dissipation when:

ߛ																																																						 ൌ
1
2
െ ௠ߙ ൅ ሺ4.46ሻ																																																																								௙ߙ

ߚ																																																						 ൌ
1
4
൫1 െ ௠ߙ ൅ ௙൯ߙ

ଶ
																																																														ሺ4.47ሻ

Computational Structure Dynamics (CSD) Solver

24

An optimal low-frequency dissipation is obtained when:

௠ߙ																																																						 ൌ
ஶߩ2 െ 1
ஶߩ ൅ 1

																																																																											ሺ4.48ሻ

௙ߙ																																																								 ൌ
ஶߩ

ஶߩ ൅ 1
																																																																													ሺ4.49ሻ

where ߩஶ is the spectral radius with a range of [0, 1].

4.7 Newton-Raphson Nonlinear Solver

This section is synthesized from [3]. To solve the hyperelasticity problem, a nonlinear system of

equations is solved using Newton-Raphson iterative solver in Zorglib at time t + ∆t using the

following formulation in terms of the computational residual vector:

௡ାଵࡾ																																																	 ൌ ሷ࢛	ࡹ	 ௡ାଵ ൅ Ϝ௡ାଵ
	௜௡௧ െ Ϝ௡ାଵ

	௘௫௧ 																																																	ሺ4.50ሻ

௡ାଵࡾ																																																	
௜ ൌ ௡ାଵࡾ

௜ିଵ ൅
௡ାଵࡾ߲
௡ାଵ࢛߲

ฬ
௜ିଵ

௡ାଵ࢛∆
௜ ൌ ૙																																					ሺ4.51ሻ

௡ାଵࡷ																																																							
் ௜ିଵ

௡ାଵ࢛∆		
௜ ൌ െ	ࡾ௡ାଵ

௜ିଵ 																																																					ሺ4.52ሻ

௡ାଵ࢛∆																																																									
௜ ൌ ௡ାଵ࢛	

௜ െ ௡ାଵ࢛
௜ିଵ 																																																										ሺ4.53ሻ

௡ାଵ࢛																																																																						
଴ ൌ ௡࢛ 																																																																			ሺ4.54ሻ

where ்ࡷ is the tangent stiffness matrix and the solution at iteration i – 1 is known. The

objective is to iterate until the residual is less or equal to a specified tolerance. The formulation

of the tangent stiffness matrix is a sort of linearization of the balance and constitutive equation.

4.8 Mesh Sensitivity Analysis

It is important to perform a mesh sensitivity analysis to check the convergence of the finite

element analysis compared to an analytical solution in order to ensure that the element type and

size chosen will produce sufficiently converged results in the FSI simulation. The sensitivity

analysis is performed on four different elements i.e. linear triangle (three nodes element),

quadratic triangle (six nodes element), linear quadrilateral (four nodes element), and quadratic

Computational Structure Dynamics (CSD) Solver

25

quadrilateral (nine nodes element). Three different mesh sizes are analysed for each element. The

solid mesh is generated using GMSH software [11].

An analytical solution of the deflection of a cantilever beam is chosen in the following sensitivity

analysis because the FSI simulations will be performed on a cantilever solid body. It is well

known in many Mechanics of Materials textbook that an analytical solution of the deflection of a

cantilever beam is formulated in the following way (see Figure 4.1):

																																																										ܸሺݔሻ ൌ
ଶݔݍ

ܫܧ24
	ሾ࢞૛ ൅ 6݈ଶ െ ሺ4.55ሻ																																										ሿݔ4݈

௠௔௫ߜ																																																																								 ൌ
ସ݈ݍ

ܫܧ8
																																																															ሺ4.56ሻ

ܫ																																																																									 ൌ
ܾ݄ଷ

12
																																																																					ሺ4.57ሻ

Figure 4.1 (a) The deflection of a cantilever beam (b) The cross-sectional area of the beam

݄

ܾ

(a)

(b)

Computational Structure Dynamics (CSD) Solver

26

where ܸ is the deflection of the beam as a function of the coordinate in ݔ direction, ݍ is the

uniformly distributed load, ݈ is the length of the beam, ܧ is the Young’s modulus, and ܫ is the

area moment of inertia.

The finite element simulation setup in Zorglib and the dimension are the following:

 Two-dimensional static analysis

 Isotropic elastic material; E	= 3.5 E+6 MPa; 0.32 = ߥ

 Plane stress assumption (thickness = b = 1.0 m)

 ݍ ൌ 10	ܰ/݉

 l	ൌ	1m;	h	ൌ	0.01	m

Figure 4.2 and 4.3 compare the analytical and finite element results of the deflection between

the different elements and mesh sizes. For the finite element results, the deflection values

showed are the displacement in the ݕ direction. Table 4.1 and 4.2 summarize the comparison in

details in terms of the number of nodes, relative error, and the CPU time.

Figure 4.2 Deflection results of triangle elements for a particular mesh size and element order

compared to the analytical solution of a cantilever beam

0 0.2 0.4 0.6 0.8 1
-0.005

-0.004

-0.003

-0.002

-0.001

-1E-17

d
y

 (
m

)

x (m)

Linear Triangle - h = 0.02

Linear Triangle - h = 0.01

Linear Triangle - h = 0.005

Quadratic Triangle - h = 0.02

Quadratic Triangle - h = 0.01

Quadratic Triangle - h = 0.005

Analytical Solution

Computational Structure Dynamics (CSD) Solver

27

Figure 4.3 Deflection results of quadrilateral elements for a particular mesh size and element

order compared to the analytical solution of a cantilever beam

Table 4.1 Comparison of the number of nodes, relative error of the tip displacement, and CPU

time between triangle elements with different mesh size and element order

-0.005

-0.004

-0.003

-0.002

-0.001

-1E-17

0 0.2 0.4 0.6 0.8 1

d
y

 (
m

)

x (m)

Linear Quadrilateral - h = 0.02

Linear Quadrilateral - h = 0.01

Linear Quadrilateral - h = 0.005

Quadratic Quadrilateral - h = 0.02

Quadratic Quadrilateral - h = 0.01

Quadratic Quadrilateral - h = 0.005

Analytical Solution

 Nnodes Relative Error CPU Time (s)

Linear Triangle, h = 0.02 100 0.876 0.01

Linear Triangle, h = 0.01 299 0.413 0.01

Linear Triangle, h = 0.005 600 0.345 0.02

Quadratic Triangle, h = 0.02 297 2.19 E-3 0.06

Quadratic Triangle, h = 0.01 993 5.14 E-4 4.62

Quadratic Triangle, h = 0.005 1997 6.45 E-4 36.9

Computational Structure Dynamics (CSD) Solver

28

Table 4.2 Comparison of the number of nodes, relative error of the tip displacement, and CPU

time between quadrilateral elements with different mesh size and element order

In Figure 4.4, the relative errors of each element are plotted against the number of nodes in a

log-log scale. The quadratic elements consistently produce lower relative error compared to the

linear. The triangle elements produce higher relative error compared to the quadrilateral elements

of the same order. The number of nodes and CPU time of the triangle elements are considerably

higher as well in particular when h > 0.02. Figure 4.5 shows the displacement and Von Mises

contour plots of the computation using the quadratic quadrilateral with h = 0.01.

In the following simulations the quadratic quadrilateral elements will be used for the CSD solver

to ensure that the convergence of the CSD results can be achieved sufficiently.

 Nnodes Relative Error CPU Time (s)

Linear Quadrilateral, h = 0.02 102 0.620 0.01

Linear Quadrilateral, h = 0.01 202 0.330 0.02

Linear Quadrilateral, h = 0.005 402 0.173 0.18

Quadratic Quadrilateral, h = 0.02 303 9.88 E-4 0.13

Quadratic Quadrilateral, h = 0.01 603 4.93 E-4 0.71

Quadratic Quadrilateral, h = 0.005 1203 2.97 E-4 4.88

Computational Structure Dynamics (CSD) Solver

29

Figure 4.4 Relative error of the tip displacements for all the elements

Figure 4.5 (a) Displacement (m) contour plot of the quadratic quadrilateral with h = 0.01 (b)

Von Mises stress (Pa) contour plot of the quadratic quadrilateral with h = 0.01

(a)

(b)

100 1000
1E-4

1E-3

1E-2

1E-1

1E+0

1E-4

1E-3

1E-2

1E-1

1E+0
100 1000

R
el

at
iv

e
E

rr
or

Nnodes

Linear Triangle

Quadratic Triangle

Linear Quadrilateral

Quadratic Quadrilateral

Computational Structure Dynamics (CSD) Solver

30

4.9 Numerical Tests

To test the CSD solver, the CSM benchmark tests performed by [12] is referred to. The CSM

tests are performed to validate the solid solver as part of the two-dimensional FSI benchmarking

on incompressible laminar flow of Newtonian fluid and compressible hyperelastic solid. The

solid domain is depicted in Figure 4.6 in grey colour and it is attached to a fixed cylinder. This is

similar to the cantilever beam case but now the applied load is a gravitational force per unit

length distributed equally on each nodes, ௚݂ሬሬሬԦ= (0,
ఘ஺௚

ே೙೚೏೐ೞ
) [N/m].

Figure 4.6 CSM test solid domain

There are three tests which are performed, namely CSM1, CSM2, and CSM3, using the following

parameters:

Table 4.3 Parameters for the CSM tests

 CSM1 CSM2 CSM3

Density, ߩ ሺ݇݃/݉ଷሻ 1.0 E+3 1.0 E+3 1.0 E+3

Poisson’s ratio, 0.4 0.4 0.4 ߥ

Young’s Modulus, ܧ	ሺܲܽሻ 1.4 E+6 5.6 E+6 1.4 E+6

Gravity, ݃ ሺ݉/ݏଶሻ 2 2 2

Finite Element Analysis Static Static Dynamic

Constitutive Model Neohookean Neohookean Neohookean

2D Assumption Plane Strain Plane Strain Plane Strain

Time Integrator - - Trapezoidal Newmark

Time step size (s) - - 0.01

Computational Structure Dynamics (CSD) Solver

31

The simulations use the quadratic quadrilateral element with two different meshes, A and B,

where A has 2 x 25 elements and B has 2 x 50 elements. Table 4.4 summarizes the results of the

CSM tests and compared to the results obtained by [12].

Table 4.4 Results of the CSM tests

The results differences between mesh A and B are not significant and both results agree quite

well with the results from [12]. The small discrepancies with [12] are most likely due to the fact

that the constitutive model used is not the same where in [12] the constitutive model used is St.

Venant-Kirchhoff model. The tip displacement and Fast Fourier Transform (FFT) results for CSM3 of

mesh A are shown in Figure 4.7 and 4.8. Figure 4.9 compare the tip displacements of mesh A

and mesh B. Figure 4.10 shows the displacements and stresses contour plots of mesh A when

the solid body starts to deform until it reaches the maximum deformation.

