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Abstract 
 

The thesis presents uncoupled two-dimensional structure and fluid dynamics simulations using 

Zorglib and ISIS-CFD solver respectively, a development of computational procedures in 

particular for the fluid-structure interface dynamic library to couple the two solvers to solve 

fluid-structure interactions (FSI) problems, and eventually benchmark coupled numerical 

simulations. The Zorglib solver is based on the finite element discretization method whereas the 

ISIS-CFD solver is based on the unstructured finite volume discretization method. The coupling 

of the two solvers adopts the implicit strongly coupled partitioned approach to ensure stable 

solutions in the case where added-mass effects take place [16].  

 

The initial phase of the work in this thesis is to ensure the mesh convergence of the solid 

simulation by comparing different two-dimensional solid elements to solve an analytical static 

problem. Following after that is a numerical test performed on a benchmark solid dynamic [13] 

and the results were found to agree well. For the ISIS-CFD solver a numerical test is performed 

on the classical case of a two-dimensional laminar incompressible flow past a fixed square 

cylinder based on [17] and the results also agree well. The second phase of the work is to 

integrate Zorglib, an object oriented based solver, in ISIS-CFD solver to enable the stable 

coupling of the two solvers. The computational stability is ensured by implementing an internal 

convergence loop with under-relaxation on the fluid forces and solid displacements as part of 

ISIS-CFD non-linear iterations. By using this approach the total CPU time depends only on the 

CPU time of ISIS-CFD. Eventually in the last phase of the work the verification of the coupling 

strategy is done by performing FSI simulations which show good agreements with the work 

done in [7] [12] [13].         
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1  Introduction 
 

There have been numerous international publications and practical applications of numerical 

simulations concerning the fluid-structure interactions problems. The knowledge of the 

numerical procedure in these areas has been steadily growing in the past decades as the problems 

increasingly become more complicated and different numerical treatments are required to ensure 

stable and accurate solutions. The application of fluid-structure interactions encompasses a wide 

range of engineering and life science, to name a few: 

 

 Structural engineering design for designing long-span bridges, high-rise buildings, and 

lightweight roof structures with wind flow interactions.   
 Aerospace engineering analyses such as analysis of airfoil oscillations, flutter prediction, 

and parachute dynamics. 
 Biomechanics design such as cardiovascular mechanics, cerebrospinal mechanics, and 

artificial heart valves design. 
 

In most cases to model the real world problems, the numerical simulations have to be able to 

characterize large solid deformations as a result of interactions with viscous fluids. When the 

structure is very light or the flow is highly compressible, this becomes a highly non-linear 

problem and to model an efficient, accurate, and stable computational procedure for this kind of 

problem is quite challenging and it is still pursued by many researchers in this area. 

 

There are a number of different numerical strategies to couple the fluid and solid discretized 

solutions to solve FSI problems. In particular [6] proposed a simultaneous solution procedure 

where the discretized model equations for fluid, structure and coupling conditions are unified in 

a single non-linear system of equations and combined with the mesh dynamics equation to be 

solved in every iteration loop. This solution procedure is often called the monolithic solution 

procedure. In general the monolithic solution procedure is stable and the solution can converge 

relatively fast when solving large solid deformations interacting with viscous fluid. The drawback 

is that it does not have the flexibility to utilize the readily established solvers with different solid 

and fluid discretizations.   
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A weak coupling partitioned solution procedure is proposed by [18] to solve transient aero elastic 

problems where the solution advances in time without any iteration to ensure the convergence of 

the coupling. Some additional correction strategies can be adapted to limit the accumulation of 

the errors. This procedure is relatively simple and the CPU time can be significantly low but the 

procedure is only first order accurate. It is conditionally stable and in some cases the time step 

constraint to achieve a stable solution means the CPU time advantage does not exist anymore. 

When the fluid density is comparable or higher than the solid density, there exists an added mass 

effect which cannot be solved by the reducing the time step anymore [8]. 

 

A more elaborate partitioned solution procedure is proposed in [7] with strong coupling where 

an iterative procedure is performed on the FSI interface computation to achieve a specified 

accuracy requirements. The strategy is relied on the Newton-Raphson full exact linearization 

procedure to solve the incremental problem. Several numerical examples which are shown in [7] 

have robust solutions when dealing with highly non-linear FSI problems. 

  

Taking advantage of the well-established computational structural dynamics (CSD) solver, 

Zorglib, and computational fluid dynamics (CFD) solver, ISIS CFD, developed in Ecole 

Centrale de Nantes, a postdoctoral work commenced the development of computational 

procedures to couple the two solvers to perform two-dimensional fluid-rigid body interactions 

simulations by adopting the strongly coupled implicit partitioned procedure. The main objective 

of this thesis is to develop further the existing computational procedures to be able to perform 

two dimensional fluid-structure interactions simulations of elastic and flexible body. 

 

The outline of the following chapters is as follows: 

Chapter 2: This chapter discusses the main conservation equations which are the 

fundamental principle equations used in the solid and fluid computational 

models. 

Chapter 3: The fundamental aspects of ISIS CFD solver i.e. governing equations, 

discretization strategy, and computation algorithm are discussed briefly in this 

chapter. Numerical examples are presented at the end of the chapter compared to 

the referenced international publication. 

Chapter 4: The fundamental aspects of Zorlib solver are discussed in the same manner like 

in Chapter 2 but with additional short explanations of the time integration strategy 

and Newton Raphson method to solve non-linear equations. A mesh sensitivity 
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analysis and numerical tests compared to the analytical solution and referenced 

international publication are presented at the end of the chapter. 

Chapter 5: This chapter firstly explained different conditions that have to be satisfied on the 

fluid-structure interface and followed with the coupling strategy adopted in this 

work. Eventually the coupling interface library is explained at the end of the 

chapter. 

Chapter 6: In this chapter several fluid-structure numerical results are presented. The 

simulations are based on the test cases in the international publications and the 

current results are compared to the ones in the publications. 

Chapter 7: The conclusion of the work done in the thesis. 
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2  Conservation Equations 
 

The section is synthesized from [1]. The following two mathematical expressions will be used to 

derive the balance principles. 

Material time derivative:  

																																																											
݂ܦ
ݐܦ

ൌ
߲݂
ݐ߲

൅ Ԧݒ ∙  ሺ2.1ሻ																																																																				ሬሬԦ݂׏

Reynold’s Transport Theorem: 

																																																		
ܦ
ݐܦ

න ݂
ஐ

݀Ω ൌ න ൬
݂ܦ
ݐܦ

൅ ሬሬԦ׏	݂ ∙ Ԧ൰ݒ ݀Ω
ஐ

																																									ሺ2.2ሻ 

where ݂ can be a scalar, vector, or tensor function, ݒԦ is the velocity vector field, ׏ሬሬԦሺ∎ሻ is gradient 

operator, ׏ሬሬԦ ∙ ሺ∎ሻ is divergence operator, and Ω is the material domain.  

 

2.1 Conservation of Mass 

 

The mass of any material domain in the body is constant and this implies that the material time 

derivative of the mass has to be zero: 

																																																						
݉ܦ
ݐܦ

ൌ
ܦ
ݐܦ

න Ω݀	ߩ
ஐ

ൌ 0																																																															ሺ2.3ሻ 

Using Eq. (2.1) and (2.2): 

																																					
ܦ
ݐܦ

න Ω݀	ߩ
ஐ

ൌ න ൬
ߩܦ
ݐܦ

൅ ሬሬԦ׏	ߩ ∙ Ԧ൰ݒ 	݀Ω
ஐ

ൌ 0																																													ሺ2.4ሻ 

																																						න ൬
ߩ߲
ݐ߲

൅	ݒԦ ∙ ߩሬሬԦ׏ ൅ ሬሬԦ׏	ߩ ∙ Ԧ൰ݒ 	݀Ω
ஐ

ൌ 0																																																							ሺ2.5ሻ 

Because Eq. (2.5) holds for any sub-domain, the integral can be omitted: 

																																								
ߩ߲
ݐ߲

൅	ݒԦ ∙ ߩሬሬԦ׏ ൅ ሬሬԦ׏	ߩ ∙ Ԧݒ ൌ 0																																																																								ሺ2.6ሻ 

																																								
ߩ߲
ݐ߲

൅		׏ሬሬԦ ∙ ሺ	ߩ	ݒԦ	ሻ ൌ 0																																																																																		ሺ2.7ሻ 

Eq. (2.7) is also known as the conservative form of the conservation of mass equation. 
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2.2 Conservation of Momentum 

 

The basis of the conservation of linear momentum equation is that the rate of change of linear 

momentum is equal to the total applied force. The linear momentum is the product of the 

density, ߩ, and the velocity vector, ݒԦ , over an arbitrary domain, Ω, and the conservation of 

momentum is defined as the following: 

																																					
ܦ
ݐܦ

න ݀Ω	Ԧݒߩ
ஐ

ൌ න ݀Ω	ሬܾԦߩ
ஐ

൅ න ݀Γ	Ԧݐ
୻

																																																						ሺ2.8ሻ 

where ߩሬܾԦ  is the body forces vector and ݐԦ is the surface traction vector. The left hand side of 

Eq. (2.8) can be derived further using the Reynold’s Transport Theorem as defined in Eq. (2.2) and 

combined with Eq. (2.6): 

																																					
ܦ
ݐܦ

න ݀Ω	Ԧݒߩ
ஐ

ൌ න ቆ
Ԧሻݒߩሺܦ
ݐܦ

൅ ሬሬԦ׏	Ԧݒߩ ∙ Ԧቇݒ 	݀Ω
ஐ

																																																		 

																																					
ܦ
ݐܦ

න ݀Ω	Ԧݒߩ
ஐ

ൌ න ൭ߩ
Ԧݒܦ
ݐܦ

൅ Ԧݒ ൬
ߩܦ
ݐܦ

൅ ሬሬԦ׏	ߩ ∙ Ԧ൰൱ݒ 	݀Ω
ஐ

																											ሺ10ሻ 

 

 

																																					
ܦ
ݐܦ

න ݀Ω	Ԧݒߩ
ஐ

ൌ න ߩ
Ԧݒܦ
ݐܦ

݀Ωቆ൅ݒԦ ൬
ߩܦ
ݐܦ

൅ ሬሬԦ׏	ߩ ∙ 	Ԧ൰ቇݒ
ஐ

																												ሺ2.9ሻ 

Using the Gauss’s divergence theorem, the boundary integral for the surface traction can be 

transformed into the following formulation: 

																																					න ݀Γ	Ԧݐ
୻

ൌ න ሬሬԦ׏ ∙ Ω݀	࣌
ஐ

																																																																														ሺ2.10ሻ 

where ࣌ is the Cauchy stress tensor. By substituting Eq. (2.9) and (2.10) into (2.8) and omitting 

the volume integral because it holds for any sub-domain, the conservation of momentum 

equation becomes: 

ߩ																																														
Ԧݒܦ
ݐܦ

ൌ ሬܾԦߩ	 ൅ ሬሬԦ׏ ∙  ሺ2.11ሻ																																																																													࣌

Eq. (2.11) is expressed in current configuration and includes the material time derivative. This is 

usually used in the solid mechanics problem and it can be expressed in terms of the spatial 

coordinates in the current configuration to give the following formulation: 

ߩ																																														
Ԧݒ߲
ݐ߲

ൌ ሬܾԦߩ	 ൅ ሬሬԦ׏ ∙  ሺ2.12ሻ																																																																													࣌

0, Eq. (4) of conservation of mass
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Eq. (2.12) is known as the updated Lagrangian formulation in non-linear solid mechanics problems. 

Another formulation which is known as the total Lagrangian formulation is obtained by defining the 

momentum equation in the reference configuration using the material coordinates: 

଴ߩ																																														
Ԧݒ߲
ݐ߲

ൌ ଴ߩ	 ሬܾԦ ൅ ሬሬԦ଴׏ ∙  ሺ2.13ሻ																																																																							ࡼ

where the subscript 0 refers to the reference configuration and P  is the first Piola-Kirchhoff stress 

tensor. 

 

The Eulerian formulation of Eq. (2.11) can be obtained by deriving the velocity material time 

derivative using Eq. (2.1): 

ߩ																																														
Ԧݒܦ
ݐܦ

ൌ ߩ	 ቆ
Ԧݒ߲
ݐ߲

൅	ݒԦ ∙ ԦቇݒሬሬԦ׏ ൌ ሬܾԦߩ ൅ ሬሬԦ׏ ∙  ሺ2.14ሻ																																							࣌

Eq. (2.14) is usually used in the fluid mechanics problem. 

 

2.3 Conservation of Energy 

 

For thermomechanical process, the conservation of energy or known as well as the first law of 

thermodynamics states that the power of the internal and kinetic energy is equal to the external 

power and the power supplied by heat sources: 

																																																					ℙ௜௡௧ ൅ ℙ௞௜௡ ൌ ℙ௘௫௧ ൅ ℙ௛௘௔௧																																																					ሺ2.15ሻ 

Each of the powers in Eq. (2.15) can be expanded as follows: 

																												
ܦ
ݐܦ

න ݀Ω	௜௡௧ݓߩ
ஐ

൅	
ܦ
ݐܦ

න
1
2
Ԧݒ	ߩ ⋅ ݀Ω	Ԧݒ

ஐ
																																																													

ൌ න Ԧݒ ⋅ ݀Ω	ሬܾԦ	ߩ
ஐ

൅ න Ԧݒ ⋅ ݀Γ	Ԧݐ
୻

൅ න Ω݀	ݏ	ߩ
ஐ

െ න ሬ݊Ԧ ⋅ ݀Γ	Ԧݍ
୻

																							ሺ2.16ሻ 

where ݓ௜௡௧ is the specific internal energy, ݏ is the heat sources, and ݍԦ is the heat flux. Eq. (2.16) 

can be derived further into Eulerian and Lagrangian partial differential equations and considering 

only mechanical process as follows:  

ߩ																																																											
௜௡௧ݓܦ

ݐܦ
ൌ ࣌	 ∶  ሺ2.17ሻ																																																																			ࢊ

ሶݓ௢ߩ																																																													 ௜௡௧ ൌ ࡼ	 ∶ ሶࡲ ்																																																																	ሺ2.18ሻ 

where ࢊ and ࡲሶ  is the rate of deformation tensor and deformation gradient tensor respectively. 
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3  Computational Fluid Dynamics (CFD) Solver 

3.1  Introduction 

 

The CFD solver used in this thesis is ISIS-CFD flow solver which is developed by Equipe 

Modélisation Numérique (EMN) in Ecole Centrale de Nantes [10]. It is based on the unsteady 

incompressible Reynolds-Averaged Navier Stokes Equations (RANSE) which is discretized using 

the finite volume method to build the spatial discretization of the transport equations. The 

velocity field is obtained from the momentum conservation equations and the pressure field is 

extracted from the mass conservation equation transformed into a pressure-equation. The face-

based method is generalized to two-dimensional or three dimensional unstructured meshes 

where non-overlapping control volumes are bounded by an arbitrary number of constitutive 

faces. 