 CSM1 CSM2 CSM3

Tip	Displacement,	dx (m)

 A (2 x 25 elements) -7.177 E-3 -4.684 E-4 -1.457 E-2 ± 1.457 E-2

 B (2 x 50 elements) -7.177 E-3 -4.684 E-4 -1.460 E-2 ± 1.460 E-2

 Turek & Hron (2006) -7.187 E-3 -4.690 E-4 -1.430 E-2 ± 1.430 E-2

Tip	Displacement,	dy (m)

 A (2 x 25 elements) -6.610 E-2 -1.698 E-2 -6.397 E-2 ± 6.561 E-2

 B (2 x 50 elements) -6.616 E-2 -1.699 E-2 -6.400 E-2 ± 6.573 E-2

 Turek & Hron (2006) -6.610 E-2 -1.697 E-2 -6.360 E-2 ± 6.516 E-2

Frequency (Hz)

 A (2 x 25 elements) - - 1.0742

 B (2 x 50 elements) - - 1.0742

 Turek & Hron (2006) - - 1.0995

Computational Structure Dynamics (CSD) Solver

32

Figure 4.7 (a) & (b) Tip displacement of mesh A in the ݔ direction (c) FFT result of the tip

displacement evolution with the dominant frequency of 1.0742 Hz

(a)

(b)

(c)

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0 2 4 6 8 10

T
ip

 D
is

p
la

ce
m

en
t,

 d
x

(m
)

time (s)

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

8 8.5 9 9.5 10

T
ip

 D
is

p
la

ce
m

en
t,

 d
x

(m
)

time (s)

f = 1.074 Hz

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.5 1 1.5 2 2.5

F
ou

ri
er

 C
oe

ff
ic

ie
n

t

Frequency (Hz)

Computational Structure Dynamics (CSD) Solver

33

Figure 4.8 (a) & (b) Tip displacement of element mesh A in the ݕ direction (c) FFT result of

the tip displacement evolution with the dominant frequency of 1.0742 Hz

(a)

(b)

(c)

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0 2 4 6 8 10

T
ip

 D
is

p
la

ce
m

en
t,

 d
y

(m
)

time (s)

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

8 8.5 9 9.5 10

T
ip

 D
is

p
la

ce
m

en
t,

 d
y

(m
)

time (s)

f = 1.074 Hz

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.5 1 1.5 2 2.5

F
ou

ri
er

 C
oe

ff
ic

ie
n

t

Frequency (Hz)

Computational Structure Dynamics (CSD) Solver

34

Figure 4.9 (a) Comparison of tip displacement in the ݔ direction between mesh A and B

(b) Comparison of tip displacement in the ݕ direction between mesh A and B

(a)

(b)

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

8 8.5 9 9.5 10

T
ip

 D
is

p
la

ce
m

en
t,

 d
x

(m
)

time (s)

A

B

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

8 8.5 9 9.5 10

T
ip

 D
is

p
la

ce
m

en
t,

 d
y

(m
)

time (s)

A

B

Computational Structure Dynamics (CSD) Solver

35

Figure 4.10 (a) Displacement (m) and Von Mises stress (Pa) contour plots of mesh A at t = 9.11

s (b) Displacement (m) and Von Mises stress (Pa) contour plots of mesh A at t = 9.36 s

(c) Displacement (m) and Von Mises stress (Pa) contour plots of mesh A at t = 9.57 s

(c)

(a)

(b)

36

5 Fluid-Structure Coupling

5.1 Fluid-Structure Interface

On the fluid-structure interface, ࢣ௙௦௜ , kinematic and force equilibriums have to be satisfied:

࢙࢛																																																																					 		ൌ ሺ5.1ሻ																																																																										ࢌ࢛

࢙࣌																																																																	 ∙ ࢔ ൌ ࢌ࣌ ∙ ሺ5.2ሻ																																																																				࢔

where the superscript ࢙ and ࢌ refer to the solid and fluid domain respectively. The equilibriums

are enforced to conserve the momentum and energy of the interaction where the work and

energy produced by each domain are fully absorbed by the counterpart domain. To enforce this

condition, boundary conditions are imposed to each domain where the interface displacements

computed by the CSD solver become Dirichlet boundary conditions on the fluid flow domain and

the fluid forces on the interface computed by the CFD solver becomes the Neumann boundary

conditions on the solid domain.

In the case where the fluid and solid meshes match perfectly on the interface, the momentum

and energy can be conserved numerically and force-displacement transfer is fairly

straightforward. For a non-matching interface, an interpolation method has to be performed to

fulfil the equilibrium and this can lead to non-conservative results. In this thesis the same

problem is dealt with by adopting a strategy of conservation of virtual work of fluid-structure

interface as given in [9] and it works well if the fluid mesh is finer than the structural mesh. To

overcome this restriction, the solution proposed is to use an intermediate mesh built on the

fluid-structure interface based on the intersection of the fluid and solid meshes hence the

intermediate mesh is finer than the fluid and solid meshes. The force-displacement transfer is

performed in this intermediate mesh and the key points of the strategy are the following:

 To conserve the force transfer from the fluid mesh to the intermediate mesh, firstly each

of intermediate mesh elements is nested in a particular fluid mesh element. Then for

every fluid mesh element that contains the barycentre coordinates of the intermediate

mesh element, the stress of the intermediate element is equal to the stress of its

counterpart fluid mesh element.

 A virtual work on the intermediate mesh, ܹߜூ, is defined as the following:

Fluid-Structure Coupling

37

ூܹߜ																																																				 ൌ ෍ ෍ ܵ௘௟

௘௟಺

௘௟ୀଵ

௡಺

௡ୀଵ

ሺ࣌௘௟
ூ ∙ ௡ூݑ	௡ܮ	ሻ࢔ 																																																							

ூܹߜ																																																				 ൌ ෍߶௡ூ ௡ூݑ	
௡಺

௡ୀଵ

																																																																											ሺ5.3ሻ

௡ூ߶ߜ																																								 ൌ ෍ ܵ௘௟

௘௟಺

௘௟ୀଵ

ሺ࣌௘௟
ூ ∙ ሺ5.4ሻ																																																									௡ܮ	ሻ࢔

Where ݊ூ is the number of nodes on the intermediate mesh, ݈݁ூ is the number of

elements on the intermediate mesh, ܵ௘௟ is the surface area of the element ݈݁, ܮ௡ is the

interpolation function at node ݊, and ݑ௡ூ is the virtual displacement at node ݊.

 The intermediate virtual displacement, ݑ௡ூ , is related to the structure displacement, ݑ௜
௦, as

the following:

௡ூݑߜ																																																								 ൌ෍ߚ௠௜

௜ೞ

௜ୀଵ

௜ݑ
௦																																																																								ሺ5.5ሻ

 By substituting Eq. (5.5) into Eq. (5.3), the intermediate virtual work can be expressed

in terms of the structure displacement:

ூܹߜߜ																																																				 ൌ෍෍߶௡ூ
௡಺

௡ୀଵ

௜ೞ

௜ୀଵ

௜ݑ	௠௜ߚ
௦																																																											ሺ5.6ሻ

 The conservation of virtual work between the intermediate and structure meshes can be

written as the following:

௜ࡲ෍ߜ																													
௦

௜ೞ

௜ୀଵ

௜ݑ
௦ ൌ෍෍߶௡ூ

௡಺

௡ୀଵ

௜ೞ

௜ୀଵ

௜ݑ	௠௜ߚ
௦																																																										ሺ5.7ሻ

Based on Eq. (5.7), the structure force, ܨ௜
௦, eventually can be expressed as the following:

௜ࡲߜ																																										
௦ ൌ ෍߶௡ூ

௡಺

௡ୀଵ

 ሺ5.8ሻ																																																																						௠௜ߚ

 It can be proven that the resultant force field is conserved. Firstly, the resultant of the

intermediate forces is defined as the following:

௘ூࡲ෍ߜ																																												
௘಺

௘ୀଵ

ൌ෍ܵ௘	ሺ࣌௘ூ ∙ ሻ࢔

௘಺

௘ୀଵ

																																																												ሺ5.9ሻ

By using the fact that:

Fluid-Structure Coupling

38

																																								෍ ௡ܮ

௡಺

௡ୀଵ

ൌ 1																																																																																		ሺ5.10ሻ

Eq. (5.9) can be written as:

௘ூࡲ෍ߜ																																												
௘಺

௘ୀଵ

ൌ෍ܵ௘	ሺ࣌௘ூ ∙ ሻ࢔

௘಺

௘ୀଵ

෍ܮ௡

௡಺

௡ୀଵ

																																																ሺ99ሻ

௘ூܨ෍ߜ																																												
௘಺

௘ୀଵ

ൌ ෍ ෍ ܵ௘	ሺ࣌௘ூ ∙ ሻ࢔

௘௟಺

௘௟ୀଵ

௡ܮ	

௡಺

௡ୀଵ

																																														ሺ99ሻ

௘ூܨ෍ߜ																																												
௘಺

௘ୀଵ

ൌ ෍߶௡ூ
௡಺

௡ୀଵ

																																																																								ሺ5.11ሻ

On the other hand, using Eq. (5.8), the resultant of the structure forces is defined as the

following:	

௜ࡲ෍ߜ																																					
௦

௜ೞ

௜ୀଵ

ൌ෍෍߶௡ூ
௡಺

௡ୀଵ

௜ೞ

௜ୀଵ

 ሺ100ሻ																																																											௠௜ߚ

௜ܨ෍ߜ																																																				
௦

௜ೞ

௜ୀଵ

ൌ෍ߚ௠௜

௜ೞ

௜ୀଵ

෍߶௡ூ
௡಺

௡ୀଵ

																																																										ሺ100ሻ

௜ܨ෍ߜ																																																					
௦

௜ೞ

௜ୀଵ

ൌ ෍߶௡ூ
௡಺

௡ୀଵ

																																																																							ሺ5.12ሻ

Based on Eq. (5.11) and (5.12), it is shown that the conservation of forces between the

intermediate and structure mesh is maintained.

5.2 Coupling Strategy

As mentioned earlier, in general the coupling procedure of the fluid and solid solver can be

classified into three different approaches i.e. the monolithic approach, the weakly coupled

partitioned approach, and the strongly coupled partitioned approach. The work in this thesis is

based on the strongly coupled partitioned approach where a convergence loop is utilized to

ensure the stability of the coupled problem. The convergence loop can be either imposed

externally or internally which can be explained in the following way:

Fluid-Structure Coupling

39

 Externally Convergence Loop

The convergence loop is coupled successively by solving the current time step of the

fluid and structural problems using the previous solution of the other domain as

boundary conditions. As the majority of the CPU time is spent on solving the fluid

domain, the CPU time using this approach is proportional to the number of

convergence iterations times the CPU time to solve the fluid domain.

 Internally Convergence Loop

The convergence loop is integrated implicitly in the non-linear iterations of the fluid

domain solution. The displacement boundary conditions imposed by the structure are

updated during the fluid convergence process. This approach can be very efficient and

comparable to the monolithic approach. To treat the stability issues caused by the added

mass effect, an under relaxation of structural displacement has to be imposed before

transferring the structural displacement to the fluid domain.

The work of this thesis is based on the strongly coupled partitioned approach using an internally

convergence loop. The flow chart of this approach is shown in Figure 5.1.

5.3 Coupling Interface Library

As previously mentioned in Section 4.1, the modularity properties of Zorglib enable it to be

plugged in into other solver which in this case is the ISIS CFD solver. A coupled computation is

required on the FSI interface and it is managed by a C++ dynamic library. The coding of the

dynamic library was first developed in the previous postdoctoral work to perform fluid rigid

body interactions simulations. In this thesis it is developed further to perform two-dimensional

FSI simulations for linear elastic and hyper-elastic flexible body. The dynamic library consists of

three C++ external functions which are basically Fortran subroutines part of the ISIS-CFD

solver. The three functions/subroutines are initGENERIC_ifs, GENERIC_ifs, and

saveGENERIC_ifs. The hierarchy of the interface dynamic library is shown in Figure 5.2 and

the main tasks of the functions will be explained in the following sub sections with the complete

codes listed in the Appendix.

Fluid-Structure Coupling

40

Figure 5.1 Flow chart of the fluid-structure solution procedure

Figure 5.2 Interface dynamic library hierarchy

ISIS

CFD Non-linear Iteration

ISIS

CFD Mesh Update

t =t +∆t , i = 1

t , i =i +1

No

Yes ISIS

Convergence

Interface Library

Fluid Force Transfer

Zorglib

CSD Computation

Displacement Transfer

Fluid-Structure Coupling

41

5.3.1 initGENERIC_ifs

This subroutine is only called at the beginning of the computation. There are several main tasks

of initGENERIC_ifs subroutine and each of the main task is assigned to a C++ function:

1 Read input variables, which are used to initialize Zorglib solver, from a text file

(FSI_Inputs.txt).

The input variables are:

 Problem dimension

In this work, the dimension is 2 so the input variable is an integer of 2.

 Time step size

The value has to be the same with the one set in ISIS solver.

 GMSH physical number

The number is used to identify elements that are located on the FSI interface

 Material constitutive model

There are two kind of constitutive models that can be used:

- Linear elasticity model. For isotropic elasticity, the keyword is

ISOTROPIC_ELASTICITY.

- Hyperelasticity model. For Neohookean model the keyword is

NEOHOOKEAN.

 Two dimensional assumptions

The two dimensional assumptions can be either plane stress or plane strain. For

linear elasticity models, the keywords are either LINEAR_PLANE_STRESS or

LINEAR_PLANE_STRAIN. For hyperlasticity models, the keywords are either

STANDARD_PLANE_STRESS or STANDARD_PLANE_STRAIN.

 Finite element solver

The solver used depends on the analysis performed. For linear analysis the keyword

is LINEAR to use LinearEquationSolver in Zorglib. For non-linear analysis the

keyword is NEWTON to use NewtonSolver in Zorglib.

 Time integrator

There are two time integrators that can be used. To use the trapezoidal/strandard

Newmark method, the keyword is STANDARD_NEWMARK. To use the

Fluid-Structure Coupling

42

Generalized- method, the keyword is GENERAL_ALPHA and then followed by a

double value between 0 and 1 for the spectral radius value (see Eq. (4.46) – (4.49)).

For example, GENERAL_ALPHA 0.5.

 Under-relaxed parameter

Define a value between 0 and 1. A value of 1 means there is no under-relaxation.

 Zorglib archive interval

Define an interval to archive Zorglib results such as displacements and stresses.

 Run type

The simulation can be started from the beginning or restarted from a previous

computation. For a simulation starts from the beginning, the keyword is FULL.

For a simulation restarted from a previous computation, the keyword is RESTART

then followed by an integer value to define the time step where the computation

starts from. For example RESTART 3000 means restart a simulation from 3000

time steps. The restart simulation must be running in the same folder as the

previous simulation.

2 Collect and sort the FSI interface nodes’ indexes and coordinates and FSI interface

segments’ connectivity.

By using objects and functions available in the Zorglib library, the FSI interface nodes’

indexes and coordinates and FSI interface segments’ connectivity can be collected into a set

of arrays. The functions perform the collection task based on the physical number defined

in GMSH mesh file for the FSI interface. Then the arrays that contain the indexes,

coordinates, and connectivity have to be sorted to ensure that they correspond to

consecutive nodes on the FSI interface. This is because the quadratic triangle and

quadrilateral meshes created by GMESH have non-consecutive nodes’ indexes in the

segment connectivity and the sorting is necessary because the connectivity array will be

used to build a surface mesh in the ISIS internal subroutine.

The code does not need a user input to identify whether the element is a linear or quadratic

one instead it will identify it from the number of nodes in each segment. If there are only

two nodes in a segment it means the element is a linear element whereas if there are three

nodes the element is a quadratic one. A loop is created to sweep on all the FSI interface

segments and sort and save the number of nodes and nodes’ indexes in a segment.

Fluid-Structure Coupling

43

3 Initialize the finite element system in Zorglib

Before initializing the finite element system, the following sub tasks are performed:

 Build and initialize the material model based on the constitutive model, problem

dimension, and material properties

 Set the finite element context to identify if an axis symmetric or spherically

symmetric or without symmetry problem is going to be solved

 Build and define the formulation of the finite element system based on the material

model, context, and the two dimensional assumption.

 Impose boundary conditions using fixed displacement values or by initializing a

displacement function which varies in time

 Build and initialize an external force function which varies in time

4 Initialize time integrator and solver

In this function the time integrator and solver objects are initialized based on the user input

variable defined in point 1 and the finite element system object in point 3. The displacement

and velocity arrays are initialized in this task as well. The Newton Raphson solver is

optimized with the line search method.

5 Initialize Zorglib archival task object

The archival tasks objects to archive the displacements, velocities, and stresses are initialized

in this function. The archival tasks are called in the saveGENERIC_ifs subroutine.

5.3.2 GENERIC_ifs

This subroutine is nested in the non-linear iteration process of the ISIS-CFD solver so it is called

at each ISIS non-linear iteration. In this subroutine, the transfer of the fluid force from the fluid

domain to the solid domain and solid displacement transfer from the solid domain to the fluid

domain are performed. An under-relaxation of the fluid force and the solid domain is also

performed if the user input in point 1 is less than 1. The time integrator object is called to move

forward in time but before calling it the displacement and velocity arrays are reset to the previous

Fluid-Structure Coupling

44

time step values (࢛௡ାଵ
௜ ൌ ௡࢛ and ࢜௡ାଵ

௜ ൌ ௡࢜). The fluid forces and a particular node

displacements at every non-linear iteration are saved into a text file for checking purposes.

5.3.3 saveGENERIC_ifs

This subroutine is called at the end of every time step. The archival tasks are called at a specific

interval as defined in point 1 in initGENERIC_ifs subroutine. To enable a restart computation,

the displacements, velocities, and accelerations arrays are saved into a text file in this subroutine.

For the purpose of analysing the solid tip displacement of the FSI simulations in this thesis,

internal object and function in Zorglib are called to obtain the tip displacements and then the

values are saved into a text file.

5.4 Mesh Update Technique

One important aspect of the FSI numerical model is the fluid mesh update as a result of the

interface displacements. An efficient and robust technique is needed because the fluid mesh is

updated at every non-linear iteration. There are several mesh update techniques adopted in ISIS-

CFD which have been developed by several PhD works in Ecole Centrale de Nantes [13] [19]

[20] and the technique used in this thesis is based on the work [20]. In this technique an analytic

regridding method based on a weighting coefficient is further developed by propagating the rigid

displacement of each faces of volume cells and diffusing it on the fluid domain so it can work

properly when dealing with large deformations.

45

6 FSI Numerical Results

6.1 Flow Induced Excitation of Vertical Flexible Thin Plate

This test case is based on one of the FSI test cases in [13] and the simulation set up is depicted in

Figure 6.1. A thin flexible plate is clamped at the bottom wall boundary in the downstream of a

incompressible fluid flow with a uniform inflow velocity. The fluid domain is an open domain

with boundary conditions described in Figure 6.1. A no-slip boundary condition is imposed on

the plate body. The fluid and solid properties are summarized in Table 6.1 and the resulting

Reynold’s number is 50. The fluid mesh is shown in Figure 6.2 where it has 16,938 cells and

36,014 nodes.

Figure 6.1 Simulation set up for the vertical flexible thin plate case

Table 6.1. Material properties of the fluid and solid for the vertical flexible thin plate case

Initially an uncoupled CFD simulation with a rigid plate runs for 10 s to obtain a stable fluid

flow in the domain with a time step size of 0.01 s. Figure 6.3 and 6.4 show the streamlines plot

and pressure contour plot at time of 10 s.

 Fluid Solid

Density, ߩ	ሺ݇݃/݉ଷሻ 1.0 1.2 E+3

Poisson’s ratio, 0.32 - ߥ

Young’s Modulus, ܧ ሺܲܽሻ - 3.5 E+9

Dynamic Viscosity, ߤ ሺܲܽ. ሻݏ 0.2 -

Area moment inertia, I ሺ݉ସሻ - 8.3 E-8

FSI Numerical Results

46

Figure 6.2 (a) Fluid mesh of the whole domain (b) Fluid mesh in the surrounding zone of the

plate

Figure 6.3 Streamlines at time of 10 s

Figure 6.4 Pressure at time of 10 s

(a)

(b)

FSI Numerical Results

47

The simulation then continues as a coupled simulation runs from 10 s until 20 s with a time step

size of 0.01 s. In the coupled simulation, the element type used for the solid mesh is quadratic

quadrilateral with 9 nodes. One of the main analysis in this simulation is to analyse the evolution

of the tip displacement in the ݔ direction and to be able to do this a control point is set in the

interface library and the library will save the displacement of the middle node on the top edge of

the plate into a text file.

Figure 6.5 Evolution of the tip displacement in the ݔ direction

As can be observed in Figure 6.5, after 5 seconds the solution becomes steady with the steady

tip displacement of 0.024 m and this result agrees well with [13]. Figure 6.6 shows the evolution

of the pressure and mesh between 10.05 and 10.20 s when the tip displacement reaches its

maximum value. A theoretical value of the first eigenfrequency of a clamped beam can be

obtained using an analytical solution [14] with the following definition:

																																																										 ଵ݂
௘௜௚ ൌ 0.5595

1
ଶܮ
ඨ
ܫ	ܧ
ܮ/݉

																																																									ሺ6.1ሻ

With the current solid properties and dimension, the first eigenfrequency, ଵ݂
௘௜௚ ൌ 2.758 Hz. A

Fast Fourier Transform (FFT) analysis is performed on the first 5 s of the tip displacement data as

shown in Figure 6.7, which gives the dominant frequency of 2.734 Hz close to the theoretical

value.

10 15 20

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

10 15 20

T
ip

 D
is

p
la

ce
m

en
t,

 d
x

(m
)

Time (s)

FSI Numerical Results

48

Figure 6.6 Pressure (Pa) contour plot and fluid mesh at (a) t = 10.05 s (b) t = 10.10 s

(c) t = 10.15 s (d) t = 10.20 s

(a)

(b)

(c)

(d)

FSI Numerical Results

49

Figure 6.7 FFT analysis of the tip displacement using MATLAB FFT function on the first 5 s

data

6.2 Flow Induced Excitation of Horizontal Flexible Thin Plate

In this test a flexible thin plate is clamped at the end of a square cylinder and a fluid flow with

uniform velocity from the left boundary pass the structure and creates vortices which induce

structural oscillations [7][15]. The simulation set up and boundary conditions are depicted in

Figure 6.8 and the solid and fluid properties are shown in Table 6.2. The resulting Reynold’s

number is 333.

Figure 6.8 Simulation set up for the horizontal flexible thin plate case (dimension is in meter)

f = 2.734 Hz

0

0.004

0.008

0.012

0.016

0.02

0 1 2 3 4 5 6 7 8 9 10

F
ou

ri
er

 C
oe

ff
ic

ie
n

t

Frequency (Hz)

FSI Numerical Results

50

Table 6.2 Material properties of the fluid and solid for the horizontal flexible thin plate case

The fluid mesh is shown in Figure 6.9 where it has 16,863 cells and 34,856 nodes.