 

In this thesis the flow regime under investigation is limited to the laminar flow but ISIS-CFD is 

capable to model the turbulent flows using additional transport equations which are discretized 

and solved in the same manner as the momentum conservation equations.   

 

3.1 Governing Equations 

 

The assumptions taken to model the fluid dynamics problem are: 

- Incompressible flow 

- Uniform density 

- Viscous fluid 

- Isothermal condition 

Using index notation, the mass conservation equation for a moving domain is formulated as: 

																							
߲
ݐ߲
න ܸ݀	ߩ ൅	න ௜ݒ൫ߩ െ ௜ݒ

ௗ൯	݊௜	݀ܵ ൌ 0																																																														ሺ3.1ሻ
ௌ௏

 

whereas the momentum conservation equation is formulated as the following: 

߲
ݐ߲
න ܸ݀	௜ݒߩ ൅	න ௜ݒ௝൫ݒߩ െ ௜ݒ

ௗ൯	 ௝݊	݀ܵ ൌ 	න ൫߬௜௝ܫ௝ െ ௜൯ܫ݌
ௌ

	 ௝݊	݀ܵ ൅ න ܸ݀	௜ܾߩ
௏

											ሺ3.2ሻ
ௌ௏
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The fluid domain which is represented by a control volume ܸ is bounded by a surface ܵ which 

moves with a velocity ݒԦௗ and an outward normal vector ሬ݊Ԧ. The pressure and velocity of the flow 

field are represented by ݒԦ and ݌ respectively. The viscous component of the stress tensor and 

body force vector are represented by ߬௜௝ and ܾ௜. ܫ௝ is a vector whose components vanish, except 

for the component ݆ which is equal to unity.  ߬௜௝ for a Newtonian fluid is defined as: 

																					߬௜௝ ൌ ௜௝ܦ	ߤ	2 ൌ 	ߤ ቆ
௜ݒ߲
௝ݔ߲

൅
௝ݒ߲
௜ݔ߲

ቇ																																																																																	ሺ3.3ሻ 

where ܦ௜௝ is the strain rate tensor. 

 

3.2 Finite Volume Discretization 

 

The finite volume method is used to discretize spatially the governing equations. The 

fundamental aspect of a finite volume method lies in the approximation of a volume integration 

of a function ܨ in a domain ܸ by the product of the volume ܸ by the value of the function ܨ at 

the center of the domain ܥ: 

																																																					න ܨ
௏

ܸ݀ ൎ  ሺ3.4ሻ																																																																														஼ܸܨ

For two functions ܨሺݔԦ, ,Ԧݔሺܩ ሻ andݐ  the finite volume ,ܥ ሻ in a control volume ܸ and its centerݐ

approximate the following products: 

																																																					න ܩ	ܨ
௏

ܸ݀ ൎ  ሺ3.5ሻ																																																																					஼ܸܩ஼ܨ

																																																					න
ܨ
௏ܩ
ܸ݀ ൎ

஼ܨ
஼ܩ

ܸ																																																																												ሺ3.6ሻ 

A second order approximation can be achieved if the location of ܥ is at the geometric barycenter 

of the domain. 

 

The finite volume method also requires evaluations of fluxes across the cell faces which means 

surface integrations have to be utilized. All the variables are located at the geometric center of 

cells so values of functions at center of cell faces have to be built from cell-centered values of the 

functions from each side of the cell face.  

 

If the density is uniform and constant, Eq. (2.1) becomes: 
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߲
ݐ߲
න ܸ݀ ൅	න ൫ݒ௜ െ ௜ݒ

ௗ൯	݊௜	݀ܵ ൌ 0																																																																				ሺ3.7ሻ
ௌ௏

 

The following formula has to be imposed for a displacement of a surface bounding a control 

volume: 

																											
߲
ݐ߲
න ܸ݀ െ	න ௜ݒ

ௗ	݊௜	݀ܵ ൌ 0																																																																														ሺ3.8ሻ
ௌ௏

 

With this constraint, finally the mass conservation equation for a moving domain with uniform 

and constant density becomes: 

																															න ܵ݀	݊௜	௜ݒ	 ൌ 0																																																																																																		ሺ3.9ሻ
ௌ

 

and after discretization it becomes: 

																																		෍ݒ௜	 ௜ܵ	
௙

ൌ 0																																																																																																			ሺ3.10ሻ 

For a generic variable ܳ for a cell ॽ with its center ܥ and bounded by an arbitrary number of 

faces ݂, the discretization of the momentum conservation equation is formulated as the 

following: 

																											
߲
߲߬
ሺܸܳߩሻ஼ ൅

߲
ݐ߲
ሺܸܳߩሻ஼ ൅෍൫ܨܥ௙ െ ௙൯ܨܦ

௙

ൌ ൫ܵொ
ॽ൯ ൅෍൫ܵொ

௙൯
௙

														ሺ3.11ሻ 

௙ܨܥ																																											 ൌ ሶ݉ ௙ܳ௙					; ௙ܨܦ					 ൌ ൫Γொ൯௙൫׏
ሬሬԦܳ௙ ∙ ଓ௞ሬሬሬԦ൯ሺܵ௞ሻ௙																										ሺ3.12ሻ 

The terms ܨܥ௙ and ܨܦ௙ are the convective and diffusive fluxes through the face ݂. ܵொ
ॽ is the 

source term of the cell volume and ܵொ
௙ is the source term of the cell face. ߬ is a local fictitious 

time variable and the vector ଓ௞ሬሬሬԦ  is a generic unit vector where ଓଵሬሬԦ = (1, 0, 0). The present of ߬ is to 

enforce the diagonal dominance for the linearized equations that are solved successfully in a non-

coupled way. Γொ is an isotropic or anisotropic diffusion coefficient. 

 

The mass fluxes ሶ݉ ௙ is formulated as the following: 

																																																					 ሶ݉ ௙ ൌ Ԧݒሺߩ െ Ԧௗሻ௙ݒ ∙ Ԧܵ௙																																																																	ሺ3.13ሻ 

																																																							 Ԧܵ௙ ൌ ௙ܵ	 ሬ݊Ԧ௙																																																																																			ሺ3.14ሻ 

where Ԧܵ௙ is the oriented surface vector. 

The temporal derivatives are evaluated by the upwind second-order discretization using the 

following formulation: 
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ܣ߲
ݐ߲

≅ ݁௖ܣ௖ ൅ ݁௣ܣ௣ ൅ ݁௤ܣ௤																																																							ሺ3.15ሻ 

where the superscript ܿ refers to the current time ݐ௖, ݌ is one time step before ݐ௖, and ݍ two 

time steps before ݐ௖. The coefficients (݁௖ , ݁௣, and ݁௤) are obtained from the Taylor series 

expansion from ݐ௖ and depend on a possibly prescribed variable time step law ∆ݐሺݐሻ. 

 

The fictious local time derivative is needed to stabilize the solution procedure for steady flows 

and evaluated as the following: 

																																																												
ܣ߲
߲߬

≅
௖ܣ െ ௖଴ܣ

∆߬
																																																																					ሺ3.16ሻ 

where ܣ௖଴ is the previous estimation of ܣ௖ in the non-linear loop. 

 

The final form of the generic discrete transport equation is the following: 

		൬݁௖ ൅
1
∆߬
൰ ሺܸܳߩሻ஼

௖ ൅෍൫ܨܥ௙ െ ௙൯ܨܦ
௙

																	

ൌ ൫ܵொ
ॽ൯ ൅෍൫ܵொ

௙൯
௙

െ ሺܸ݁ܳߩሻ஼
௣ െ ሺܸ݁ܳߩሻ஼

௤ ൅
ሺܸܳߩሻ஼

௖଴

∆߬
																														ሺ3.17ሻ 

 

In ISIS-CFD, the quantities on the face center can be built using either the centered face 

reconstruction or the upwinded face reconstruction. The upwinded face reconstruction 

numerically more stable and prevents unphysical oscillations with the order of accuracy between 

1 and 2. 

 

The computation of the gradient in a cell uses either the Weighted Least-Square and Gauss method 

in ISIS-CFD. For the pressure equation, the pseudo-physical Rhie & Chow mass flux 

reconstruction is used to avoid the chequerboard oscillations.  

 

The computation algorithm used in ISIS-CFD is similar to the Semi-Implicit Method for Pressure-

Linked Equations (SIMPLE) algorithm which solved a segregated decoupled momentum and 

pressure equations. The linear systems resulting from the momentum and pressure equations are 

solved with the help of iterative linear solvers. 

 

The computation algorithm can be summarized as the following: 

1. Initialization of quantities ܣ଴ at ݐ ൌ  ଴ݐ
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2. New time step ݐ ൌ ݐ ൅  ݐ∆

3. Start the non-linear loop 

4. If needed, compute turbulence fields from ܣ଴  

5. Solve the discretized momentum equations to obtain a new prediction of the velocities 

6. Solve the pressure equation to obtain a new pressure field 

7. Update the velocity fluxes and correct the velocity components with new pressure field 

8. If the non-linear residuals are still above the tolerance, update the non-linear fields and 

return to step 4 

9. Go to step 2 and update the time 

 

3.3 Numerical Example 

 

This section presents a CFD simulation example of an unsteady two dimensional flow pass a 

square cylinder based on the work of [17] for the unsteady case with a blockage ratio of 1/8 and 

several Reynolds’ number, Re, of 75, 100, 150, and 200. The simulation set up is depicted in 

Figure 3.1 with the fluid dynamic viscosity of 1.0 Pa s, the time step of 0.01 s, and the fluid 

density varied from 75, 100, 150, and 200 kg/m3 to obtain the corresponding Reynolds’ number 

where it is based on the cylinder diameter, D of 1 m, and the maximum flow velocity of the 

parabolic inflow profile, ܷ௠௔௫ of 1 m/s. 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.1 Simulation set up for the two dimensional flow pass a square cylinder  
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The parabolic velocity profile is defined with the following equation: 

																																																ܷஶሺݕሻ ൌ ܷ௠௔௫
ܪሺݕ െ ሻݕ
ሺܪ 2⁄ ሻଶ

																																																														 ሺ3.18ሻ 

where ܪ is the channel height. 

 

The fluid mesh is shown in Figure 3.2 where it has 17,380 cells and 36,426 nodes. Specific 

refinements are applied to regions close to the cylinder body and on the top and bottom wall to 

capture the boundary layer phenomena as the boundary conditions are ‘no slip’ for those regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 (a) Full view of the fluid mesh (b) Zoomed view on the square cylinder body 

 

Figure 3.3 and 3.4 show the streamlines and pressure for Reynolds number of 100 and 200 

respectively at three different times when the lift force reaches the minimum, maximum, and 

then minimum amplitude again. Figure 3.5 compares the lift coefficient, CL , of each Reynolds 

number and it shows that the oscillation of the lift occurs earlier with higher amplitude when the 

Reynolds number increased. An important parameter to be analyzed is the Strouhal number 

defined as follows: 

(a)

(b)
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ݐܵ																																																																						 ൌ
ܦ	݂
ܷ௠௔௫

																																																																			ሺ3.19ሻ 

where ݂ is the measured frequency of the vortex shedding which is determined by using the Fast 

Fourier Transform (FFT) analysis of the time series of the lift coefficient. Figure 3.6 shows the 

results of Strouhal number and average drag coefficient, CD , against the Reynolds number which 

agrees well with the result in [17] as shown in Figure 3.7. As explained in [17] the increase and 

decrease of the Strouhal number is due to the fact that when the Reynolds number increases the 

initial separation point moves from the trailing edge to the leading edge and this in turn change 

the frequency of the vortex shedding.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 Streamlines and pressure contour plots for Re = 100 at (a) t = 401 s (b) t = 405 s  

(c) t = 408 s 

(a)

(b)

(c)
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Figure 3.4 Streamlines and pressure contour plots for Re = 200 at (a) t = 284 s (b) t = 287 s  

(c) t = 291 s 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a)

(b)

(c)
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Figure 3.5 Lift coefficient from different Reynolds number 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 (a) Strouhal number vs Reynolds number (b) Average CD vs Reynolds number   
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Figure 3.7 Results from [17] (a) Strouhal number vs Reynolds number (b) Average CD vs Reynolds 

number (c) Streamlines for Re = 200  
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4  Computational Structure Dynamics (CSD) Solver 

4.1  Introduction 

 

The CSD solver used in this thesis is Zorglib CSD solver developed by Prof. Laurent Stainier in 

Institut de Recherche en Genie Civil et Mecanique (GeM), Ecole Centrale de Nantes. Zorglib is 

currently used to develop and test new constitutive models and algorithms in computational 

solid mechanics. It contains a library of various constitutive models, discrete formulations, and 

time-integration algorithms for coupled problems in general. It is based on object oriented 

modular software architecture to provide flexibility and compatibility with external software 

where for instance a constitutive model library can be plugged into other solvers. The algorithms 

available in Zorglib can be used for discrete systems of implicit or explicit dynamics and non-

linear quasi-stationary problems. The finite element formulations are mostly for volume elements 

but also for linear shells and mixed boundary conditions. The constitutive models available in 

Zorglib are: 

 Small and finite strain elasticity 

 Visco-elasticity 

 Visco-plasticity 

 Damage model 

 Thermo-mechanical model 

 

4.2  Governing Equations 

 

In the case of pure mechanical problem, the Zorglib solver uses finite element method to 

discretize the following linear momentum equation which if expressed in the current 

configuration using the material coordinates: 

	ߩ																																																						
߲ଶݑ௜
ݐ߲

ൌ
௜௝ߪ߲
௝ݔ߲

൅ ߩ ௜݂
௕																																																																			ሺ4.1ሻ 

where ݑ௜ is the displacement vector, ߪ௜௝ is the Cauchy stress tensor, ߩ is the density, and ௜݂
௕ is 

the body force vector. For stationary problems where the inertial effect can be neglected, the 
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acceleration term 
డమ௨೔
డ௧

 can be neglected. A proper constitutive equation, which relates the stress 

and strain, needs to be defined to complete the problem definition. The constitutive equation 

depends on the material behavior under consideration.    