Figure 6.9 (a) Fluid mesh of the whole domain (b) Fluid mesh in the surrounding zone of the

plate

 Fluid Solid

Density, ߩ	ሺ݇݃/݉ଷሻ 1.18 100

Poisson’s ratio, 0.35 - ߥ

Young’s Modulus, ܧ ሺܲܽሻ - 2.5 E+5

Dynamic Viscosity, ߤ ሺܲܽ. ሻݏ 1.82 E-5 -

Area moment inertia, I ሺ݉ସሻ - 1.8 E-11

(a)

(b)

FSI Numerical Results

51

Similar to the previous test case, the simulation starts with the uncoupled CFD simulation with

the plate is enforced to be rigid for 5 s then it continues with the coupled simulation until 25 s

when the plate becomes elastic. Figure 6.10 shows the pressure and vorticity contour plots

between 4.2 s and 4.5 s in the case of rigid plate. It can be observed that a vortex shedding has

occurred at each time instance. If the whole evolution is analysed it can be seen that two small

vortices on one side and a bigger one on the side appear alternatingly.

Figure 6.11 shows the evolution of the fluid mesh at a time period between 24.55 s and 24.8 s

during the coupled simulation. Next in Figure 6.12 the pressure and vorticity contour plots are

shown at the same time period. As can be observed in Figure 6.12, the flow has a similar

behaviour as in the uncoupled simulation but the vortex separation at the plate tip creates a

smaller vortex when the tip displacement at its maximum and minimum, Figure 6.12 (b) and (d)

respectively.

Figure 6.13 shows the evolution of the tip displacement in the ݕ direction between 5 s and 25 s.

The steady oscillations amplitude agrees well with [7] and [15]. Using the FFT analysis for the

last 16.384 s of data, the dominant frequency obtained is 2.99 Hz as shown in Figure 6.14 and

this result agrees well with the analytical value of the first eigenfrequency computed using Eq.

(6.1) , ଵ݂
௘௜௚ ൌ 3.028 Hz. The first eigenfrequency in [7] is reported to be in the range of 2.96 and

3.31 Hz. Figure 6.15 shows the evolution of the lift force between 10 s to 25 s and using the

FFT analysis its dominant frequency is found to be the same as the displacement in the ݕ

direction as can be seen in Figure 6.16.

In this simulation a refined solid mesh with 2 x 80 elements is also used to compare the tip

displacement results with the original solid mesh one as shown in Figure 6.17. There is no

significant difference observed which suggests that solid mesh convergence has been attained.

FSI Numerical Results

52

Figure 6.10 Pressure (Pa) and vorticity (1/s) contour plots at (a) t = 4.2 s (b) t = 4.3 s

(c) t = 4.4 s (d) t = 4.5 s

(a)

(b)

(c)

(d)

FSI Numerical Results

53

Figure 6.11 The fluid mesh at (a) t = 24.55 s (b) t = 24.625 s

(c) t = 24.725 s (d) t = 24.8 s

(a)

(b)

(c)

(d)

FSI Numerical Results

54

Figure 6.12 Pressure (Pa) and vorticity (1/s) contour plots at (a) t = 24.55 s (b) t = 24.625 s

(c) t = 24.725 s (d) t = 24.8 s

(a)

(b)

(c)

(d)

FSI Numerical Results

55

Figure 6.13 Evolution of the tip displacement (m) in the ݕ direction

Figure 6.14 FFT analysis of the tip displacement using MATLAB FFT function on the last

16.384 s data

5 10 15 20 25

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

5 10 15 20 25

T
ip

 D
is

p
la

ce
m

en
t,

 d
y

(m
)

Time (s)

f = 2.99 Hz

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11

F
ou

ri
er

 C
oe

ff
ic

ie
n

t

Frequency (Hz)

FSI Numerical Results

56

Figure 6.15 Evolution of the lift force (N/m)

Figure 6.16 FFT analysis of the lift force using MATLAB FFT function on the last 8.192 s data

10 15 20 25

-0.008

-0.003

0.002

0.007

-0.008

-0.003

0.002

0.007

10 15 20 25

L
if

t
(N

/
m

)

Time (s)

f = 2.99 Hz

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4 5 6 7 8 9 10 11

F
ou

ri
er

 C
oe

ff
ic

ie
n

t

Frequency (Hz)

FSI Numerical Results

57

Figure 6.17 Comparison of evolution of the tip displacement (m) in the ݕ direction between the

coarse and fine solid mesh

5 10 15

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

5 10 15

T
ip

 D
is

p
la

ce
m

en
t,

 d
y

(m
)

Time (s)

1 x 40 elements

2 x 80 elements

58

7. Conclusions

Two dimensional numerical tests based on published numerical simulations have been

performed for the CSD and CFD solvers separately. In the case of the CFD test, an unsteady

flow around a square cylinder is investigated and it shows periodic vortex shedding and

recirculation close to the body with the starting separation point moves from the trailing edge to

the leading edge. For the CSD test, a dynamic simulation of a flexible cantilever solid with

gravity load is investigated. Both of the tests show good agreements with the referenced

publications. A mesh sensitivity analysis has also been performed using the CSD solver to ensure

the proper element type and mesh size to be used in the FSI simulations.

An interface dynamic library has been developed using C++ programming language to enable

the coupling of the CFD and CSD solver to solve two dimensional FSI problems of flexible and

elastic body interacted with incompressible viscous fluid. The FSI computational procedure is

based on the strongly coupled implicit partitioned approach with internal convergence loop as

part of the CFD non-linear iteration. The modularity of Zorglib makes it possible to embed the

CSD computation in the ISIS-CFD non-linear iteration. An under-relaxation method is used for

the interface structure displacement and fluid force to overcome the added-mass effect.

In ISIS-CFD subroutines an intermediate mesh is built to conserve the momentum and energy

on the FSI interface without any restriction of the structure or fluid mesh density. Also an

efficient mesh update is performed at every non-linear iteration. These two computational

procedures were developed by several PhD works at Ecole Centrale de Nantes.

The FSI simulations are based on the published works which concern the flow induced

excitations of flexible thin plates. The first simulation leads to a steady solution at the end

whereas in the second simulation periodical flow and plate vibrations are observed as a result of

periodical vortex shedding at the edges of the square cylinder. Both simulations show good

agreement when the tip displacement and dominant vibration frequency are compared with the

reference results.

59

Appendix A FSI Simulations Procedures

The procedure to run FSI simulations using ISIS-CFD and Zorglib is as follow:

1. Compile Zorglib library

Using the terminal, in the Zorglib library folder execute ./configure then after that

make

2. Compile interface dynamic library

Using the terminal, in the dynamic library folder execute make. It will create

isis_dynamic_lib.so file

3. Create ISIS-CFD project file

 After creating the geometry and mesh do the following:

 In HEXPRESS under Grid -> Boundary Conditions set the name of the face

of FSI edges so they are ended with _fsi

 Return to FINEMARINE window and rename the computation so it is ended

with fsi. For example it can be renamed into the following:

- fsi

- new_fsi

but NOT with newfsi.

 Set all the required CFD parameters (fluid model, flow model, computation

control , etc.)

 Define the FSI body in the Body Definition option and take note of the FSI

body index

 Add the following comment in FINEMARINE Comment option with the value

after *** FSI : SURFACES line is the FSI body index as defined previously for

example the value is 100 as shown below.

*** FSI WITH GENERIC INTERFACE ?

*

YES

*

*** FSI : SURFACES

*

60

100

*

*** FSI : ITS FLUID GEOM : FILE

*

../_mesh/mesh.its

*-- BODIES ---

*** BODY:MVT:NON-LINEAR COUPLING LOOP ?

*

YES

*

*** BODY:DEF:MVT IMP:NUMBER

*

1

*

*** BODY:DEF:MVT IMP:1:NAME

*

body

*

*** BODY:DEF:MVT IMP:1:INDEX

*

1

*

*** BODY:DEF:MVT IMP:1:REFERENCE POINT

*

0. 0. 0.

*

*** BODY:FIXED:NUMBER

*

0

*

*** BODY:DEF:MVT IMP:1:WEIGHTING REGRID METHOD

*

3

*

61

*** DOMAIN:1:RIGID MVT GRID

*

0 0 0 0 0 0

 Activate Adaptive Grid Refinement. Click to Control and set the Number of

steps before first call to refinement procedure to a very high value for example 1e+08

 Pre-process the computation

4. Create a 2D solid mesh using GMSH with the FSI boundary is set with a physical

number and save the mesh file as meshZorg.msh

5. Copy and paste the following files into the ISIS-CFD computation folder:

 meshZorg.msh

 FSI_Inputs.txt

 Solid_Properties.mat

 isis_dynamic_lib.so

6. Modify the FSI_Inputs.txt file accordingly based on the guideline in Section 5.3.1

7. Ensure the solid material properties in Solid_Properties.mat are defined correctly

8. Copy the isiscfd_FSI_2D binary file in the computation folder or in other folder. Run

the FSI simulation using the terminal in the computation folder by executing the isiscfd

binary file and followed with the computation simulation file. For example if the binary

file is stored in the computation folder:

 ./isiscfd_FSI_2D<*_fsi.sim>logFSI.dat

62

Appendix B Interface Dynamic Library

B.1 initGENERIC_ifs.cpp

#include "init_ISIS.h"

#include "IFSFunction.h"

using namespace std;

extern "C" void initgeneric_ifs(int * imesg,int * mybloc,int * MAXDIM_NP_ITS_STR_IFS,int *

MAXDIM_NT_ITS_STR_IFS,int * np_its_str_ifs,int * nt_its_str_ifs,double *

X_ITS_STR_IFS,double * Y_ITS_STR_IFS,double * Z_ITS_STR_IFS,int

Con_ITS_STR_IFS[][3])

{

cout << "********************* initGENERIC_ifs Subroutine **************************"

<< endl;

 // Read the FSI_Inputs.txt file to obtain Zorglib parameters

 Read_FSI_Inputs();

// Build FSI segment connectivity and coordinates

 Build_FSI_Arrays(np_its_str_ifs, nt_its_str_ifs, X_ITS_STR_IFS, Y_ITS_STR_IFS,

 Z_ITS_STR_IFS, Con_ITS_STR_IFS);

// Initialize FE system for the CSD

 Zorglib_FE_Initialization();

 // Initialize time integrator for the CSD

 Zorglib_Integrator_Initialization();

 // Initialize GMSH archival task for the CSD

 Zorglib_Archival_Initialization();

63

 // Initialize arrays for FSI boundary displacement during non-linear iteration

 iterdispX = new double[FSI_Node_Size];

 iterdispY = new double[FSI_Node_Size];

 iterdispZ = new double[FSI_Node_Size];

 iterdispX_old = new double[FSI_Node_Size];

 iterdispY_old = new double[FSI_Node_Size];

 iterdispZ_old = new double[FSI_Node_Size];

 // Create and initialize arrays for FSI boundaries initial coordinates

 Xinit = new double [*np_its_str_ifs];

 Yinit = new double [*np_its_str_ifs];

 Zinit = new double [*np_its_str_ifs];

 for (int i = 0; i < *np_its_str_ifs; ++i)

 {

 Xinit[i] = X_ITS_STR_IFS[i];

 Yinit[i] = Y_ITS_STR_IFS[i];

 Zinit[i] = Z_ITS_STR_IFS[i];

 }

 // Full run or restart run

 FSI_Run_Type();

 // Create header for tip displacement file

TipDisp << "Node# " << "time" << " " << "dX" << " " << "dY" << " " << "Node# "