 

4.3  Linear Elasticity  

 

In linear elasticity model, the assumption taken is that materials undergo small deformation when 

subjected to applied forces and when the forces are removed the materials will return to their 

initial shapes. This implies that the current stress at a point depends only of the current strain at 

the point and not the past history of strain rates at the point [1]. The strain is assumed to be 

infinitesimal and related to the stress by the following generalized Hooke’s law formulation: 	

௜௝ߪ																																																										 ൌ ԧ௜௝௞௟	ߝ௜௝																																																																													ሺ4.2ሻ 

where ߪ௜௝ is the Cauchy stress tensor, 	ߝ௜௝ is the infinitesimal strain tensor, and ԧ௜௝௞௟ is well 

known to be the fourth order Hooke’s tensor and due to symmetries can be represented by 21 

scalar components. This results in the representation of Hooke’s tensor by 6 x 6 symmetric 

tensor and often called the stiffness tensor. The expanded form of Eq. (4.2) is the following: 

																																			

ە
ۖ
۔

ۖ
ۓ

		

ଵଵߪ
ଶଶߪ
ଷଷߪ
ଶଷߪ
ଵଷߪ
ଵଶߪ

		

ۙ
ۖ
ۘ

ۖ
ۗ

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

		

ଵ଺ܥ		ଵହܥ		ଵସܥ		ଵଷܥ		ଵଶܥ		ଵଵܥ
ଶ଺ܥ		ଶହܥ		ଶସܥ		ଶଷܥ		ଶଶܥ									
ଷ଺ܥ		ଷହܥ		ଷସܥ		ଷଷܥ																	
ସ଺ܥ		ସହܥ		ସସܥ										.݉ݕݏ						
ହ଺ܥ		ହହܥ																																		
଺଺ܥ																																										

		

ے
ۑ
ۑ
ۑ
ۑ
ې

	

ە
ۖ
۔

ۖ
ۓ

		

ଵଵߝ
ଶଶߝ
ଷଷߝ
ଶଷߝ2
ଵଷߝ2
ଵଶߝ2

		

ۙ
ۖ
ۘ

ۖ
ۗ

																										ሺ4.3ሻ 

The above formulation takes into account the anisotropy property of the material where its 

properties are not the same in all the three principal directions. In the case of isotropic material 

the properties are assumed to be the same in all directions so ԧ࢒࢑࢐࢏ can be simplified as: 

																																																		ԧ௜௝௞௟ ൌ ௞௟ߜ௜௝ߜߣ ൅ ௝௟ߜ௜௞ߜ൫ߤ ൅  ሺ4.4ሻ																																												௝௞൯ߜ௜௟ߜ

where ߣ and ߤ are called the Lamé constants and in practice are represented by the following 

constants that can be measured physically: 

ߤ																																																									 ൌ
ܧ

2ሺ1 ൅ ߭ሻ
																																																																														ሺ4.5ሻ 

ߣ																																																									 ൌ
ܧ	߭

ሺ1 ൅ ߭ሻሺ1 െ 2߭ሻ
																																																																ሺ4.6ሻ 
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where ܧ is the Young’s modulus and  ߭ is the Poisson’s ratio. Using these two constants, the 

expanded form of Eq. (4.2) for isotropic materials can be formulated as: 

				

ە
ۖ
۔

ۖ
ۓ

		

ଵଵߪ
ଶଶߪ
ଷଷߪ
ଶଷߪ
ଵଷߪ
ଵଶߪ

		

ۙ
ۖ
ۘ

ۖ
ۗ

ൌ ா

ሺଵାజሻሺଵିଶజሻ
		

ۏ
ێ
ێ
ێ
ێ
ۍ
1 െ ߭

		

߭
1 െ ߭

		.݉ݕݏ

߭
߭

1 െ ߭
		

0
0
0

1 െ 2߭
		

0
0
0
0

1 െ 2߭

		

0
0
0
0
0

1 െ ے2߭
ۑ
ۑ
ۑ
ۑ
ې

	

ە
ۖ
۔

ۖ
ۓ

		

ଵଵߝ
ଶଶߝ
ଷଷߝ
ଶଷߝ
ଵଷߝ
ଵଶߝ

		

ۙ
ۖ
ۘ

ۖ
ۗ

											ሺ4.7ሻ    

 

4.4  Hyperelasticity 

 

The knowledge of hyperelasticity in this section is synthesized from [2]. When the material 

deformation is considered to be large but still able to return to its initial shape after the applied 

forces are removed, the linear elasticity model cannot be used anymore. Instead a hyperelastic 

material behavior has to be enforced. In the context of hyperelasticity, the strain is a finite strain 

and in Lagrangian description can defined as the Green-Lagrange strain tensor:  

ࡱ																																																													 ൌ
1
2
ሺ்ࡲ ∙ ࡲ െ 	ሺ4.8ሻ																																																																	ሻࡵ

ࡲ																																																													 ൌ
߲࢞
ࢄ߲

																																																																																				ሺ4.9ሻ 

where ࡲ is the deformation gradient tensor which transform the vector in the reference 

configuration ࢄ to its corresponding current configuration ࢞. It is also necessary to introduce the 

following definitions: 

࡯																																																													 ൌ  ሺ4.10ሻ																																																																																ࡲ்ࡲ

࢈																																																													 ൌ  ሺ4.11ሻ																																																																															்ࡲ	ࡲ

ܬ																																																														 ൌ ࡲ	ݐ݁݀ ൌ ሺ݀݁ݐ	࡯	ሻ૚/૛																																																			ሺ4.12ሻ 

ࡼ																																																													 ൌ ଵିࡲ	ܬ ∙  ሺ4.13ሻ																																																																								࣌

ࡿ																																																														 ൌ ࡼ ∙ ଵିࡲ	ܬ்ିࡲ ∙ ࣌ ∙  ሺ4.14ሻ																																															்ିࡲ

࣌																																																														 ൌ ࡲଵିܬ ∙ ࡼ ൌ ࡲଵିܬ ∙ ࡿ ∙  ሺ4.15ሻ																																											்ࡲ

where ࡯ is the right Cauchy-Green deformation tensor, ࢈ is the left Cauchy-Green deformation 

tensor, ܬ is the Jacobian, ࡼ is the first Piola-Kirchhoff stress tensor, ࡿ is the second Piola-Kirchhoff stress 

tensor, and ࣌ is the Cauchy stress tensor. To derive the constitutive strain-stress relation of 

hyperelastic materials, firstly it is defined that a strain energy function of hyperelastic materials, 

શ, is related to the Piola-Kirchhoff stresses using the following formulas: 

ܬ ൌ ݐ݁݀ ࡲ ൌ ሺ݀݁ݐ ࡯ ሻ૚/૛ 

ࡼ ൌ ܬ ଵିࡲ ∙  ࣌

ࡿ ൌ ࡼ ∙ ்ିࡲ ൌ ܬ ଵିࡲ ∙ ࣌ ∙  ்ିࡲ

࣌ ൌ ࡲଵିܬ ∙ ࡼ ൌ ࡲଵିܬ ∙ ࡿ ∙  ்ࡲ
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,ሻࢄሺࡲሺࡼ																																												 ሻࢄ ൌ
߲શሺࡲሺࢄሻ, ሻࢄ

ࡲ߲
																																																													ሺ4.16ሻ 

  	

,ሻࢄሺ࡯ሺࡿ																																													 ሻࢄ ൌ 2
߲શሺ࡯ሺࢄሻ, ሻࢄ

࡯߲
	ൌ

߲શሺ࡯ሺࢄሻ, ሻࢄ

ࡱ߲
																										ሺ4.17ሻ	

 

For isotropic hyperelasticity, શ is only a function of the invariants of ࡯: 

																																																								શሺ࡯ሻ ൌ શሺܫ૚, ,૛ܫ  ሺ4.18ሻ																																																															૜ሻܫ

૚ܫ																																																															 ൌ tr	࡯																																																																														ሺ4.19ሻ 

૛ܫ																																																															 ൌ ሺݎݐ	࡯ሻ	࡯																																																																						ሺ4.20ሻ 

૜ܫ																																																															 ൌ det ࡯ ൌ  ሺ4.21ሻ																																																																		૛ܬ

and using this constraint, the second Piola-Kirchhoff stress tensor now can be formulated as: 

ࡿ																																													 ൌ 2
߲શ
࡯߲

	ൌ 2
߲શ
૚ܫ߲

ࡵ	 ൅ 4
߲શ
૛ܫ߲

࡯	 ൅ ૛ܬ2
߲શ
૜ܫ߲

 ሺ4.22ሻ																												૚ି࡯

A particular hyperelastic material model that will be used in the current fluid-structure interaction 

simulation is the compressible Neo-Hookean material model. The strain energy function for this 

material model is defined as:                                                  c 	

																																												શ ൌ
ߤ
2
ሺܫ૚ െ 3ሻ െ ߤ ln ܬ ൅

ߣ
2
ሺln  																																																														ሻ૛ܬ

																																																	ൌ
ߤ
2
ሺܫ૚ െ 3ሻ െ ߤ ln ଷܫ

ଵ
ଶൗ ൅

ߣ
2
൬ln ଷܫ

ଵ
ଶൗ ൰

૛

																																						ሺ4.23ሻ 

where ߣ and ߤ are Lamé constants as defined the linear elasticity model. Using Eq. (4.22) the second 

Piola-Kirchhoff stress tensor for Neo-Hookean material model is defined as:   5444444444444444444 	

ࡿ																																			 ൌ 2
߲શ
૚ܫ߲

ࡵ	 ൅ 4
߲શ
૛ܫ߲

࡯	 ൅ ૛ܬ2
߲શ
૜ܫ߲

 																																																																			૚ି࡯

																																						ൌ ࡵ	ߤ ൅ ૚ି࡯	૜ܫ	2 ቌ
ߣ ln ଷܫ

ଵ
ଶൗ

૜ܫ2
െ

ߤ
૜ܫ2

ቍ																																																																				 

																																						ൌ ࡵሺߤ െ ૚ሻି࡯ ൅ ߣ ln ଷܫ
ଵ
ଶൗ ૚ି࡯ ൌ ࡵሺߤ െ ૚ሻି࡯ ൅ ߣ ሺln ሻܬ  ሺ4.24ሻ												૚ି࡯

The Cauchy stress tensor for the Neo-Hookean material model can be obtained by combining Eq. 

(4.24) and (4.15): 

࣌																																																		 ൌ
ߤ
ܬ
ሺ࢈ െ ሻࡵ ൅

ߣ
ܬ
ሺln ሻܬ  ሺ4.25ሻ																																																													ࡵ
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4.5  Finite Element Discretization 

 

This section is synthesized from [3] and [4]. The finite element formulation is derived by 

developing the weak form of Eq. (4.1).  from the principle of virtual work which states that the 

virtual kinetic work plus the external virtual work is equal to the internal virtual work: 

ߜ																																									 ௞ܹ௜௡௘௧௜௖ ൅ ߜ ௜ܹ௡௧௘௥௡௔௟ ൌ ߜ ௘ܹ௫௧௘௥௡௔௟																																																ሺ4.26ሻ 

For infinitesimal strain, Eq. (4.26) is expanded as follows: 

										න 	ߩ	ࢀ࢛ߜ
߲ଶ࢛
ࢂݐ߲

ܸ݀ ൅	න ࣌ ∶ ܸ݀	ࢿߜ ൌ න ܸ݀࢈ࢌ	ߩ	ࢀ࢛ߜ ൅
ࢂ

න ࢙࢚ܵ݀	ࢀ࢛ߜ
ࢂࡿ

																	ሺ4.27ሻ 

 

where ࢛ߜ is the virtual displacement vector, ࢿߜ is the virtual strain tensor, ࢈ࢌ is the body force 

vector, and ࢙࢚ is the surface traction vector. By imposing the equilibrium equations of the 

principal of virtual work to each element and assemble it for the all the finite elements, the 

following formula is obtained for linear elasticity finite element formulation: 

																										൥෍න ௘ࡺ௘்ࡺ	௘ߩ
ࢇ

೐ࢂ
ܸ݀௘

௘

൩ ሷ෡࢛ 		൅ 	൥෍න ௘࡮	ࢋԧ	்ࢋ࡮
ࢇ

ࢋࢂ
ܸ݀௘

ࢋ

൩	࢛ෝ

ൌ෍න ࢈ࢌ	௘்ࡺ	௘ߩ
௘
	

ࢇ

೐ࢂ
ܸ݀௘

௘

൅෍න 	௦௘࢚	௘்ࡺ
ࢇ

೐ࡿ
݀ܵ௘

௘

																																							ሺ4.28ሻ 

 

where ࡺ௘ is the element displacement interpolation matrix, ࡮௘ is the element strain-

displacement matrix, ࢛ෝ	 is the nodal displacement vector, and ࢛ሷ෡ is the nodal acceleration vector.   