<< "time" << " " << "dX" << " " << "dY" << " " << "Node# " << "time" << " " <<

"dX" << " " << "dY" << endl;

 // Create header for non-linear iteration displacement file

 NL_TipDisp << "time" << " " << "dX" << " " << "dY" << endl;

 // Create header for fluid force file

 ForceX << "time";

 for (int i = 0; i <FSI_Node_Size; ++i)

64

 {

 ForceX << " " << "Node" << Zorglib_FSI_Nodes[i];

 }

 ForceX << endl;

 ForceY << "time";

 for (int i = 0; i <FSI_Node_Size; ++i)

 {

 ForceY << " " << "Node" << Zorglib_FSI_Nodes[i];

 }

 ForceY << endl;

 // Check the input parameters for ISIS

 ofstream checkISIS("checkISIS.txt");

 checkISIS << "*nt_its_str_ifs = " << *nt_its_str_ifs << endl;

 checkISIS << "*np_its_str_ifs = " << *np_its_str_ifs << endl << endl;

checkISIS << "Node# " << "X_ITS_STR_IFS " << "Y_ITS_STR_IFS " <<

"Z_ITS_STR_IFS " << endl;

 for (int i = 0; i < *np_its_str_ifs; ++i)

 {

checkISIS << i+1 << " " << X_ITS_STR_IFS[i] << " " << Y_ITS_STR_IFS[i] << " "

<< Z_ITS_STR_IFS[i] << endl;

 }

 checkISIS << endl;

 checkISIS << "Con_ITS_STR_IFS" << endl;

 for (int i = 0; i <*nt_its_str_ifs; ++i)

 {

checkISIS << Con_ITS_STR_IFS[i][0] << " " << Con_ITS_STR_IFS[i][1] << " " <<

Con_ITS_STR_IFS[i][2] << endl;

 }

65

cout << "********************* END initGENERIC_ifs Subroutine

**************************" << endl;

}

B.2 GENERIC_ifs.cpp

#include "init_ISIS.h"

using namespace std;

extern "C" void generic_ifs(int * imesg,int * mybloc,int * itt,int * itnl,double * tc,double * dtc,

double * dfx_ITS_STR_IFS,double * dfy_ITS_STR_IFS,double * dfz_ITS_STR_IFS,int *

np_its_str_ifs,int * nt_its_str_ifs,double * X_ITS_STR_IFS,double * Y_ITS_STR_IFS,double *

Z_ITS_STR_IFS,int Con_ITS_STR_IFS[][3],

int * nbody,int * ID_Body,char * Name_Body,double O1ref_R0[][3],double

O1tc_R0[][3][3],double Omega1tc[][2][3],double Theta1tc[][3][3])

{

cout << "******************** GENERIC_ifs Subroutine *********************" <<

endl;

// Save the current time for archival purposes

 Time_curent = *tc;

 // Stop computing if the fluid time step and solid one are different

 if(FEMtimeStep != *dtc)

 {

 cout << "FEMtimeStep != dtc" << endl;

 return;

 }

 // Reset Parameters at new time step

 if(*itnl == 1)

66

 {

 *uSaved = *u;

 *vSaved = *v;

 for (int i = 0; i < FSI_Node_Size; ++i)

 {

 iterdispX[i] = 0.0;

 iterdispY[i] = 0.0;

 IFS_Force_X[i] = 0.0;

 IFS_Force_Y[i] = 0.0;

 }

 }

 // Revert back the displacement and velocity to their state before the nonlinear iteration

 *u = *uSaved;

 *v = *vSaved;

 // Save the previous iteration displacement

 *iterdispX_old = *iterdispX;

 *iterdispY_old = *iterdispY;

 // Under Relax the fluid forces

 for (int i = 0; i <FSI_Node_Size; ++i)

 {

 IFS_Force_X[i] = omegaFSI*dfx_ITS_STR_IFS[i] + (1-omegaFSI)*IFS_Force_X[i];

 IFS_Force_Y[i] = omegaFSI*dfy_ITS_STR_IFS[i] + (1-omegaFSI)*IFS_Force_Y[i];

 }

 // Save fluid forces

 ForceX << Time_curent << " ";

 for (int i = 0; i <FSI_Node_Size; ++i)

 {

 ForceX << " " << IFS_Force_X[i];

 }

67

 ForceX << endl;

 ForceY << Time_curent << " ";

 for (int i = 0; i <FSI_Node_Size; ++i)

 {

 ForceY << " " << IFS_Force_Y[i];

 }

 ForceY << endl;

 // Run NewmarkIntegrator

 FEMIntegrator->setUpdateTangent(true);

 FEMIntegrator->setCurrentTime(*tc);

 FEMIntegrator->setTimeStep(*dtc);

 FEMIntegrator->run(*u,*v,*tc,*tc+*dtc, &std::cout);

 // Obtain the displcement of the boundary nodes

 for (int i = 0; i < FSI_Node_Size; ++i)

 {

 Node& FSI_Node = FSI_NodeSet.node(Zorglib_Force_Con[i]);

 iterdispX[i] = FEMSystem->getNodalValue(FSI_Node,0,"DISPLACEMENTS");

 iterdispY[i] = FEMSystem->getNodalValue(FSI_Node,1,"DISPLACEMENTS");

 }

 // perform under-relaxation for the structural displacement

 for (int i = 0; i < FSI_Node_Size; ++i)

 {

 iterdispX[i] = omegaFSI*iterdispX[i] + (1-omegaFSI)*iterdispX_old[i];

 iterdispY[i] = omegaFSI*iterdispY[i] + (1-omegaFSI)*iterdispY_old[i];

 }

68

 // Save a boundary node displacement to check stability during non-linear iterations

NL_TipDisp << Time_curent << " " << iterdispX[(FSI_Node_Size/2)] << " " <<

iterdispY[(FSI_Node_Size/2)] << endl;

 // Update FSI Interface Coordinates

 for(int i1 = 0; i1 < FSI_Node_Size ;i1++)

 {

 X_ITS_STR_IFS[i1] = Xinit[i1] + iterdispX[i1];

 Y_ITS_STR_IFS[i1] = Yinit[i1] + iterdispY[i1];

 }

cout << "******************* END GENERIC_ifs Subroutine ********************"

<< endl;

}

B.3 saveGENERIC_ifs.cpp

#include "init_ISIS.h"

using namespace std;

extern "C" void savegeneric_ifs(int * imesg,int * mybloc,int * itt,int * itte)

{

 // Zorglib archive

 if(numberArch1%Archive_Interval == 0)

 {

 numberArch2 += 1;

 numberArch3 += 1;

 FEMTask2->process(numberArch2,Time_curent,*FEMSystem,&std::cout);

69

 FEMTask3->process(numberArch3,Time_curent,*FEMSystem,&std::cout);

 }

 // Save tip displacement - Only for the purpose of the analysis in this thesis

 double dx, dy;

 {

 Node& FSI_Node = FSI_NodeSet.node((FSI_Node_Size/2));

 dx = FEMSystem->getNodalValue(FSI_Node,0,"DISPLACEMENTS");

 dy = FEMSystem->getNodalValue(FSI_Node,1,"DISPLACEMENTS");

TipDisp << FSI_Node.label() << " " << Time_curent << " " << dx << " " << dy << "

";

 }

 {

 Node& FSI_Node = FSI_NodeSet.node((FSI_Node_Size/2)+1);

 dx = FEMSystem->getNodalValue(FSI_Node,0,"DISPLACEMENTS");

 dy = FEMSystem->getNodalValue(FSI_Node,1,"DISPLACEMENTS");

TipDisp << FSI_Node.label() << " " << Time_curent << " " << dx << " " << dy << "

";

 }

 {

 Node& FSI_Node = FSI_NodeSet.node((FSI_Node_Size/2)-2);

 dx = FEMSystem->getNodalValue(FSI_Node,0,"DISPLACEMENTS");

 dy = FEMSystem->getNodalValue(FSI_Node,1,"DISPLACEMENTS");

TipDisp << FSI_Node.label() << " " << Time_curent << " " << dx << " " << dy <<

endl;

 }

 // Save Displacement, Velocity, and Acceleration system arrays

 *output_U << *u << endl;

 *output_V << *v << endl;

 NewmarkIntegrator::Acceleration FEAcceleration = FEMIntegrator->acceleration();

70

 *output_A << FEAcceleration << endl;

 // Save interface displacement

 ofstream FSI_Interface_Disp("FSI_Interface_Disp.txt");

 FSI_Interface_Disp << Time_curent << endl;

 for (int i = 0; i < FSI_Node_Size; ++i)

 {

 FSI_Interface_Disp << iterdispX[i] << " ";

 }

 FSI_Interface_Disp << endl;

 for (int i = 0; i < FSI_Node_Size; ++i)

 {

 FSI_Interface_Disp << iterdispY[i] << " ";

 }

}

B.4 Read_FSI_Input

#include "init_ISIS.h"

using namespace std;

void Read_FSI_Inputs()

{

 // Read Input Parameters File - FSI_Inputs.txt

 ifstream FSI_Inputs("FSI_Inputs.txt");

 string inputs;

71

 // Read problem dimension

 getline(FSI_Inputs, inputs);

 getline(FSI_Inputs, inputs);

 istringstream input_dim(inputs);

 input_dim >> dimFEM;

 // Read time step

 getline(FSI_Inputs, inputs);

 getline(FSI_Inputs, inputs);

 istringstream input_timestep(inputs);

 input_timestep >> FEMtimeStep;

 // Read physical number used for FSI boundary identification

 getline(FSI_Inputs, inputs);

 getline(FSI_Inputs, inputs);

 istringstream input_FSIPhyNum(inputs);

 input_FSIPhyNum >> FSIPhyNum;

 // Read solid constitutive model

 getline(FSI_Inputs, inputs);

 getline(FSI_Inputs, inputs);

 istringstream input_Constitutive_Model(inputs);

 input_Constitutive_Model >> Constitutive_Model;

 // Read solid 2D assumption

 getline(FSI_Inputs, inputs);

 getline(FSI_Inputs, inputs);

 istringstream input_TwoD_Assumption(inputs);

 input_TwoD_Assumption >> TwoD_Assumption;

 // Read FE System solver

 getline(FSI_Inputs, inputs);

 getline(FSI_Inputs, inputs);

72

 istringstream input_System_Solver(inputs);

 input_System_Solver >> System_Solver;

 // Read FE Time Integrator

 getline(FSI_Inputs, inputs);

 getline(FSI_Inputs, inputs);

 istringstream input_System_Integrator(inputs);

 input_System_Integrator >> System_Integrator >> SPECTRAL_RADIUS;

 // Read the under-relaxation parameter

 getline(FSI_Inputs, inputs);

 getline(FSI_Inputs, inputs);

 istringstream input_omegaFSI(inputs);

 input_omegaFSI >> omegaFSI;

 // Read the Archival Interval

 getline(FSI_Inputs, inputs);

 getline(FSI_Inputs, inputs);

 istringstream input_Archive_Interval(inputs);

 input_Archive_Interval >> Archive_Interval;

 // Read the Full Run or Restart option

 getline(FSI_Inputs, inputs);

 getline(FSI_Inputs, inputs);

 istringstream input_RunType(inputs);

 input_RunType >> RunType >> RestartStep;

 cout << RunType << " " << RestartStep << endl;