 

In the case of hyperelasticity, the definition is slightly different because the state of the domain 

configuration has to be taken into account. Using the Total Lagrangian Formulation, the final form 

of the discretized virtual work balance is the following: 

																									൥෍න ௘ࡺ௘்ࡺ	଴ߩ

௏బ
೐

݀ ଴ܸ
௘

௘

൩ ሷ෡࢛ ൅෍න
௘்ࡺ߲

ࢄ߲
ࡼ	

௏బ
೐

݀ ଴ܸ
௘

௘

																																									

ൌ ෍න ௕ࢌ	௘்ࡺ	଴ߩ
௘
	

௏బ
೐

݀ ଴ܸ
௘

௘

൅෍න 	௦௘࢚	௘்ࡺ
ௌబ
೐

݀ܵ଴
௘

௘

																																							ሺ4.29ሻ 

where the subscript 0 refers to the reference configuration and ࢄ is the material coordinates. The 

two formulations above can be simplified into structural dynamics finite element formulation 

without velocity-dependent damping forces as the following: 
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ሷ෡࢛	ࡹ																																																		 ൅ Ϝ	࢚࢔࢏ ൌ Ϝ	࢚࢞ࢋ																																																																								ሺ4.30ሻ 

where ࡹ is the mass matrix, Ϝ	࢚࢞ࢋ is the externally applied force vector, and Ϝ	࢚࢔࢏ is the internal 

force vector. For linear elasticity the resulting system of equations is linear whereas in the case of 

hyperelasticity is non-linear. 

 

4.5  Two-dimensional Plane Stress and Plane Strain Elements 

 

In the subsequent two-dimensional finite element analysis, either the plane strain or plane stress 

states will be used. In the plane strain state, it is assumed that the solid body is long enough in 

the third direction so that the displacement and strain components in that direction can be 

omitted. In other words, in a linear elastic case: 

ଷଷߝ																																																		 ൌ ଵଷߝ	 ൌ ଶଷߝ	 ൌ 0																																																																				ሺ4.31ሻ 

																																൝
ଵଵߪ
ଶଶߪ
ଵଶߪ

ൡ ൌ
ܧ

ሺ1 ൅ ߭ሻሺ1 െ 2߭ሻ
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߭
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1߭߭
1 െ ߭
0

					
0
0

1 െ 2߭
൩	൝
ଵଵߝ
ଶଶߝ
ଵଶߝ

ൡ																				ሺ4.32ሻ 

In the case of plane stress state, it is assumed that the strain and stress are uniform through the 

midplane of the body and the normal and shear stress components in the third direction can be 

omitted: 

ଷଷߪ																																																		 ൌ ଵଷߪ	 ൌ ଶଷߪ	 ൌ 0																																																																			ሺ4.33ሻ 

																																൝
ଵଵߪ
ଶଶߪ
ଵଶߪ

ൡ ൌ
ܧ

1 െ ߭ଶ
		൥
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߭
0
			
1߭߭
1
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0
0

1 െ ߭
൩	൝
ଵଵߝ
ଶଶߝ
ଵଶߝ

ൡ																																																					ሺ4.34ሻ 

 

4.6 Generalized- Time Integration Method 

 

This section is synthesized from [5]. The time integration used for the uncoupled structural 

dynamics and coupled fluid-structure simulations in Zorglib is the implicit Generalized- method. 

This method is a one-step, three-stage time integration algorithms that optimizes the high and 

low frequency dissipation which is controlled by a set of constants. Depending on the proper 

selection of constants, this method can recover the Newmark family of time integration 

algorithms. 

 

It is a one-step method because the solution at time tn+1 depends only on the solution at time tn 

and the three-stage refers to the fact that the method obtains three solution vectors i.e. 
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displacement, velocity, and acceleration vectors. The problem of structural dynamics can be 

formulated as the following: 

ሷ࢛	ࡹ																																													 ൅ ሶ࢛࡯ ൅ ࢛ࡷ ൌ Ϝ	࢚࢞ࢋ																																																																				ሺ4.35ሻ 

where ࡯ ,ࡹ, and ࡷ are the mass, damping, and stiffness matrix respectively. ࢛ሷ ሶ࢛ , , and ࢛ are the 

acceleration, velocity, and displacement vectors respectively. Ϝ	࢚࢞ࢋ is the applied external force 

vector which depends on time. The formulation of the Generalized- method is the following:  	

௡ାଵ࢛																																 ൌ ௡࢛ ൅ ሶ࢛	ݐ∆ ௡ ൅ ૛ݐ∆ ቆ൬
1
2
െ ሷ࢛൰ߚ ௡ ൅ ሷ࢛	ߚ ௡ାଵቇ																														ሺ4.36ሻ 

ሶ࢛																																 ௡ାଵ ൌ ሶ࢛ ௡ ൅ 	ݐ∆ ቆ൬
1
2
െ ሷ࢛൰ߛ ௡ ൅ ሷ࢛	ߛ ௡ାଵቇ																																																ሺ4.37ሻ 

ሷ࢛	ࡹ																						 ௡ାଵିఈ೘ ൅ ሶ࢛	࡯	 ௡ାଵିఈ೑ ൅ ௡ାଵିఈ೑࢛	ࡷ 	ൌ Ϝ࢚࢞ࢋ ቀݐ௡ାଵିఈ೑ቁ																											ሺ4.38ሻ 

 

and for the definition of the three solution vectors and time with alpha parameters: 

௡ାଵିఈ೑࢛																																							 ൌ ൫1 െ ௡ାଵ࢛	௙൯ߙ ൅  ሺ4.39ሻ																																																						௡࢛	௙ߙ

ሶ࢛																																							 ௡ାଵିఈ೑ ൌ ൫1 െ ሶ࢛	௙൯ߙ ௡ାଵ ൅ ሶ࢛	௙ߙ ௡																																																						ሺ4.40ሻ 

ሷ࢛																																						 ௡ାଵିఈ೘ ൌ ሺ1 െ ሷ࢛	௠ሻߙ ௡ାଵ ൅ ሷ࢛	௠ߙ ௡																																																				ሺ4.41ሻ 

௡ାଵିఈ೑ݐ																																								 ൌ ൫1 െ ௡ାଵݐ	௙൯ߙ ൅  ሺ4.42ሻ																																																									௡ݐ	௙ߙ

The initial conditions are defined as: 

଴࢛																																																																		 ൌ  ሺ4.43ሻ																																																																								ሺ0ሻ࢛

ሶ࢛																																																																		 ଴ ൌ ሶ࢛ ሺ0ሻ																																																																								ሺ4.44ሻ 

ሷ࢛																																											 ଴ ൌ ሺ0ሻ࢚࢞ࢋଵ൫Ϝିࡹ െ ሶ࢛	࡯ ሺ0ሻ െ  ሺ4.45ሻ																																								ሺ0ሻ൯࢛	ࡷ

As can be seen from the above formulations if the alpha parameters ߙ௙ ൌ ௠ߙ ൌ 0, the 

Trapezoidal Newmark method is recovered. If ߙ௠ ൌ 0, the Hilbert Hughes Taylor -  (HHT-) 

method is recovered, and lastly if ߙ௙ ൌ 0, the Wood Bossak Zienkiewiecz -  (WBZ- ) method 

is recovered. 

 

The Generalized- method is second-order accurate and achieves optimal high-frequency 

dissipation when: 

ߛ																																																						 ൌ
1
2
െ ௠ߙ ൅  ሺ4.46ሻ																																																																								௙ߙ

ߚ																																																						 ൌ
1
4
൫1 െ ௠ߙ ൅ ௙൯ߙ

ଶ
																																																														ሺ4.47ሻ 
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An optimal low-frequency dissipation is obtained when: 

௠ߙ																																																						 ൌ
ஶߩ2 െ 1
ஶߩ ൅ 1

																																																																											ሺ4.48ሻ 

 

௙ߙ																																																								 ൌ
ஶߩ

ஶߩ ൅ 1
																																																																													ሺ4.49ሻ 

where ߩஶ is the spectral radius with a range of [0, 1]. 

 

4.7 Newton-Raphson Nonlinear Solver 

 

This section is synthesized from [3]. To solve the hyperelasticity problem, a nonlinear system of 

equations is solved using Newton-Raphson iterative solver in Zorglib at time t + ∆t using the 

following formulation in terms of the computational residual vector: 

௡ାଵࡾ																																																	 ൌ ሷ࢛	ࡹ	 ௡ାଵ ൅ Ϝ௡ାଵ
	௜௡௧ െ Ϝ௡ାଵ

	௘௫௧ 																																																	ሺ4.50ሻ 

௡ାଵࡾ																																																	
௜ ൌ ௡ାଵࡾ

௜ିଵ ൅
௡ାଵࡾ߲
௡ାଵ࢛߲

ฬ
௜ିଵ

௡ାଵ࢛∆
௜ ൌ ૙																																					ሺ4.51ሻ 

௡ାଵࡷ																																																							
் ௜ିଵ

௡ାଵ࢛∆		
௜ ൌ െ	ࡾ௡ାଵ

௜ିଵ 																																																					ሺ4.52ሻ 

௡ାଵ࢛∆																																																									
௜ ൌ ௡ାଵ࢛	

௜ െ ௡ାଵ࢛
௜ିଵ 																																																										ሺ4.53ሻ 

௡ାଵ࢛																																																																						
଴ ൌ ௡࢛ 																																																																			ሺ4.54ሻ 

where ்ࡷ is the tangent stiffness matrix and the solution at iteration i – 1 is known. The 

objective is to iterate until the residual is less or equal to a specified tolerance. The formulation 

of the tangent stiffness matrix is a sort of linearization of the balance and constitutive equation.   

 

4.8 Mesh Sensitivity Analysis 

 

It is important to perform a mesh sensitivity analysis to check the convergence of the finite 

element analysis compared to an analytical solution in order to ensure that the element type and 

size chosen will produce sufficiently converged results in the FSI simulation. The sensitivity 

analysis is performed on four different elements i.e. linear triangle (three nodes element), 

quadratic triangle (six nodes element), linear quadrilateral (four nodes element), and quadratic 
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quadrilateral (nine nodes element). Three different mesh sizes are analysed for each element. The 

solid mesh is generated using GMSH software [11]. 

 

An analytical solution of the deflection of a cantilever beam is chosen in the following sensitivity 

analysis because the FSI simulations will be performed on a cantilever solid body. It is well 

known in many Mechanics of Materials textbook that an analytical solution of the deflection of a 

cantilever beam is formulated in the following way (see Figure 4.1): 

 

																																																										ܸሺݔሻ ൌ
ଶݔݍ

ܫܧ24
	ሾ࢞૛ ൅ 6݈ଶ െ  ሺ4.55ሻ																																										ሿݔ4݈

௠௔௫ߜ																																																																								 ൌ
ସ݈ݍ

ܫܧ8
																																																															ሺ4.56ሻ 

ܫ																																																																									 ൌ
ܾ݄ଷ

12
																																																																					ሺ4.57ሻ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 (a) The deflection of a cantilever beam (b) The cross-sectional area of the beam 
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where ܸ is the deflection of the beam as a function of the coordinate in ݔ direction, ݍ is the 

uniformly distributed load, ݈ is the length of the beam,  ܧ is the Young’s modulus, and ܫ is the 

area moment of inertia. 

 

The finite element simulation setup in Zorglib and the dimension are the following: 

 Two-dimensional static analysis 

 Isotropic elastic material;  E	= 3.5 E+6 MPa;  0.32 = ߥ 

 Plane stress assumption (thickness = b = 1.0 m) 

 ݍ ൌ 10	ܰ/݉ 

 l	ൌ	1m;	h	ൌ	0.01	m 

 

Figure 4.2 and 4.3 compare the analytical and finite element results of the deflection between 

the different elements and mesh sizes. For the finite element results, the deflection values 

showed are the displacement in the ݕ direction. Table 4.1 and 4.2 summarize the comparison in 

details in terms of the number of nodes, relative error, and the CPU time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Deflection results of triangle elements for a particular mesh size and element order 

compared to the analytical solution of a cantilever beam 
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Figure 4.3 Deflection results of quadrilateral elements for a particular mesh size and element 

order compared to the analytical solution of a cantilever beam 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 Comparison of the number of nodes, relative error of the tip displacement, and CPU 

time between triangle elements with different mesh size and element order 
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 Nnodes Relative Error CPU Time (s) 

Linear Triangle, h = 0.02 100 0.876 0.01 

Linear Triangle, h = 0.01 299 0.413 0.01 

Linear Triangle, h = 0.005 600 0.345 0.02 

Quadratic Triangle, h = 0.02 297 2.19 E-3 0.06 

Quadratic Triangle, h = 0.01 993 5.14 E-4 4.62 

Quadratic Triangle, h = 0.005 1997 6.45 E-4 36.9 
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Table 4.2 Comparison of the number of nodes, relative error of the tip displacement, and CPU 

time between quadrilateral elements with different mesh size and element order 

 

 

In Figure 4.4, the relative errors of each element are plotted against the number of nodes in a 

log-log scale. The quadratic elements consistently produce lower relative error compared to the 

linear. The triangle elements produce higher relative error compared to the quadrilateral elements 

of the same order. The number of nodes and CPU time of the triangle elements are considerably 

higher as well in particular when h > 0.02. Figure 4.5 shows the displacement and Von Mises 

contour plots of the computation using the quadratic quadrilateral with h = 0.01. 

 

In the following simulations the quadratic quadrilateral elements will be used for the CSD solver 

to ensure that the convergence of the CSD results can be achieved sufficiently.  