}

73

B.5 Build_FSI_Arrays

#include "init_ISIS.h"

using namespace std;

void Build_FSI_Arrays(int * np_its_str_ifs, int * nt_its_str_ifs, double * X_ITS_STR_IFS,

double * Y_ITS_STR_IFS, double * Z_ITS_STR_IFS, int Con_ITS_STR_IFS[][3])

{

 // Read GMSH mesh file and return the elements (line element -> dimFEM-1 = 1) on the

 FSI boundary based on the physical number (FSIPhyNum)

 themesh = GmshMeshIO::readMesh(dimFEM,"body","meshZorg.msh");

 FSI_ElementSet = themesh->getElements(dimFEM-1,FSIPhyNum);

 // Get the number of FSI elements

 int FSI_Element_Size;

 FSI_Element_Size = FSI_ElementSet.nElements();

 // Collect FSI boundary nodes

 FSI_ElementSet.collectNodes(FSI_NodeSet);

 // Get the number of FSI nodes

 FSI_Node_Size = FSI_NodeSet.nNodes();

 *np_its_str_ifs = FSI_Node_Size;

 // Check FSI boundary nodes and element size

 ofstream outpFSI_Nodes("outpFSI_Nodes.txt");

 outpFSI_Nodes << "FSI_Node_Size: " << FSI_Node_Size << endl;

 outpFSI_Nodes << "FSI_Element_Size: " << FSI_Element_Size << endl;

 // Check element connectivity in GMSH mesh file

 outpFSI_Nodes << endl << endl;

 outpFSI_Nodes << "Checking element connectivity" << endl << endl;

74

 int Size_FSI_Node_Element;

 int Size_Zorglib_Con = 0;

 for (int i = 0; i < FSI_Element_Size; ++i)

 {

 Element& FSI_Element = FSI_ElementSet.element(i);

 Size_FSI_Node_Element = FSI_Element.nNodes();

 Size_Zorglib_Con += Size_FSI_Node_Element;

 outpFSI_Nodes << "Element Connectivity: ";

 for (int j = 0; j < Size_FSI_Node_Element; ++j)

 {

 Node& Element_Node = FSI_Element.node(j);

 outpFSI_Nodes << Element_Node.label() << " ";

 }

 outpFSI_Nodes << endl;

 }

 Size_Zorglib_Con += FSI_Element_Size;

 outpFSI_Nodes << endl;

 outpFSI_Nodes << "Zorglib_FSI_Con" << endl;

 Zorglib_FSI_Con = new int[Size_Zorglib_Con];

 {

 int iCon = 0;

 for (int i = 0; i < FSI_Element_Size; ++i)

 {

 Element& FSI_Element = FSI_ElementSet.element(i);

75

 Size_FSI_Node_Element = FSI_Element.nNodes();

 Zorglib_FSI_Con[iCon] = Size_FSI_Node_Element;

 outpFSI_Nodes << Zorglib_FSI_Con[iCon] << endl;

 iCon += 1;

 for (int j = 0; j < Size_FSI_Node_Element; ++j)

 {

 Node& Element_Node = FSI_Element.node(j);

 Zorglib_FSI_Con[iCon] = Element_Node.label();

 outpFSI_Nodes << Zorglib_FSI_Con[iCon] << endl;

 iCon += 1;

 }

 }

 }

 outpFSI_Nodes << endl;

 cout << Size_Zorglib_Con << endl;

 int Size_ISIS_FSI_Con = 0;

 // Initialize nt_its_str_ifs

 *nt_its_str_ifs = 0;

 // A pointer array to obtain a consequtive nodes indexes. It is needed primarily because when

 triangle and quad order 2 element

 // is used the middle node index is not located in the middle of the line connectivity in

 GMSH mesh file.

 Zorglib_Force_Con = new int[FSI_Node_Size];

 // 1D array of list of consecutive nodes indexes on the FSI boundary after sorting

76

 Zorglib_FSI_Nodes = new int[FSI_Node_Size];

 {

 int iZorg = 1;

 int swap;

 Node& FSI_Node = FSI_NodeSet.node(0);

 Zorglib_FSI_Nodes[0] = FSI_Node.label();

 Zorglib_Force_Con[0] = 0;

 // 2D Properties

 X_ITS_STR_IFS[0] = FSI_Node.coordinates().X(0);

 Y_ITS_STR_IFS[0] = FSI_Node.coordinates().X(1);

 Z_ITS_STR_IFS[0] = 0.0;

 outpFSI_Nodes << FSI_Node.label() << " " << FSI_Node.coordinates().X(0) << " "

 << FSI_Node.coordinates().X(1) << endl;

 for (int i = 0; i < Size_Zorglib_Con; ++i)

 {

 if (Zorglib_FSI_Con[i] == 3)

 {

 // when there are multiple bodies and the connectivity starts from the next body

 if (iZorg > 6 && Zorglib_FSI_Con[i+1] != Zorglib_FSI_Con[i-1])

 {

 Node& FSI_Node = FSI_NodeSet.node(iZorg);

 Zorglib_FSI_Nodes[iZorg] = FSI_Node.label();

 Zorglib_Force_Con[iZorg] = iZorg;

 X_ITS_STR_IFS[iZorg] = FSI_Node.coordinates().X(0);

 Y_ITS_STR_IFS[iZorg] = FSI_Node.coordinates().X(1);

 Z_ITS_STR_IFS[iZorg] = 0.0;

77

 outpFSI_Nodes << FSI_Node.label() << " " << FSI_Node.coordinates().X(0)

 << " " << FSI_Node.coordinates().X(1) << endl;

 iZorg += 1;

 }

 Node& FSI_Node1 = FSI_NodeSet.node(iZorg);

 swap = FSI_Node1.label();

 // 2D Properties

 X_ITS_STR_IFS[iZorg + 1] = FSI_Node1.coordinates().X(0);

 Y_ITS_STR_IFS[iZorg + 1] = FSI_Node1.coordinates().X(1);

 Z_ITS_STR_IFS[iZorg + 1] = 0.0;

 outpFSI_Nodes << FSI_Node1.label() << " " << FSI_Node1.coordinates().X(0)

 << " " << FSI_Node1.coordinates().X(1) << endl;

 Node& FSI_Node2 = FSI_NodeSet.node(iZorg+1);

 // 2D Properties

 X_ITS_STR_IFS[iZorg] = FSI_Node2.coordinates().X(0);

 Y_ITS_STR_IFS[iZorg] = FSI_Node2.coordinates().X(1);

 Z_ITS_STR_IFS[iZorg] = 0.0;

 outpFSI_Nodes << FSI_Node2.label() << " " << FSI_Node2.coordinates().X(0)

 << " " << FSI_Node2.coordinates().X(1) << endl;

 Zorglib_FSI_Nodes[iZorg] = FSI_Node2.label();

 Zorglib_FSI_Nodes[iZorg+1] = swap;

 int swap2;

 swap2 = Zorglib_FSI_Con[i+2];

78

 Zorglib_FSI_Con[i+2] = Zorglib_FSI_Con[i+3];

 Zorglib_FSI_Con[i+3] = swap2;

 Zorglib_Force_Con[iZorg] = iZorg+1;

 Zorglib_Force_Con[iZorg+1] = iZorg;

 outpFSI_Nodes << Zorglib_FSI_Con[i] << endl;

 outpFSI_Nodes << Zorglib_FSI_Con[i+1] << endl;

 outpFSI_Nodes << Zorglib_FSI_Con[i+2] << endl;

 outpFSI_Nodes << Zorglib_FSI_Con[i+3] << endl;

 i += Zorglib_FSI_Con[i];

 iZorg += 2;

 // 2D Properties

 Size_ISIS_FSI_Con += 6;

 // the number of segment for ISIS

 *nt_its_str_ifs += 2;

 }

 else if (Zorglib_FSI_Con[i] == 2)

 {

 Node& FSI_Node1 = FSI_NodeSet.node(iZorg);

 // 2D Properties

 X_ITS_STR_IFS[iZorg] = FSI_Node1.coordinates().X(0);

 Y_ITS_STR_IFS[iZorg] = FSI_Node1.coordinates().X(1);

 Z_ITS_STR_IFS[iZorg] = 0.0;

 outpFSI_Nodes << FSI_Node1.label() << " " << FSI_Node1.coordinates().X(0)

 << " " << FSI_Node1.coordinates().X(1) << endl;

 Zorglib_FSI_Nodes[iZorg] = FSI_Node1.label();

79

 Zorglib_Force_Con[iZorg] = iZorg;

 Zorglib_Force_Con[iZorg + 1] = iZorg + 1;

 outpFSI_Nodes << Zorglib_FSI_Con[i] << endl;

 outpFSI_Nodes << Zorglib_FSI_Con[i+1] << endl;

 outpFSI_Nodes << Zorglib_FSI_Con[i+2] << endl;

 i += Zorglib_FSI_Con[i];

 ++iZorg;

 // 2D Properties

 Size_ISIS_FSI_Con += 3;

 // the number of segment for ISIS

 *nt_its_str_ifs += 1;

 }

 }

 }

 // Check Zorglib_FSI_Nodes array

 outpFSI_Nodes << endl;

 outpFSI_Nodes << "Zorglib_FSI_Nodes" << endl;

 for (int i = 0; i < FSI_Node_Size; ++i)

 {

 outpFSI_Nodes << Zorglib_FSI_Nodes[i] << endl;

 }

 // Build Con_ITS_STR_IFS

 {

 int j = 0, k = 1, l = 0;

80

 for (int i = 0; i < Size_Zorglib_Con; ++i)

 {

 // for quadratic element

 if (Zorglib_FSI_Con[i] == 3)

 {

 // 2D Properties

 Con_ITS_STR_IFS[j][0] = k;

 Con_ITS_STR_IFS[j][1] = k+1;

 Con_ITS_STR_IFS[j][2] = 0;

 Con_ITS_STR_IFS[j+1][0] = k+1;

 Con_ITS_STR_IFS[j+1][1] = k+2;

 Con_ITS_STR_IFS[j+1][2] = 0;

 // 2D Properties

 j += 2;

 i += Zorglib_FSI_Con[i];

 if (Zorglib_FSI_Con[i+2] == Zorglib_FSI_Nodes[l+2])

 {

 k += 2;

 l += 2;

 }

 else

 {

 k += 3;

 l += 3;

 }

 }

 // for linear element

 else if (Zorglib_FSI_Con[i] == 2)

 {

81

 // 2D Properties

 Con_ITS_STR_IFS[j][0] = k;

 Con_ITS_STR_IFS[j][1] = k+1;

 Con_ITS_STR_IFS[j][2] = 0;

 // 2D Properties

 j += 1;

 i += Zorglib_FSI_Con[i];

 if (Zorglib_FSI_Con[i+2] == Zorglib_FSI_Nodes[l+1])

 {

 k += 1;

 l += 1;

 }

 else

 {

 k += 2;

 l += 2;

 }

 }

 }

 }

}

B.6 init_ISIS.cpp

#include "init_ISIS.h"

#include "IFSFunction.h"

using namespace std;

82

#ifdef USE_ZORGLIB_NAMESPACE

USING_ZORGLIB_NAMESPACE

#endif

// copy constructor

IFSFunction::IFSFunction(const IFSFunction& src)

 : Function(src) {

 idx = src.idx;

}

// get value

double IFSFunction::value(double t) {

 unsigned int i;

 unsigned int r;

 i = idx/2;

 r = idx%2;

 if (r == 0)

 return IFS_Force_X[i];

 else

 return IFS_Force_Y[i];

}

// get derivative

double IFSFunction::slope(double t) {

 return 0.0;

}

// get value and derivative

double IFSFunction::value(double t,double& df) {

 df = 0.0e0;

 unsigned int i;

 unsigned int r;

 i = idx/2;

83

 r = idx%2;

 if (r == 0)

 return IFS_Force_X[i];

 else

 return IFS_Force_Y[i];

}

// print-out

std::string IFSFunction::toString() const {

 std::string s = "nothing";

 return s;

}

// Zorglib Static Parameters

double FEMtimeStep;

int dimFEM;

int dimFEMelem;

int FSIPhyNum;

double SPECTRAL_RADIUS;

string Constitutive_Model;

string TwoD_Assumption;

string System_Integrator;

string System_Solver;

int Archive_Interval;

string RunType;

int RestartStep;

MeshedBody* themesh;

vector<Element*> ElemSet;

vector<Node*> nodeSetFSI;

ElementSet FSI_ElementSet;

NodeSet FSI_NodeSet;

ConstitutiveModel* model;

MaterialProperties theproperties;

MaterialModel* theMaterial;

84

FEMechanicalSystem* FEMSystem;

SystemArray* u;

SystemArray* v;

SystemArray* uSaved;

SystemArray* vSaved;

SystemArray* ExtForces;

NewmarkIntegrator* FEMIntegrator;

StationaryEquation* StaticEquation;

LinearEquationSolver* StaticSolver;

FEGmshArchivalTask* FEMTask1;

FEGmshArchivalTask* FEMTask2;

FEGmshArchivalTask* FEMTask3;

FEGmshArchivalTask* FEMTask4;

int numberArch1 = 0, numberArch2 = 0, numberArch3 = 0;

int nNLIter = 1;

// Connectivity array to transfer structural displacement from Zorglib to ISIS

int* Zorglib_Force_Con;

// Arrays of displacements of the current iteration

double* iterdispX;

double* iterdispY;

double* iterdispZ;

// Arrays of displacements from the previous iteration

double* iterdispX_old;

double* iterdispY_old;

double* iterdispZ_old;

// Under-relaxation parameter

double omegaFSI;

// To store mesh data

int FSI_Node_Size;

85

int* Zorglib_FSI_Nodes;

int* MESH_FSI_Con;

int* Zorglib_FSI_Con;

// To store fluid force

double* IFS_Force_X;

double* IFS_Force_Y;

double* IFS_Force_Z;

// To store initial FSI coordinates

double *Xinit, *Yinit, *Zinit;

// Current step time for archival purposes

double Time_curent = 0.0;

// Output file declaration

ofstream TipDisp("TipDisp.txt");

ofstream NL_TipDisp("NL_TipDisp.txt");

ofstream ForceX("IFS_Force_X.txt");

ofstream ForceY("IFS_Force_Y.txt");

ofstream outpNodeDOF("outpNodeDOF.txt");

// Input and output streams for Restart computation

ifstream* input_U;

ifstream* input_V;

ifstream* input_A;

ofstream* output_U;

ofstream* output_V;

ofstream* output_A;

86

B.7 init_ISIS.h

#ifndef INIT_ISIS_H

#define INIT_ISIS_H

// std C++ library

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <sstream>

#include <string>

#include <math.h>

// local

#include <algo/NewmarkIntegrator.h>

#include <algo/ConstantTimeStepper.h>

#include <algo/NewtonSolver.h>

#include <algo/LinearEquationSolver.h>

#include <algo/StationaryEquation.h>

#include <zfem/FEMechanicalSystem.h>

#include <mesh/GmshMeshIO.h>

#include <mesh/GmshViewIO.h>

#include <zfem/FEGmshArchivalTask.h>

#include <zfem/FEReactionArchivalTask.h>

#include <matl/ModelDictionary.h>

#include <data/Chronometer.h>

#include <data/MixedData.h>

#include <matl/MaterialModel.h>

using namespace std;

#ifdef USE_ZORGLIB_NAMESPACE

USING_ZORGLIB_NAMESPACE

#endif

87

// Internal Functions

void Read_FSI_Inputs();

void FSI_Run_Type();

void Zorglib_FE_Initialization();

void Zorglib_Integrator_Initialization();

void Zorglib_Archival_Initialization();

void Build_FSI_Arrays(int *, int *, double *, double *, double *, int [][3]);

// Zorglib Static Parameters

extern int dimFEM;

extern double FEMtimeStep;

extern int FSIPhyNum;

extern double SPECTRAL_RADIUS;

extern string Constitutive_Model;

extern string TwoD_Assumption;

extern string System_Integrator;

extern string System_Solver;

extern int Archive_Interval;

extern string RunType;

extern int RestartStep;

extern MeshedBody* themesh;

extern vector<Element*> ElemSet;

extern vector<Node*> nodeSetFSI;

extern ElementSet FSI_ElementSet;

extern NodeSet FSI_NodeSet;

extern ConstitutiveModel* model;

extern MaterialProperties theproperties;

extern int dimFEMelem;

extern MaterialModel* theMaterial;

extern FEMechanicalSystem* FEMSystem;

extern FEMechanicalSystem* FEMSystemInit;

extern FEMechanicalSystem* FEMSystemStatic;

extern SystemArray* u;

88

extern SystemArray* v;

extern SystemArray* uSaved;

extern SystemArray* vSaved;

extern NewmarkIntegrator* FEMIntegrator;

extern SystemArray* ExtForces;

extern StationaryEquation* StaticEquation;

extern LinearEquationSolver* StaticSolver;

extern double FEMtimeStep;

extern FEGmshArchivalTask* FEMTask1;

extern FEGmshArchivalTask* FEMTask2;

extern FEGmshArchivalTask* FEMTask3;

extern FEGmshArchivalTask* FEMTask4;

extern int numberArch1, numberArch2, numberArch3;

// Connectivity array to transfer structural displacement from Zorglib to ISIS

extern int* Zorglib_Force_Con;

// Arrays of displacements of the current iteration

extern double* iterdispX;

extern double* iterdispY;

extern double* iterdispZ;

// Arrays of displacements from the previous iteration

extern double* iterdispX_old;

extern double* iterdispY_old;

extern double* iterdispZ_old;

// Under-relaxation parameter

extern double omegaFSI;

// To store mesh data

extern int FSI_Node_Size;

extern int* Zorglib_FSI_Nodes;

extern int* MESH_FSI_Con;

89

extern int* Zorglib_FSI_Con;

// To store initial FSI coordinates

extern double *Xinit, *Yinit, *Zinit;

// To store fluid force

extern double* IFS_Force_X;

extern double* IFS_Force_Y;

extern double* IFS_Force_Z;

// Output file declaration

extern ofstream TipDisp;

extern ofstream NL_TipDisp;

extern ofstream ForceX;

extern ofstream ForceY;

extern ofstream outpNodeDOF;

// Input and output streams for Restart computation

extern ifstream* input_U;

extern ifstream* input_V;

extern ifstream* input_A;

extern ofstream* output_U;

extern ofstream* output_V;

extern ofstream* output_A;

// Current step time for archival purposes

extern double Time_curent;

#endif

90

B.8 Zorglib_FE_Initialization.cpp

#include "init_ISIS.h"

#include "IFSFunction.h"

using namespace std;

void Zorglib_FE_Initialization()

{

 // Build Material Model

 model = ModelDictionary::build(Constitutive_Model,dimFEM);

 // Read and Initialize Material Properties

 theproperties.readFrom("Solid_Properties.mat");

 theMaterial = new MaterialModel(*model,theproperties);

 theMaterial->initialize();

 // Context

 Context ContextCTX(dimFEM);

 Context::Symmetry inputSymmetry = Context::NONE;

 ContextCTX.setSymmetry(inputSymmetry);

 // Create FE system

 FEMSystem = new FEMechanicalSystem(ContextCTX,*themesh);

 FEMSystem->addDeformableBody(*themesh,"DISPLACEMENTS");

 // set FE formulation

 MixedData* FEMParams = new MixedData[1];

 FEMParams[0] = 1.0;

 std::vector<std::string> FEDofs(1);

 FEDofs[0] = "DISPLACEMENTS";

FEMSystem-

>setFormulation("body",dimFEM,1,TwoD_Assumption,FEMParams,*theMaterial,FEDofs);

91

 // Apply Boundary Conditions

 FEMSystem->setSimpleConstraint("body",dimFEM-1,101,0.0,0,FEDofs[0]);

 FEMSystem->setSimpleConstraint("body",dimFEM-1,101,0.0,1,FEDofs[0]);

 // Initialize fluid force arrays

 IFS_Force_X = new double[FSI_Node_Size];

 IFS_Force_Y = new double[FSI_Node_Size];

 IFS_Force_Z = new double[FSI_Node_Size];

 for (int i = 0; i < FSI_Node_Size; ++i)

 {

 IFS_Force_X[i] = 0.0;

 IFS_Force_Y[i] = 0.0;

 }

 // Create and fnitialize force function (IFSFunction) and Node objects

 IFSFunction* fcts[FSI_Node_Size*2];

 for (int i = 0; i < FSI_Node_Size*2; ++i)

 {

 fcts[i] = new IFSFunction(i);

 }

 {

 int iF = 0;

 for(int i = 0; i < FSI_Node_Size; ++i)

 {

 Node& FSI_Node = FSI_NodeSet.node(Zorglib_Force_Con[i]);

 FEMSystem->setAppliedForce(FSI_Node,*fcts[iF],0,"DISPLACEMENTS");

 FEMSystem->setAppliedForce(FSI_Node,*fcts[iF+1],1,"DISPLACEMENTS");

 iF += 2;

 }

 }

92

 // Initialize FE System

 FEMSystem->initialize();

}

B.9 Zorglib_Integrator_Initialization.cpp

#include "init_ISIS.h"

using namespace std;

void Zorglib_Integrator_Initialization()

{

 // Initialize System Arrays

 u = new SystemArray(*FEMSystem);

 v = new SystemArray(*FEMSystem);

 *u = 0.0;

 *v = 0.0;

 // Saved u and v variables

 uSaved = new SystemArray(*FEMSystem);

 vSaved = new SystemArray(*FEMSystem);

 *uSaved = 0.0;

 *vSaved = 0.0;

 // Initialize time integrator

 FEMIntegrator = new NewmarkIntegrator(*FEMSystem,"","FULL",false,false);

 // Set algorithmic parameters for the time integrator

 StringMap<double>::Type FEMalgParams;

 double AL_F = 0.0, AL_M = 0.0, BET = 0.0, GAM = 0.0;

93

 if(System_Integrator == "STANDARD_NEWMARK")

 {

 // Standard Newmark Paramaters

 AL_F = 0.0;

 AL_M = 0.0;

 BET = 0.25;

 GAM = 0.5;

 }

 else if(System_Integrator == "GENERAL_ALPHA")

 {

 // General-alpha Paramaters

 AL_F = SPECTRAL_RADIUS / (1 + SPECTRAL_RADIUS);

 AL_M = (2*SPECTRAL_RADIUS - 1) / (1 + SPECTRAL_RADIUS);

 BET = 0.25 * (pow((1 - AL_M + AL_F),2));

 GAM = 0.5 - AL_M + AL_F;

 }

 // Set Integrator Parameters

 FEMalgParams["ALPHA_F"] = AL_F;

 FEMalgParams["ALPHA_M"] = AL_M;