 

 

 

 

 

 

 

 

 

 

 

 Nnodes Relative Error CPU Time (s) 

Linear Quadrilateral, h = 0.02 102 0.620 0.01 

Linear Quadrilateral, h = 0.01 202 0.330 0.02 

Linear Quadrilateral, h = 0.005 402 0.173 0.18 

Quadratic Quadrilateral, h = 0.02 303 9.88 E-4 0.13 

Quadratic Quadrilateral, h = 0.01 603 4.93 E-4 0.71 

Quadratic Quadrilateral, h = 0.005 1203 2.97 E-4 4.88 
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Figure 4.4 Relative error of the tip displacements for all the elements 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 (a) Displacement (m) contour plot of the quadratic quadrilateral with h = 0.01 (b) 

Von Mises stress (Pa) contour plot of the quadratic quadrilateral with h = 0.01 
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4.9 Numerical Tests 

 

To test the CSD solver, the CSM benchmark tests performed by [12] is referred to. The CSM 

tests are performed to validate the solid solver as part of the two-dimensional FSI benchmarking 

on incompressible laminar flow of Newtonian fluid and compressible hyperelastic solid. The 

solid domain is depicted in Figure 4.6 in grey colour and it is attached to a fixed cylinder. This is 

similar to the cantilever beam case but now the applied load is a gravitational force per unit 

length distributed equally on each nodes,  ௚݂ሬሬሬԦ= (0,  
ఘ஺௚

ே೙೚೏೐ೞ
) [N/m]. 

 

 

 

 

 

 

Figure 4.6 CSM test solid domain 

 

There are three tests which are performed, namely CSM1, CSM2, and CSM3, using the following 

parameters: 

 

 

 

   

 

 

 

 

 

 

 

Table 4.3 Parameters for the CSM tests 

 

 CSM1 CSM2 CSM3 

Density, ߩ ሺ݇݃/݉ଷሻ 1.0 E+3 1.0 E+3 1.0 E+3 

Poisson’s ratio, 0.4 0.4 0.4 ߥ 

Young’s Modulus, ܧ	ሺܲܽሻ 1.4 E+6 5.6 E+6 1.4 E+6 

Gravity, ݃ ሺ݉/ݏଶሻ 2 2 2 

Finite Element Analysis Static Static Dynamic 

Constitutive Model Neohookean Neohookean Neohookean 

2D Assumption Plane Strain Plane Strain Plane Strain 

Time Integrator - - Trapezoidal Newmark 

Time step size (s) - - 0.01 
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The simulations use the quadratic quadrilateral element with two different meshes, A and B, 

where A has 2 x 25 elements and B has 2 x 50 elements. Table 4.4 summarizes the results of the 

CSM tests and compared to the results obtained by [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4 Results of the CSM tests 

 

The results differences between mesh A and B are not significant and both results agree quite 

well with the results from [12]. The small discrepancies with [12] are most likely due to the fact 

that the constitutive model used is not the same where in [12] the constitutive model used is St. 

Venant-Kirchhoff model. The tip displacement and Fast Fourier Transform (FFT) results for CSM3 of 

mesh A are shown in Figure 4.7 and 4.8. Figure 4.9 compare the tip displacements of mesh A 

and mesh B. Figure 4.10 shows the displacements and stresses contour plots of mesh A when 

the solid body starts to deform until it reaches the maximum deformation.  

 

 

 

 

 

 

 

 

 CSM1 CSM2 CSM3 

Tip	Displacement,	dx (m)    

  A (2 x 25 elements) -7.177 E-3 -4.684 E-4 -1.457 E-2 ± 1.457 E-2 

  B  (2 x 50 elements) -7.177 E-3 -4.684 E-4 -1.460 E-2 ± 1.460 E-2 

  Turek & Hron (2006) -7.187 E-3 -4.690 E-4 -1.430 E-2 ± 1.430 E-2 

Tip	Displacement,	dy (m)    

  A (2 x 25 elements) -6.610 E-2 -1.698 E-2 -6.397 E-2 ± 6.561 E-2 

  B  (2 x 50 elements) -6.616 E-2 -1.699 E-2 -6.400 E-2 ± 6.573 E-2 

  Turek & Hron (2006) -6.610 E-2 -1.697 E-2 -6.360 E-2 ± 6.516 E-2 

Frequency (Hz)    

  A (2 x 25 elements) - - 1.0742 

  B  (2 x 50 elements) - - 1.0742 

  Turek & Hron (2006) - - 1.0995 
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Figure 4.7 (a) & (b) Tip displacement of mesh A in the ݔ direction (c) FFT result of the tip 

displacement evolution with the dominant frequency of 1.0742 Hz    
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Figure 4.8 (a) & (b) Tip displacement of element mesh A in the ݕ direction (c) FFT result of 

the tip displacement evolution with the dominant frequency of 1.0742 Hz    
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Figure 4.9 (a) Comparison of tip displacement in the ݔ direction between mesh A and B  

(b) Comparison of tip displacement in the ݕ direction between mesh A and B   
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Figure 4.10 (a) Displacement (m) and Von Mises stress (Pa) contour plots of mesh A at t = 9.11 

s (b) Displacement (m) and Von Mises stress (Pa) contour plots of mesh A at t = 9.36 s  

(c) Displacement (m) and Von Mises stress (Pa) contour plots of mesh A at t = 9.57 s 
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5  Fluid-Structure Coupling 

5.1 Fluid-Structure Interface 

 

On the fluid-structure interface, ࢣ௙௦௜ , kinematic and force equilibriums have to be satisfied: 

࢙࢛																																																																					 		ൌ  ሺ5.1ሻ																																																																										ࢌ࢛

࢙࣌																																																																	 ∙ ࢔ ൌ ࢌ࣌ ∙  ሺ5.2ሻ																																																																				࢔

 

where the superscript ࢙ and ࢌ refer to the solid and fluid domain respectively. The equilibriums 

are enforced to conserve the momentum and energy of the interaction where the work and 

energy produced by each domain are fully absorbed by the counterpart domain. To enforce this 

condition, boundary conditions are imposed to each domain where the interface displacements 

computed by the CSD solver become Dirichlet boundary conditions on the fluid flow domain and 

the fluid forces on the interface computed by the CFD solver becomes the Neumann boundary 

conditions on the solid domain. 

 

In the case where the fluid and solid meshes match perfectly on the interface, the momentum 

and energy can be conserved numerically and force-displacement transfer is fairly 

straightforward. For a non-matching interface, an interpolation method has to be performed to 

fulfil the equilibrium and this can lead to non-conservative results. In this thesis the same 

problem is dealt with by adopting a strategy of conservation of virtual work of fluid-structure 

interface as given in [9] and it works well if the fluid mesh is finer than the structural mesh. To 

overcome this restriction, the solution proposed is to use an intermediate mesh built on the 

fluid-structure interface based on the intersection of the fluid and solid meshes hence the 

intermediate mesh is finer than the fluid and solid meshes. The force-displacement transfer is 

performed in this intermediate mesh and the key points of the strategy are the following: 

 To conserve the force transfer from the fluid mesh to the intermediate mesh, firstly each 

of intermediate mesh elements is nested in a particular fluid mesh element. Then for 

every fluid mesh element that contains the barycentre coordinates of the intermediate 

mesh element, the stress of the intermediate element is equal to the stress of its 

counterpart fluid mesh element. 

 A virtual work on the intermediate mesh, ܹߜூ, is defined as the following: 
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ூܹߜ																																																				 ൌ ෍ ෍ ܵ௘௟

௘௟಺

௘௟ୀଵ

௡಺

௡ୀଵ

ሺ࣌௘௟
ூ ∙ ௡ூݑ	௡ܮ	ሻ࢔ 																																																							 

ூܹߜ																																																				 ൌ ෍߶௡ூ ௡ூݑ	
௡಺

௡ୀଵ

																																																																											ሺ5.3ሻ 

௡ூ߶ߜ																																								 ൌ ෍ ܵ௘௟

௘௟಺

௘௟ୀଵ

ሺ࣌௘௟
ூ ∙  ሺ5.4ሻ																																																									௡ܮ	ሻ࢔

Where ݊ூ is the number of nodes on the intermediate mesh, ݈݁ூ is the number of 

elements on the intermediate mesh, ܵ௘௟ is the surface area of the element  ݈݁, ܮ௡ is the 

interpolation function at node ݊, and ݑ௡ூ  is the virtual displacement at node ݊.   

 The intermediate virtual displacement, ݑ௡ூ , is related to the structure displacement, ݑ௜
௦, as 

the following: 

௡ூݑߜ																																																								 ൌ෍ߚ௠௜

௜ೞ

௜ୀଵ

௜ݑ
௦																																																																								ሺ5.5ሻ 

 By substituting Eq. (5.5) into Eq. (5.3), the intermediate virtual work can be expressed 

in terms of the structure displacement: 

ூܹߜߜ																																																				 ൌ෍෍߶௡ூ
௡಺

௡ୀଵ

௜ೞ

௜ୀଵ

௜ݑ	௠௜ߚ
௦																																																											ሺ5.6ሻ 

 The conservation of virtual work between the intermediate and structure meshes can be 

written as the following: 

௜ࡲ෍ߜ																													
௦

௜ೞ

௜ୀଵ

௜ݑ
௦ ൌ෍෍߶௡ூ

௡಺

௡ୀଵ

௜ೞ

௜ୀଵ

௜ݑ	௠௜ߚ
௦																																																										ሺ5.7ሻ 

Based on Eq. (5.7), the structure force, ܨ௜
௦, eventually can be expressed as the following: 

௜ࡲߜ																																										
௦ ൌ ෍߶௡ூ

௡಺

௡ୀଵ

 ሺ5.8ሻ																																																																						௠௜ߚ

 It can be proven that the resultant force field is conserved. Firstly, the resultant of the 

intermediate forces is defined as the following: 

௘ூࡲ෍ߜ																																												
௘಺

௘ୀଵ

ൌ෍ܵ௘	ሺ࣌௘ூ ∙ ሻ࢔

௘಺

௘ୀଵ

																																																												ሺ5.9ሻ 

By using the fact that:  
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																																								෍ ௡ܮ

௡಺

௡ୀଵ

ൌ 1																																																																																		ሺ5.10ሻ 

 

Eq. (5.9) can be written as: 

௘ூࡲ෍ߜ																																												
௘಺

௘ୀଵ

ൌ෍ܵ௘	ሺ࣌௘ூ ∙ ሻ࢔

௘಺

௘ୀଵ

෍ܮ௡

௡಺

௡ୀଵ

																																																ሺ99ሻ 

௘ூܨ෍ߜ																																												
௘಺

௘ୀଵ

ൌ ෍ ෍ ܵ௘	ሺ࣌௘ூ ∙ ሻ࢔

௘௟಺

௘௟ୀଵ

௡ܮ	

௡಺

௡ୀଵ

																																														ሺ99ሻ 

௘ூܨ෍ߜ																																												
௘಺

௘ୀଵ

ൌ ෍߶௡ூ
௡಺

௡ୀଵ

																																																																								ሺ5.11ሻ 

On the other hand, using Eq. (5.8), the resultant of the structure forces is defined as the 

following:	

௜ࡲ෍ߜ																																					
௦

௜ೞ

௜ୀଵ

ൌ෍෍߶௡ூ
௡಺

௡ୀଵ

௜ೞ

௜ୀଵ

 ሺ100ሻ																																																											௠௜ߚ

௜ܨ෍ߜ																																																				
௦

௜ೞ

௜ୀଵ

ൌ෍ߚ௠௜

௜ೞ

௜ୀଵ

෍߶௡ூ
௡಺

௡ୀଵ

																																																										ሺ100ሻ 

௜ܨ෍ߜ																																																					
௦

௜ೞ

௜ୀଵ

ൌ ෍߶௡ூ
௡಺

௡ୀଵ

																																																																							ሺ5.12ሻ 

Based on Eq. (5.11) and (5.12), it is shown that the conservation of forces between the 

intermediate and structure mesh is maintained. 

 

5.2 Coupling Strategy 

 

As mentioned earlier, in general the coupling procedure of the fluid and solid solver can be 

classified into three different approaches i.e. the monolithic approach, the weakly coupled 

partitioned approach, and the strongly coupled partitioned approach. The work in this thesis is 

based on the strongly coupled partitioned approach where a convergence loop is utilized to 

ensure the stability of the coupled problem. The convergence loop can be either imposed 

externally or internally which can be explained in the following way: 
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 Externally Convergence Loop 

The convergence loop is coupled successively by solving the current time step of the 

fluid and structural problems using the previous solution of the other domain as 

boundary conditions. As the majority of the CPU time is spent on solving the fluid 

domain, the CPU time using this approach is proportional to the number of 

convergence iterations times the CPU time to solve the fluid domain.   

 Internally Convergence Loop 

The convergence loop is integrated implicitly in the non-linear iterations of the fluid 

domain solution. The displacement boundary conditions imposed by the structure are 

updated during the fluid convergence process. This approach can be very efficient and 

comparable to the monolithic approach. To treat the stability issues caused by the added 

mass effect, an under relaxation of structural displacement has to be imposed before 

transferring the structural displacement to the fluid domain.  

 

The work of this thesis is based on the strongly coupled partitioned approach using an internally 

convergence loop. The flow chart of this approach is shown in Figure 5.1. 

 

5.3 Coupling Interface Library 

 

As previously mentioned in Section 4.1, the modularity properties of Zorglib enable it to be 

plugged in into other solver which in this case is the ISIS CFD solver. A coupled computation is 

required on the FSI interface and it is managed by a C++ dynamic library. The coding of the 

dynamic library was first developed in the previous postdoctoral work to perform fluid rigid 

body interactions simulations. In this thesis it is developed further to perform two-dimensional 

FSI simulations for linear elastic and hyper-elastic flexible body. The dynamic library consists of 

three C++ external functions which are basically Fortran subroutines part of the ISIS-CFD 

solver. The three functions/subroutines are initGENERIC_ifs, GENERIC_ifs, and 

saveGENERIC_ifs. The hierarchy of the interface dynamic library is shown in Figure 5.2 and 

the main tasks of the functions will be explained in the following sub sections with the complete 

codes listed in the Appendix. 
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Figure 5.1 Flow chart of the fluid-structure solution procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Interface dynamic library hierarchy 
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5.3.1 initGENERIC_ifs 

 

This subroutine is only called at the beginning of the computation. There are several main tasks 

of initGENERIC_ifs subroutine and each of the main task is assigned to a C++ function: 

 

1 Read input variables, which are used to initialize Zorglib solver, from a text file 

(FSI_Inputs.txt).  

 

The input variables are: 

 Problem dimension 

In this work, the dimension is 2 so the input variable is an integer of 2. 

 Time step size 

The value has to be the same with the one set in ISIS solver. 

 GMSH physical number 

The number is used to identify elements that are located on the FSI interface 

 Material constitutive model 

There are two kind of constitutive models that can be used: 

- Linear elasticity model. For isotropic elasticity, the keyword is  

ISOTROPIC_ELASTICITY. 

- Hyperelasticity model. For Neohookean model the keyword is 

NEOHOOKEAN.  

 Two dimensional assumptions 

The two dimensional assumptions can be either plane stress or plane strain. For 

linear elasticity models, the keywords are either LINEAR_PLANE_STRESS or 

LINEAR_PLANE_STRAIN. For hyperlasticity models, the keywords are either 

STANDARD_PLANE_STRESS or STANDARD_PLANE_STRAIN. 

 Finite element solver 

The solver used depends on the analysis performed. For linear analysis the keyword 

is LINEAR to use LinearEquationSolver in Zorglib. For non-linear analysis the 

keyword is NEWTON to use NewtonSolver in Zorglib. 

 Time integrator 

There are two time integrators that can be used. To use the trapezoidal/strandard 

Newmark method, the keyword is STANDARD_NEWMARK. To use the 
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Generalized- method, the keyword is GENERAL_ALPHA and then followed by a 

double value between 0 and 1 for the spectral radius value (see Eq. (4.46) – (4.49)). 

For example, GENERAL_ALPHA 0.5. 

 Under-relaxed parameter 

Define a value between 0 and 1. A value of 1 means there is no under-relaxation. 

 Zorglib archive interval 

Define an interval to archive Zorglib results such as displacements and stresses. 

 Run type 

The simulation can be started from the beginning or restarted from a previous 

computation. For a simulation starts from the beginning, the keyword is FULL. 

For a simulation restarted from a previous computation, the keyword is RESTART 

then followed by an integer value to define the time step where the computation 

starts from. For example RESTART 3000 means restart a simulation from 3000 

time steps. The restart simulation must be running in the same folder as the 

previous simulation. 

 

2 Collect and sort the FSI interface nodes’ indexes and coordinates and FSI interface 

segments’ connectivity. 

 

By using objects and functions available in the Zorglib library, the FSI interface nodes’ 

indexes and coordinates and FSI interface segments’ connectivity can be collected into a set 

of arrays. The functions perform the collection task based on the physical number defined 

in GMSH mesh file for the FSI interface. Then the arrays that contain the indexes, 

coordinates, and connectivity have to be sorted to ensure that they correspond to 

consecutive nodes on the FSI interface. This is because the quadratic triangle and 

quadrilateral meshes created by GMESH have non-consecutive nodes’ indexes in the 

segment connectivity and the sorting is necessary because the connectivity array will be 

used to build a surface mesh in the ISIS internal subroutine.  

 

The code does not need a user input to identify whether the element is a linear or quadratic 

one instead it will identify it from the number of nodes in each segment. If there are only 

two nodes in a segment it means the element is a linear element whereas if there are three 

nodes the element is a quadratic one. A loop is created to sweep on all the FSI interface 

segments and sort and save the number of nodes and nodes’ indexes in a segment.  
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3 Initialize the finite element system in Zorglib 

 

Before initializing the finite element system, the following sub tasks are performed: 

 Build and initialize the material model based on the constitutive model, problem 

dimension, and material properties 

 Set the finite element context to identify if an axis symmetric or spherically 

symmetric or without symmetry problem is going to be solved 

 Build and define the formulation of the finite element system based on the material 

model, context, and the two dimensional assumption. 

 Impose boundary conditions using fixed displacement values or by initializing a 

displacement function which varies in time 

 Build and initialize an external force function which varies in time 

 

4 Initialize time integrator and solver 

 

In this function the time integrator and solver objects are initialized based on the user input 

variable defined in point 1 and the finite element system object in point 3. The displacement 

and velocity arrays are initialized in this task as well. The Newton Raphson solver is 

optimized with the line search method. 

  

5 Initialize Zorglib archival task object 

 

The archival tasks objects to archive the displacements, velocities, and stresses are initialized 

in this function. The archival tasks are called in the saveGENERIC_ifs subroutine. 

  

5.3.2 GENERIC_ifs 

 

This subroutine is nested in the non-linear iteration process of the ISIS-CFD solver so it is called 

at each ISIS non-linear iteration. In this subroutine, the transfer of the fluid force from the fluid 

domain to the solid domain and solid displacement transfer from the solid domain to the fluid 

domain are performed. An under-relaxation of the fluid force and the solid domain is also 

performed if the user input in point 1 is less than 1. The time integrator object is called to move 

forward in time but before calling it the displacement and velocity arrays are reset to the previous 



Fluid-Structure Coupling

 

44 

 

time step values (࢛௡ାଵ
௜ ൌ ௡࢛  and ࢜௡ାଵ

௜ ൌ ௡࢜ ). The fluid forces and a particular node 

displacements at every non-linear iteration are saved into a text file for checking purposes.  

 

5.3.3 saveGENERIC_ifs 

 

This subroutine is called at the end of every time step. The archival tasks are called at a specific 

interval as defined in point 1 in initGENERIC_ifs subroutine. To enable a restart computation, 

the displacements, velocities, and accelerations arrays are saved into a text file in this subroutine. 

For the purpose of analysing the solid tip displacement of the FSI simulations in this thesis, 

internal object and function in Zorglib are called to obtain the tip displacements and then the 

values are saved into a text file.  

 

5.4 Mesh Update Technique 

 

One important aspect of the FSI numerical model is the fluid mesh update as a result of the 

interface displacements. An efficient and robust technique is needed because the fluid mesh is 

updated at every non-linear iteration. There are several mesh update techniques adopted in ISIS-

CFD which have been developed by several PhD works in Ecole Centrale de Nantes [13] [19] 

[20] and the technique used in this thesis is based on the work [20]. In this technique an analytic 

regridding method based on a weighting coefficient is further developed by propagating the rigid 

displacement of each faces of volume cells and diffusing it on the fluid domain so it can work 

properly when dealing with large deformations.  
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6  FSI Numerical Results 

6.1 Flow Induced Excitation of Vertical Flexible Thin Plate 

 

This test case is based on one of the FSI test cases in [13] and the simulation set up is depicted in 

Figure 6.1. A thin flexible plate is clamped at the bottom wall boundary in the downstream of a 

incompressible fluid flow with a uniform inflow velocity. The fluid domain is an open domain 

with boundary conditions described in Figure 6.1. A no-slip boundary condition is imposed on 

the plate body. The fluid and solid properties are summarized in Table 6.1 and the resulting 

Reynold’s number is 50. The fluid mesh is shown in Figure 6.2 where it has 16,938 cells and 

36,014 nodes.  

 

 

 

 

 

 

 

 

Figure 6.1 Simulation set up for the vertical flexible thin plate case  

 

 

 

 

 

 

 

 

 

Table 6.1. Material properties of the fluid and solid for the vertical flexible thin plate case 

 

Initially an uncoupled CFD simulation with a rigid plate runs for 10 s to obtain a stable fluid 

flow in the domain with a time step size of 0.01 s. Figure 6.3 and 6.4 show the streamlines plot 

and pressure contour plot at time of 10 s.  

 Fluid Solid 

Density, ߩ	ሺ݇݃/݉ଷሻ 1.0 1.2 E+3 

Poisson’s ratio, 0.32 - ߥ 

Young’s Modulus, ܧ ሺܲܽሻ - 3.5 E+9 

Dynamic Viscosity, ߤ ሺܲܽ. ሻݏ 0.2 - 

Area moment inertia, I ሺ݉ସሻ - 8.3 E-8 
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Figure 6.2 (a) Fluid mesh of the whole domain (b) Fluid mesh in the surrounding zone of the 

plate 

 

 

 

 

 

 

Figure 6.3 Streamlines at time of 10 s 

 

 

 

 

 

 

 

 

 

Figure 6.4 Pressure at time of 10 s 

(a)

(b)
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The simulation then continues as a coupled simulation runs from 10 s until 20 s with a time step 

size of 0.01 s. In the coupled simulation, the element type used for the solid mesh is quadratic 

quadrilateral with 9 nodes. One of the main analysis in this simulation is to analyse the evolution 

of the tip displacement in the ݔ direction and to be able to do this a control point is set in the 

interface library and the library will save the displacement of the middle node on the top edge of 

the plate into a text file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Evolution of the tip displacement in the ݔ direction  

 

As can be observed in Figure 6.5, after 5 seconds the solution becomes steady with the steady 

tip displacement of 0.024 m and this result agrees well with [13]. Figure 6.6 shows the evolution 

of the pressure and mesh between 10.05 and 10.20 s when the tip displacement reaches its 

maximum value. A theoretical value of the first eigenfrequency of a clamped beam can be 

obtained using an analytical solution [14] with the following definition: 

																																																										 ଵ݂
௘௜௚ ൌ 0.5595

1
ଶܮ
ඨ
ܫ	ܧ
ܮ/݉

																																																									ሺ6.1ሻ 

With the current solid properties and dimension, the first eigenfrequency, ଵ݂
௘௜௚ ൌ 2.758 Hz. A 

Fast Fourier Transform (FFT) analysis is performed on the first 5 s of the tip displacement data as 

shown in Figure 6.7, which gives the dominant frequency of 2.734 Hz close to the theoretical 

value. 
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Figure 6.6 Pressure (Pa) contour plot and fluid mesh at (a) t = 10.05 s (b) t = 10.10 s  

(c) t = 10.15 s (d)  t = 10.20 s 

 

(a)

(b)

(c)

(d)
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Figure 6.7 FFT analysis of the tip displacement using MATLAB FFT function on the first 5 s 

data 

 

6.2 Flow Induced Excitation of Horizontal Flexible Thin Plate 

 

In this test a flexible thin plate is clamped at the end of a square cylinder and a fluid flow with 

uniform velocity from the left boundary pass the structure and creates vortices which induce 

structural oscillations [7][15].  The simulation set up and boundary conditions are depicted in 

Figure 6.8 and the solid and fluid properties are shown in Table 6.2. The resulting Reynold’s 

number is 333. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Simulation set up for the horizontal flexible thin plate case (dimension is in meter)  
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Table 6.2 Material properties of the fluid and solid for the horizontal flexible thin plate case 

 

 

The fluid mesh is shown in Figure 6.9 where it has 16,863 cells and 34,856 nodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 (a) Fluid mesh of the whole domain (b) Fluid mesh in the surrounding zone of the 

plate 

 Fluid Solid 

Density, ߩ	ሺ݇݃/݉ଷሻ 1.18 100 

Poisson’s ratio, 0.35 - ߥ 

Young’s Modulus, ܧ ሺܲܽሻ - 2.5 E+5 

Dynamic Viscosity, ߤ ሺܲܽ. ሻݏ 1.82 E-5 - 

Area moment inertia, I ሺ݉ସሻ - 1.8 E-11 

(a)

(b)
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Similar to the previous test case, the simulation starts with the uncoupled CFD simulation with 

the plate is enforced to be rigid for 5 s then it continues with the coupled simulation until 25 s 

when the plate becomes elastic. Figure 6.10 shows the pressure and vorticity contour plots 

between 4.2 s and 4.5 s in the case of rigid plate. It can be observed that a vortex shedding has 

occurred at each time instance. If the whole evolution is analysed it can be seen that two small 

vortices on one side and a bigger one on the side appear alternatingly.  

 

Figure 6.11 shows the evolution of the fluid mesh at a time period between 24.55 s and 24.8 s 

during the coupled simulation. Next in Figure 6.12 the pressure and vorticity contour plots are 

shown at the same time period. As can be observed in Figure 6.12, the flow has a similar 

behaviour as in the uncoupled simulation but the vortex separation at the plate tip creates a 

smaller vortex when the tip displacement at its maximum and minimum, Figure 6.12 (b) and (d) 

respectively.  

 

Figure 6.13 shows the evolution of the tip displacement in the ݕ direction between 5 s and 25 s. 

The steady oscillations amplitude agrees well with [7] and [15]. Using the FFT analysis for the 

last 16.384 s of data, the dominant frequency obtained is 2.99 Hz as shown in Figure 6.14 and 

this result agrees well with the analytical value of the first eigenfrequency computed using Eq. 

(6.1) , ଵ݂
௘௜௚ ൌ 3.028 Hz. The first eigenfrequency in [7] is reported to be in the range of 2.96 and 

3.31 Hz. Figure 6.15 shows the evolution of the lift force between 10 s to 25 s and using the 

FFT analysis its dominant frequency is found to be the same as the displacement in the ݕ 

direction as can be seen in Figure 6.16.   

 

In this simulation a refined solid mesh with 2 x 80 elements is also used to compare the tip 

displacement results with the original solid mesh one as shown in Figure 6.17. There is no 

significant difference observed which suggests that solid mesh convergence has been attained.  
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Figure 6.10 Pressure (Pa) and vorticity (1/s) contour plots at (a)  t = 4.2 s (b) t = 4.3 s  

(c) t = 4.4 s (d) t = 4.5 s 

 

(a)

(b)

(c)

(d)



FSI Numerical Results

 

53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 The fluid mesh at (a)  t = 24.55 s (b) t = 24.625 s  

(c) t = 24.725 s (d) t = 24.8 s 
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Figure 6.12 Pressure (Pa) and vorticity (1/s) contour plots at (a)  t = 24.55 s (b) t = 24.625 s  

(c) t = 24.725 s (d) t = 24.8 s 
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Figure 6.13 Evolution of the tip displacement (m) in the ݕ direction  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 FFT analysis of the tip displacement using MATLAB FFT function on the last 

16.384 s data 
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Figure 6.15 Evolution of the lift force (N/m)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16 FFT analysis of the lift force using MATLAB FFT function on the last 8.192 s data 
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Figure 6.17 Comparison of evolution of the tip displacement (m) in the ݕ direction between the 

coarse and fine solid mesh 
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7.  Conclusions  
 

Two dimensional numerical tests based on published numerical simulations have been 

performed for the CSD and CFD solvers separately. In the case of the CFD test, an unsteady 

flow around a square cylinder is investigated and it shows periodic vortex shedding and 

recirculation close to the body with the starting separation point moves from the trailing edge to 

the leading edge. For the CSD test, a dynamic simulation of a flexible cantilever solid with 

gravity load is investigated. Both of the tests show good agreements with the referenced 

publications. A mesh sensitivity analysis has also been performed using the CSD solver to ensure 

the proper element type and mesh size to be used in the FSI simulations.  