 FEMalgParams["BETA"] = BET;

 FEMalgParams["GAMMA"] = GAM;

 FEMalgParams["INITIAL_TIME_STEP"] = FEMtimeStep;

 FEMalgParams["MIN_TIME_STEP"] = 0.1*FEMtimeStep;

 FEMalgParams["MAX_TIME_STEP"] = FEMtimeStep;

 FEMalgParams["MAX_DIVISIONS"] = 10.;

 FEMIntegrator->setParameters(FEMalgParams);

94

 if(System_Solver == "LINEAR")

 {

 // Initialize LinearEquationSolver

 LinearEquationSolver* FEMSolver;

 FEMSolver = new LinearEquationSolver(*FEMSystem);

 FEMIntegrator->setSolver(*FEMSolver);

 }

 else if(System_Solver == "NEWTON")

 {

 // Initialize NewtonSolver

 NewtonSolver* FEMSolver;

 FEMSolver = new NewtonSolver(*FEMSystem,"","FULL");

 LineSearch* FEMlsrch;

 FEMlsrch = new LineSearch(1e-2,5,1000);

 FEMSolver->setLineSearch(*FEMlsrch);

 FEMSolver->setMaxIter(50);

 FEMSolver->setTolerance(1.e-8);

 FEMSolver->setAbsoluteTolerance(1.e-12);

 FEMSolver->setPrecision(1.e-12);

 FEMIntegrator->setSolver(*FEMSolver);

 }

 // Time integrator general log file

 FEMIntegrator->setLogFile("integ_log.plt");

}

95

B.10 Zorglib_Archival_Initialization.cpp

#include "init_ISIS.h"

using namespace std;

void Zorglib_Archival_Initialization()

{

 GmshMeshIO::writeMesh(*themesh,"resultsZorg.msh");

 GmshViewIO::Data outputNode = GmshViewIO::NODE;

 GmshViewIO::Data outputElement_Node = GmshViewIO::ELEMENT_NODE;

 GmshViewIO::Type outputVector = GmshViewIO::VECTOR;

 GmshViewIO::Type outputTensor = GmshViewIO::TENSOR;

 FEGmshArchivalTask::Format outputFormat = FEGmshArchivalTask::ASCII;

 // Save displacement values during NonLinear Iteration

FEMTask1 = new

FEGmshArchivalTask("DISPLACEMENTS","body",dimFEMelem,1,outputNode,outputVe

ctor,"Displacements","resultsZorg-NL_Iteration",outputFormat,0);

 FEMTask1->setFormatWidth(5);

 FEMTask1->setTimeInterval(FEMtimeStep);

 // Save displacement values after a certain time interval

FEMTask2 = new

FEGmshArchivalTask("DISPLACEMENTS","body",dimFEMelem,1,outputNode,outputVe

ctor,"Displacements","resultsZorg-Displ",outputFormat,0);

 FEMTask2->setFormatWidth(5);

 FEMTask2->setTimeInterval(FEMtimeStep);

 // Save stress values after a certain time interval

FEMTask3 = new

FEGmshArchivalTask("stress","body",dimFEMelem,1,outputElement_Node,outputTensor,"

Stresses","resultsZorg-Stress",outputFormat,0);

96

 FEMTask3->setFormatWidth(5);

 FEMTask3->setTimeInterval(FEMtimeStep);

 // Save velocity values after a certain time interval

FEMTask4 = new

FEGmshArchivalTask("DISPLACEMENTS","body",dimFEMelem,1,outputNode,outputVe

ctor,"Velocities","resultsZorg-Velocity",outputFormat,0);

 FEMTask4->setRateFlag(true);

 FEMTask4->setFormatWidth(5);

 FEMTask4->setTimeInterval(FEMtimeStep);

}

B.11 FSI_Run_Type.cpp

#include "init_ISIS.h"

using namespace std;

void FSI_Run_Type()

{

 if (RunType == "FULL")

 {

 output_U = new ofstream("FE_Displacements.txt");

 output_V = new ofstream("FE_Velocities.txt");

 output_A = new ofstream("FE_Accelerations.txt");

 FEMSystem->change(*u,*v);

 for (int i = 0; i < FSI_Node_Size; ++i)

 {

 iterdispX[i] = 0.0;

 iterdispY[i] = 0.0;

 iterdispZ[i] = 0.0;

97

 }

 }

 else if (RunType == "RESTART")

 {

 input_U = new ifstream("FE_Displacements.txt");

 input_V = new ifstream("FE_Velocities.txt");

 input_A = new ifstream("FE_Accelerations.txt");

 string lineInput_U,lineInput_V,lineInput_A;

 Partition PFree = FEMSystem->getPartition(Partition::FREE);

 SystemArray a(*FEMSystem,PFree);

 int size_U = u->size();

 int size_V = v->size();

 int size_A = a.size();

 for(int i = 0; i < RestartStep-1; ++i)

 {

 getline(*input_U,lineInput_U);

 getline(*input_V,lineInput_V);

 getline(*input_A,lineInput_A);

 }

 getline(*input_U,lineInput_U);

 istringstream iss_U(lineInput_U);

 string inp1;

 iss_U >> inp1;

 for(int i = 0; i < size_U; ++i)

 {

 iss_U >> (*u)[i];

 }

 getline(*input_V,lineInput_V);

 istringstream iss_V(lineInput_V);

98

 iss_V >> inp1;

 for(int i = 0; i < size_V; ++i)

 {

 iss_V >> (*v)[i];

 }

 getline(*input_A,lineInput_A);

 istringstream iss_A(lineInput_A);

 iss_A >> inp1;

 for(int i = 0; i < size_A; ++i)

 {

 iss_A >> a[i];

 }

 FEMSystem->change(*u,*v);

 FEMIntegrator->setAcceleration(a);

 output_U = new ofstream("FE_Displacements.txt");

 output_V = new ofstream("FE_Velocities.txt");

 output_A = new ofstream("FE_Accelerations.txt");

 ifstream input_FSI_Interface_Disp("FSI_Interface_Disp.txt");

 string line_FSI_Int;

 getline(input_FSI_Interface_Disp,line_FSI_Int);

 getline(input_FSI_Interface_Disp,line_FSI_Int);

 istringstream iss_FSI_U(line_FSI_Int);

 for (int i = 0; i < FSI_Node_Size; ++i)

 {

 iss_FSI_U >> iterdispX[i];

 }

99

 getline(input_FSI_Interface_Disp,line_FSI_Int);

 istringstream iss_FSI_V(line_FSI_Int);

 for (int i = 0; i < FSI_Node_Size; ++i)

 {

 iss_FSI_V >> iterdispY[i];

 }

 }

}

B.12 IFSFunction.h

#ifndef IFSFunction_H

#define IFSFunction_H

#include <data/Function.h>

#include <string>

#ifdef USE_ZORGLIB_NAMESPACE

USING_ZORGLIB_NAMESPACE

#endif

class IFSFunction : virtual public Function {

 protected:

 unsigned int idx;

 public:

 // constructor

 IFSFunction(unsigned int i, const std::string& s = "no name")

100

 : Function(s) {

 idx = i;

 }

 // copy constructor

 IFSFunction(const IFSFunction&);

 // destructor

 ~IFSFunction() {}

 // duplicate object

 IFSFunction* clone() const {return new IFSFunction(*this);}

 // get value

 double value(double);

 // get derivative

 double slope(double);

 // get value and derivative

 double value(double, double&);

 // print-out

 std::string toString() const;

};

#endif

101

References

1. Saracibar, C.A. (2011). Lecture notes on continuum mechanics, Universitat Politecnica de

Catalunya, Barcelona.

2. Bonet, J., Wood, R.D. (1997). Non linear continuum mechanics for finite element analysis.

Cambridge University Press, Cambridge

3. Bathe, K.-J. (1996). Finite element procedures. Prentice-Hall, New Jersey

4. Belytschko, T., Liu, W.K., Moran, B. (2000). Nonlinear finite elements for continua and

structures. John Wiley & Sons Ltd, Chichester

5. Chung, J., Hulbert, G.M. (1993). A time integration algorithm for structural dynamics

with improved numerical dissipation: the generalized- method. Journal of Applied

Mechanics, 60:371-375.

6. Hübner, B., Walhorn, E., Dinkler, D. (2004). A monolithic approach to fluid-structure

interaction using space-time finite elements. Computational Methods in Applied Mechanics and

Engineering, 193:2087-2104.

7. Dettmer, W.G., Perić D. (2007). A fully implicit computational strategy for strongly

coupled fluid-solid interaction. Archive of Computational Methods in Engineering, 14:205-247

8. P. Causin, J.F. , Gerbeau, Nobile F. (2005). Added-mass effect in the design of

partitioned algorithms for fluid–structure problems. Computational Methods in Applied

Mechanics and Engineering, 194: 4506–4527

9. Farhat, C., Lesoinne, M., LeTallec, P. (1998). Load and motion transfer algorithms for

fluid/structure interaction problems with non-matching discrete interfaces : momentum

and energy conservation, optimal discretization and application to aeroelasticity.

Computational Methods in Applied Mechanics and Engineering, 157:95-114.

10. EMN Ecole Centrale de Nantes (2011). Theoritical Manual for FINETM/MARINE,

NUMECA International, Belgium

11. Geuzaine, C. , Remacle, J.-F. (2009). Gmsh: a three-dimensional finite element mesh

generator with built-in pre- and post-processing facilities. International Journal for Numerical

Methods in Engineering, 79(11): 1309-1331.

12. Turek, S. and Hron, J. (2006). Proposal for numerical benchmarking of fluid-structure

interaction between an elastic object and laminar incompressible flow. Lecture Notes in

Computational Science and Engineering, 53:371.

13. De Nayer G. (2008). Interaction fluide-structure pour les corps élancés. PhD thesis,

Ecole Centrale de Nantes, France

102

14. Petersen C. (1996). Dynamik der Baukonstruktionen. Vieweg, Braunschweig/Wiesbaden

15. Wall, W.A., Ramm, E. (1998) Fluid–structure interaction based upon a stabilized (ALE)

finite element method. In: Idelsohn SR, Onate E (eds) Computational mechanics—new trends

and applications, 4thWorld Congress on Computational Mechanics, CIMNE, Barcelona,

Spain, Buenos Aires, Brazil

16. Causin, P., Gerbeau, J.-F., Nobile, F. (2005). Added mass effect in the design of

partitioned algorithms for fluid-structure problems. Computer Methods in Applied Mechanics

and Engineering, 194(42-44):4506-4527.

17. Breuer, M., Bernsdorf, J., Zeiser, T., Durst, F. (2000). Accurate computations of the

laminar flow past a square cylinder based on two different methods : lattice-Boltzmann

and finite volume. International Journal of Heat and Fluid Flow, 21(186-196).

18. Piperno, S., Farhat, C., Larrouturou, B. (1995). Partitioned procedures for the transient

solution of coupled aeroelastic problems. Part 1: Model problem, theory and two-

dimensional application. Computer Methods in Applied Mechanics and Engineering, 124(79-112).

19. Leroyer, A. (2004). Etude du couplage écoulement/mouvement pour des corps solides

ou à déformation imposée par résolution des équations de Navier-Stokes. Contribution à

la modélisation numérique de la cavitation. PhD thesis, Ecole Centrale de Nantes, France

20. Durand, M. (2012). Interaction fluide-structure souple et légére, application aux voiliers.

PhD thesis, Ecole Centrale de Nantes, France