 

An interface dynamic library has been developed using C++ programming language to enable 

the coupling of the CFD and CSD solver to solve two dimensional FSI problems of flexible and 

elastic body interacted with incompressible viscous fluid. The FSI computational procedure is 

based on the strongly coupled implicit partitioned approach with internal convergence loop as 

part of the CFD non-linear iteration. The modularity of Zorglib makes it possible to embed the 

CSD computation in the ISIS-CFD non-linear iteration. An under-relaxation method is used for 

the interface structure displacement and fluid force to overcome the added-mass effect.  

 

In ISIS-CFD subroutines an intermediate mesh is built to conserve the momentum and energy 

on the FSI interface without any restriction of the structure or fluid mesh density. Also an 

efficient mesh update is performed at every non-linear iteration. These two computational 

procedures were developed by several PhD works at Ecole Centrale de Nantes.     

 

The FSI simulations are based on the published works which concern the flow induced 

excitations of flexible thin plates. The first simulation leads to a steady solution at the end 

whereas in the second simulation periodical flow and plate vibrations are observed as a result of 

periodical vortex shedding at the edges of the square cylinder. Both simulations show good 

agreement when the tip displacement and dominant vibration frequency are compared with the 

reference results.  
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Appendix A  FSI Simulations Procedures  
 

The procedure to run FSI simulations using ISIS-CFD and Zorglib is as follow: 

1. Compile Zorglib library 

Using the terminal, in the Zorglib library folder execute  ./configure  then after that 

make 

2. Compile interface dynamic library 

Using the terminal, in the dynamic library folder execute make. It will create 

isis_dynamic_lib.so  file 

3. Create ISIS-CFD project file 

 After creating the geometry and mesh do the following: 

 In HEXPRESS under Grid -> Boundary Conditions set the name of the face 

of FSI edges so they are ended with _fsi 

 Return to FINEMARINE window and rename the computation so it is ended 

with fsi. For example it can be renamed into the following: 

- fsi 

- new_fsi 

but NOT with newfsi. 

 Set all the required CFD parameters (fluid model, flow model, computation 

control , etc.) 

 Define the FSI body in the Body Definition option and take note of the FSI 

body index  

 Add the following comment in FINEMARINE Comment option with the value 

after *** FSI : SURFACES line is the FSI body index as defined previously for 

example the value is 100 as shown below. 

 

*** FSI WITH GENERIC INTERFACE ? 

* 

YES 

* 

*** FSI : SURFACES 

* 
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100 

* 

*** FSI : ITS FLUID GEOM : FILE 

* 

../_mesh/mesh.its 

*------------------------------------------ BODIES ----------------------------------------- 

*** BODY:MVT:NON-LINEAR COUPLING LOOP ? 

* 

YES 

* 

*** BODY:DEF:MVT IMP:NUMBER 

* 

1 

* 

*** BODY:DEF:MVT IMP:1:NAME 

* 

body 

* 

*** BODY:DEF:MVT IMP:1:INDEX 

* 

1 

* 

*** BODY:DEF:MVT IMP:1:REFERENCE POINT 

* 

0. 0. 0. 

* 

*** BODY:FIXED:NUMBER 

* 

0 

* 

*** BODY:DEF:MVT IMP:1:WEIGHTING REGRID METHOD 

* 

3 

* 
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*** DOMAIN:1:RIGID MVT GRID 

* 

0 0 0 0 0 0 

 

 Activate Adaptive Grid Refinement. Click to Control and set the Number of 

steps before first call to refinement procedure to a very high value for example 1e+08 

 Pre-process the computation 

 

4. Create a 2D solid mesh using GMSH with the FSI boundary is set with a physical 

number and save the mesh file as meshZorg.msh 

 

5. Copy and paste the following files into the ISIS-CFD computation folder: 

 meshZorg.msh 

 FSI_Inputs.txt 

 Solid_Properties.mat 

 isis_dynamic_lib.so 

 

6. Modify the FSI_Inputs.txt  file accordingly based on the guideline in Section 5.3.1 

 

7. Ensure the solid material properties in Solid_Properties.mat  are defined correctly  

 

8. Copy the isiscfd_FSI_2D  binary file in the computation folder or in other folder. Run 

the FSI simulation using the terminal in the computation folder by executing the isiscfd  

binary file and followed with the computation simulation file. For example if the binary 

file is stored in the computation folder: 

   ./isiscfd_FSI_2D<*_fsi.sim>logFSI.dat   
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Appendix B  Interface Dynamic Library 
 

B.1  initGENERIC_ifs.cpp 

 

#include "init_ISIS.h" 

#include "IFSFunction.h" 

 

using namespace std; 

 

extern "C" void initgeneric_ifs(int * imesg,int * mybloc,int * MAXDIM_NP_ITS_STR_IFS,int * 

MAXDIM_NT_ITS_STR_IFS,int * np_its_str_ifs,int * nt_its_str_ifs,double * 

X_ITS_STR_IFS,double * Y_ITS_STR_IFS,double  * Z_ITS_STR_IFS,int 

Con_ITS_STR_IFS[][3]) 

{  

cout << "********************* initGENERIC_ifs Subroutine **************************" 

<< endl; 

     

     // Read the FSI_Inputs.txt file to obtain Zorglib parameters 

     Read_FSI_Inputs(); 

 

// Build FSI segment connectivity and coordinates 

     Build_FSI_Arrays(np_its_str_ifs, nt_its_str_ifs, X_ITS_STR_IFS, Y_ITS_STR_IFS, 

 Z_ITS_STR_IFS, Con_ITS_STR_IFS); 

  

// Initialize FE system for the CSD 

     Zorglib_FE_Initialization(); 

 

 // Initialize time integrator for the CSD 

     Zorglib_Integrator_Initialization(); 

 

 // Initialize GMSH archival task for the CSD 

     Zorglib_Archival_Initialization(); 
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     // Initialize arrays for FSI boundary displacement during non-linear iteration 

 iterdispX = new double[FSI_Node_Size]; 

 iterdispY = new double[FSI_Node_Size]; 

 iterdispZ = new double[FSI_Node_Size]; 

 iterdispX_old = new double[FSI_Node_Size]; 

 iterdispY_old = new double[FSI_Node_Size]; 

 iterdispZ_old = new double[FSI_Node_Size]; 

 

 // Create and initialize arrays for FSI boundaries initial coordinates 

 Xinit = new double [*np_its_str_ifs]; 

  Yinit = new double [*np_its_str_ifs]; 

 Zinit = new double [*np_its_str_ifs]; 

 

 for (int i = 0; i < *np_its_str_ifs; ++i) 

 { 

     Xinit[i] = X_ITS_STR_IFS[i]; 

     Yinit[i] = Y_ITS_STR_IFS[i]; 

     Zinit[i] = Z_ITS_STR_IFS[i]; 

 } 

 

     // Full run or restart run 

 FSI_Run_Type(); 

  

 // Create header for tip displacement file 

TipDisp << "Node# " << "time" << " " << "dX" << " " << "dY" << " " << "Node# " 

<< "time" << " " << "dX" << " " << "dY" << " " << "Node# " << "time" << " " << 

"dX" << " " << "dY" << endl; 

  

     // Create header for non-linear iteration displacement file 

 NL_TipDisp << "time" << " " << "dX" << " " << "dY" << endl;  

 

 // Create header for fluid force file  

 ForceX << "time"; 

 for (int i = 0; i <FSI_Node_Size; ++i) 
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 { 

  ForceX << " " << "Node" << Zorglib_FSI_Nodes[i]; 

 }  

 ForceX << endl; 

 

 ForceY << "time"; 

 for (int i = 0; i <FSI_Node_Size; ++i) 

 { 

  ForceY << " " << "Node" << Zorglib_FSI_Nodes[i]; 

 }  

 ForceY << endl; 

  

 // Check the input parameters for ISIS 

 ofstream checkISIS("checkISIS.txt"); 

 checkISIS << "*nt_its_str_ifs = " << *nt_its_str_ifs << endl; 

 checkISIS << "*np_its_str_ifs = " << *np_its_str_ifs << endl << endl; 

checkISIS << "Node# " << "X_ITS_STR_IFS " << "Y_ITS_STR_IFS " << 

"Z_ITS_STR_IFS " << endl; 

   

 for (int i = 0; i < *np_its_str_ifs; ++i) 

 { 

checkISIS << i+1 << " " << X_ITS_STR_IFS[i] << " " << Y_ITS_STR_IFS[i] << " " 

<< Z_ITS_STR_IFS[i] << endl; 

 } 

 

 checkISIS << endl; 

 checkISIS << "Con_ITS_STR_IFS" << endl; 

 

 for (int i = 0; i <*nt_its_str_ifs; ++i) 

 { 

checkISIS << Con_ITS_STR_IFS[i][0] << " " << Con_ITS_STR_IFS[i][1] << " " << 

Con_ITS_STR_IFS[i][2] << endl; 

 }  
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cout << "********************* END initGENERIC_ifs Subroutine 

**************************" << endl; 

 

}  

 

B.2  GENERIC_ifs.cpp 

 

#include "init_ISIS.h" 

 

using namespace std; 

 

extern "C" void generic_ifs(int * imesg,int * mybloc,int * itt,int * itnl,double * tc,double * dtc, 

double * dfx_ITS_STR_IFS,double * dfy_ITS_STR_IFS,double * dfz_ITS_STR_IFS,int * 

np_its_str_ifs,int * nt_its_str_ifs,double * X_ITS_STR_IFS,double * Y_ITS_STR_IFS,double * 

Z_ITS_STR_IFS,int Con_ITS_STR_IFS[][3], 

int * nbody,int * ID_Body,char * Name_Body,double O1ref_R0[][3],double 

O1tc_R0[][3][3],double Omega1tc[][2][3],double Theta1tc[][3][3] ) 

{ 

cout << "********************  GENERIC_ifs Subroutine  *********************" << 

endl; 

 

// Save the current time for archival purposes 

 Time_curent = *tc; 

 

 // Stop computing if the fluid time step and solid one are different  

 if(FEMtimeStep != *dtc) 

 { 

  cout << "FEMtimeStep != dtc" << endl; 

  return; 

 } 

 

 // Reset Parameters at new time step  

 if(*itnl == 1) 
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 { 

   *uSaved = *u; 

   *vSaved = *v; 

 

  for (int i = 0; i < FSI_Node_Size; ++i) 

  {    

      iterdispX[i] = 0.0;   

      iterdispY[i] = 0.0; 

   IFS_Force_X[i] = 0.0; 

   IFS_Force_Y[i] = 0.0; 

  } 

 } 

   

 // Revert back the displacement and velocity to their state before the nonlinear iteration 

 *u = *uSaved; 

 *v = *vSaved; 

 

 // Save the previous iteration displacement 

 *iterdispX_old = *iterdispX; 

 *iterdispY_old = *iterdispY; 

 

    // Under Relax the fluid forces 

 for (int i = 0; i <FSI_Node_Size; ++i) 

 { 

  IFS_Force_X[i] = omegaFSI*dfx_ITS_STR_IFS[i] + (1-omegaFSI)*IFS_Force_X[i]; 

  IFS_Force_Y[i] = omegaFSI*dfy_ITS_STR_IFS[i] + (1-omegaFSI)*IFS_Force_Y[i]; 

 } 

  

    // Save fluid forces 

 ForceX << Time_curent << " "; 

 for (int i = 0; i <FSI_Node_Size; ++i) 

 { 

  ForceX << " " << IFS_Force_X[i]; 

 } 
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 ForceX << endl; 

  

 ForceY << Time_curent << " "; 

 for (int i = 0; i <FSI_Node_Size; ++i) 

 { 

  ForceY << " " << IFS_Force_Y[i]; 

 } 

 ForceY << endl; 

  

 

 // Run NewmarkIntegrator 

    FEMIntegrator->setUpdateTangent(true); 

    FEMIntegrator->setCurrentTime(*tc); 

    FEMIntegrator->setTimeStep(*dtc);  

    FEMIntegrator->run(*u,*v,*tc,*tc+*dtc, &std::cout); 

  

    // Obtain the displcement of the boundary nodes 

 for (int i = 0; i < FSI_Node_Size; ++i) 

 { 

     Node& FSI_Node = FSI_NodeSet.node(Zorglib_Force_Con[i]); 

     

      iterdispX[i] = FEMSystem->getNodalValue(FSI_Node,0,"DISPLACEMENTS"); 

 

      iterdispY[i] = FEMSystem->getNodalValue(FSI_Node,1,"DISPLACEMENTS"); 

 } 

 

 // perform under-relaxation for the structural displacement 

 for (int i = 0; i < FSI_Node_Size; ++i) 

 { 

      iterdispX[i] = omegaFSI*iterdispX[i] + (1-omegaFSI)*iterdispX_old[i]; 

 

      iterdispY[i] = omegaFSI*iterdispY[i] + (1-omegaFSI)*iterdispY_old[i]; 

 } 
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 // Save a boundary node displacement to check stability during non-linear iterations 

NL_TipDisp << Time_curent << " " << iterdispX[(FSI_Node_Size/2)] << " " << 

iterdispY[(FSI_Node_Size/2)] << endl; 

 

    // Update FSI Interface Coordinates 

    for( int i1 = 0; i1 < FSI_Node_Size ;i1++  )  

    { 

  X_ITS_STR_IFS[i1] = Xinit[i1] + iterdispX[i1]; 

    Y_ITS_STR_IFS[i1] = Yinit[i1] + iterdispY[i1]; 

   

    }  

 

cout << "*******************  END GENERIC_ifs Subroutine  ********************" 

<< endl; 

    

} 

 

B.3  saveGENERIC_ifs.cpp 

 

#include "init_ISIS.h" 

 

using namespace std; 

 

extern "C" void savegeneric_ifs(int * imesg,int * mybloc,int * itt,int * itte) 

{ 

 

 // Zorglib archive  

 

 if(numberArch1%Archive_Interval == 0) 

 { 

      numberArch2 += 1;     

  numberArch3 += 1; 

  FEMTask2->process(numberArch2,Time_curent,*FEMSystem,&std::cout);  
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  FEMTask3->process(numberArch3,Time_curent,*FEMSystem,&std::cout);   

 } 

  

 // Save tip displacement - Only for the purpose of the analysis in this thesis  

  

 double dx, dy; 

 { 

  Node& FSI_Node = FSI_NodeSet.node((FSI_Node_Size/2)); 

      dx = FEMSystem->getNodalValue(FSI_Node,0,"DISPLACEMENTS"); 

  dy = FEMSystem->getNodalValue(FSI_Node,1,"DISPLACEMENTS"); 

TipDisp << FSI_Node.label() << " " << Time_curent << " " << dx << " " << dy << " 

"; 

 } 

 

 { 

  Node& FSI_Node = FSI_NodeSet.node((FSI_Node_Size/2)+1); 

      dx = FEMSystem->getNodalValue(FSI_Node,0,"DISPLACEMENTS"); 

  dy = FEMSystem->getNodalValue(FSI_Node,1,"DISPLACEMENTS"); 

TipDisp << FSI_Node.label() << " " << Time_curent << " " << dx << " " << dy << " 

"; 

 } 

 

 { 

  Node& FSI_Node = FSI_NodeSet.node((FSI_Node_Size/2)-2); 

      dx = FEMSystem->getNodalValue(FSI_Node,0,"DISPLACEMENTS"); 

  dy = FEMSystem->getNodalValue(FSI_Node,1,"DISPLACEMENTS"); 

TipDisp << FSI_Node.label() << " " << Time_curent << " " << dx << " " << dy << 

endl; 

 } 

 

 // Save Displacement, Velocity, and Acceleration system arrays   

     *output_U << *u << endl; 

     *output_V << *v << endl; 

     NewmarkIntegrator::Acceleration FEAcceleration = FEMIntegrator->acceleration(); 
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      *output_A << FEAcceleration << endl; 

 

      // Save interface displacement 

      ofstream FSI_Interface_Disp("FSI_Interface_Disp.txt"); 

 

      FSI_Interface_Disp << Time_curent << endl; 

 

      for (int i = 0; i < FSI_Node_Size; ++i) 

      {     

     

       FSI_Interface_Disp << iterdispX[i] << " "; 

      }    

 

      FSI_Interface_Disp << endl; 

 

      for (int i = 0; i < FSI_Node_Size; ++i) 

      {       

       FSI_Interface_Disp << iterdispY[i] << " "; 

      }   

  

} 

 

B.4  Read_FSI_Input 

 

#include "init_ISIS.h" 

 

using namespace std; 

 

void Read_FSI_Inputs() 

{ 

    // Read Input Parameters File - FSI_Inputs.txt 

 ifstream FSI_Inputs("FSI_Inputs.txt"); 

 string inputs; 
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 // Read problem dimension 

 getline(FSI_Inputs, inputs); 

 getline(FSI_Inputs, inputs); 

 istringstream input_dim(inputs); 

 input_dim >> dimFEM; 

 

 // Read time step 

 getline(FSI_Inputs, inputs); 

 getline(FSI_Inputs, inputs); 

 istringstream input_timestep(inputs); 

 input_timestep >> FEMtimeStep; 

  

 // Read physical number used for FSI boundary identification 

 getline(FSI_Inputs, inputs); 

 getline(FSI_Inputs, inputs); 

 istringstream input_FSIPhyNum(inputs); 

 input_FSIPhyNum >> FSIPhyNum; 

 

 // Read solid constitutive model 

 getline(FSI_Inputs, inputs); 

 getline(FSI_Inputs, inputs); 

 istringstream input_Constitutive_Model(inputs); 

 input_Constitutive_Model >>  Constitutive_Model; 

 

 // Read solid 2D assumption 

 getline(FSI_Inputs, inputs); 

 getline(FSI_Inputs, inputs); 

 istringstream input_TwoD_Assumption(inputs); 

 input_TwoD_Assumption >>  TwoD_Assumption; 

 

 // Read FE System solver 

 getline(FSI_Inputs, inputs); 

 getline(FSI_Inputs, inputs); 
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 istringstream input_System_Solver(inputs); 

 input_System_Solver >>  System_Solver; 

 

 // Read FE Time Integrator 

 getline(FSI_Inputs, inputs); 

 getline(FSI_Inputs, inputs); 

 istringstream input_System_Integrator(inputs); 

 input_System_Integrator >>  System_Integrator >> SPECTRAL_RADIUS; 

 

 // Read the under-relaxation parameter  

 getline(FSI_Inputs, inputs); 

 getline(FSI_Inputs, inputs); 

 istringstream input_omegaFSI(inputs); 

 input_omegaFSI >> omegaFSI; 

 

 // Read the Archival Interval  

 getline(FSI_Inputs, inputs); 

 getline(FSI_Inputs, inputs); 

 istringstream input_Archive_Interval(inputs); 

 input_Archive_Interval >> Archive_Interval; 

  

 // Read the Full Run or Restart option  

 getline(FSI_Inputs, inputs); 

 getline(FSI_Inputs, inputs); 

 istringstream input_RunType(inputs); 

 input_RunType >> RunType >> RestartStep; 

 cout << RunType << " " << RestartStep << endl; 

} 
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B.5  Build_FSI_Arrays 

 

#include "init_ISIS.h" 

 

using namespace std; 

 

void Build_FSI_Arrays(int * np_its_str_ifs, int * nt_its_str_ifs, double * X_ITS_STR_IFS, 

double * Y_ITS_STR_IFS, double * Z_ITS_STR_IFS, int Con_ITS_STR_IFS[][3]) 

{ 

 

    // Read GMSH mesh file and return the elements (line element -> dimFEM-1 = 1) on the 

 FSI boundary based on the physical number (FSIPhyNum) 

    themesh = GmshMeshIO::readMesh(dimFEM,"body","meshZorg.msh"); 

    FSI_ElementSet = themesh->getElements(dimFEM-1,FSIPhyNum); 

     

    // Get the number of FSI elements 

 int FSI_Element_Size; 

 FSI_Element_Size = FSI_ElementSet.nElements(); 

  

 // Collect FSI boundary nodes 

 FSI_ElementSet.collectNodes(FSI_NodeSet); 

  

 // Get the number of FSI nodes 

 FSI_Node_Size = FSI_NodeSet.nNodes(); 

 *np_its_str_ifs = FSI_Node_Size; 

 

 // Check FSI boundary nodes and element size 

 ofstream outpFSI_Nodes("outpFSI_Nodes.txt"); 

 outpFSI_Nodes << "FSI_Node_Size: " << FSI_Node_Size << endl; 

 outpFSI_Nodes << "FSI_Element_Size: " << FSI_Element_Size << endl; 

  

 // Check element connectivity in GMSH mesh file 

 outpFSI_Nodes << endl << endl; 

 outpFSI_Nodes << "Checking element connectivity" << endl << endl; 
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 int Size_FSI_Node_Element; 

 int Size_Zorglib_Con = 0; 

 

 for (int i = 0; i < FSI_Element_Size; ++i) 

 { 

  Element& FSI_Element = FSI_ElementSet.element(i); 

  Size_FSI_Node_Element = FSI_Element.nNodes(); 

  Size_Zorglib_Con += Size_FSI_Node_Element; 

     

  outpFSI_Nodes << "Element Connectivity:  "; 

   

  for (int j = 0; j < Size_FSI_Node_Element; ++j) 

  { 

   Node& Element_Node = FSI_Element.node(j); 

   outpFSI_Nodes << Element_Node.label() << " "; 

  } 

 

  outpFSI_Nodes << endl;    

  } 

 

 Size_Zorglib_Con += FSI_Element_Size; 

 

 outpFSI_Nodes << endl; 

 outpFSI_Nodes << "Zorglib_FSI_Con" << endl; 

 

 Zorglib_FSI_Con = new int[Size_Zorglib_Con]; 

 

 { 

  int iCon = 0; 

  

  for (int i = 0; i < FSI_Element_Size; ++i) 

  { 

   Element& FSI_Element = FSI_ElementSet.element(i); 
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   Size_FSI_Node_Element = FSI_Element.nNodes(); 

  

   Zorglib_FSI_Con[iCon] = Size_FSI_Node_Element;  

   outpFSI_Nodes << Zorglib_FSI_Con[iCon] << endl; 

   iCon += 1; 

 

   for (int j = 0; j < Size_FSI_Node_Element; ++j) 

   { 

    Node& Element_Node = FSI_Element.node(j); 

    Zorglib_FSI_Con[iCon] = Element_Node.label();   

  

    outpFSI_Nodes << Zorglib_FSI_Con[iCon] << endl; 

 

    iCon += 1;    

   }    

   } 

 } 

 

 outpFSI_Nodes << endl; 

    

 cout << Size_Zorglib_Con << endl;  

 

 int Size_ISIS_FSI_Con = 0; 

  

 // Initialize nt_its_str_ifs 

 *nt_its_str_ifs = 0; 

   

 // A pointer array to obtain a consequtive nodes indexes. It is needed primarily because when 

 triangle and quad order 2 element 

 // is used the middle node index is not located in the middle of the line connectivity in 

 GMSH mesh file. 

 Zorglib_Force_Con = new int[FSI_Node_Size]; 

  

 // 1D array of list of consecutive nodes indexes on the FSI boundary after sorting 
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    Zorglib_FSI_Nodes = new int[FSI_Node_Size]; 

  

 { 

  int iZorg = 1; 

  int swap; 

 

  Node& FSI_Node = FSI_NodeSet.node(0); 

  Zorglib_FSI_Nodes[0] = FSI_Node.label(); 

  Zorglib_Force_Con[0] = 0; 

 

  // 2D Properties   

  X_ITS_STR_IFS[0] = FSI_Node.coordinates().X(0); 

  Y_ITS_STR_IFS[0] = FSI_Node.coordinates().X(1); 

  Z_ITS_STR_IFS[0] = 0.0; 

  

  outpFSI_Nodes << FSI_Node.label() << " " << FSI_Node.coordinates().X(0) << " "  

  << FSI_Node.coordinates().X(1) << endl; 

 

  for (int i = 0; i < Size_Zorglib_Con; ++i) 

  { 

 

   if (Zorglib_FSI_Con[i] == 3) 

   { 

    // when there are multiple bodies and the connectivity starts from the next body 

    if (iZorg > 6 && Zorglib_FSI_Con[i+1] != Zorglib_FSI_Con[i-1]) 

    { 

     Node& FSI_Node = FSI_NodeSet.node(iZorg); 

     Zorglib_FSI_Nodes[iZorg] = FSI_Node.label(); 

     Zorglib_Force_Con[iZorg] = iZorg; 

      

     X_ITS_STR_IFS[iZorg] = FSI_Node.coordinates().X(0); 

     Y_ITS_STR_IFS[iZorg] = FSI_Node.coordinates().X(1); 

     Z_ITS_STR_IFS[iZorg] = 0.0; 
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     outpFSI_Nodes << FSI_Node.label() << " " << FSI_Node.coordinates().X(0) 

     << " " << FSI_Node.coordinates().X(1) << endl; 

      

     iZorg += 1; 

    } 

     

    Node& FSI_Node1 = FSI_NodeSet.node(iZorg); 

 

    swap = FSI_Node1.label(); 

 

          // 2D Properties  

    X_ITS_STR_IFS[iZorg + 1] = FSI_Node1.coordinates().X(0); 

    Y_ITS_STR_IFS[iZorg + 1] = FSI_Node1.coordinates().X(1); 

    Z_ITS_STR_IFS[iZorg + 1] = 0.0; 

 

    outpFSI_Nodes << FSI_Node1.label() << " " << FSI_Node1.coordinates().X(0) 

    << " " << FSI_Node1.coordinates().X(1) << endl; 

 

    Node& FSI_Node2 = FSI_NodeSet.node(iZorg+1); 

 

    // 2D Properties  

    X_ITS_STR_IFS[iZorg] = FSI_Node2.coordinates().X(0); 

    Y_ITS_STR_IFS[iZorg] = FSI_Node2.coordinates().X(1); 

    Z_ITS_STR_IFS[iZorg] = 0.0; 

 

    outpFSI_Nodes << FSI_Node2.label() << " " << FSI_Node2.coordinates().X(0) 

    << " " << FSI_Node2.coordinates().X(1) << endl; 

 

    Zorglib_FSI_Nodes[iZorg] = FSI_Node2.label(); 

 

    Zorglib_FSI_Nodes[iZorg+1] = swap; 

     

       int swap2; 

    swap2 = Zorglib_FSI_Con[i+2]; 
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    Zorglib_FSI_Con[i+2] = Zorglib_FSI_Con[i+3]; 

    Zorglib_FSI_Con[i+3] = swap2; 

  

    Zorglib_Force_Con[iZorg] = iZorg+1; 

    Zorglib_Force_Con[iZorg+1] = iZorg; 

 

    outpFSI_Nodes << Zorglib_FSI_Con[i] << endl; 

    outpFSI_Nodes << Zorglib_FSI_Con[i+1] << endl; 

    outpFSI_Nodes << Zorglib_FSI_Con[i+2] << endl; 

    outpFSI_Nodes << Zorglib_FSI_Con[i+3] << endl; 

   

    i += Zorglib_FSI_Con[i]; 

    iZorg += 2; 

 

    // 2D Properties  

    Size_ISIS_FSI_Con += 6; 

     

    // the number of segment for ISIS 

    *nt_its_str_ifs += 2;     

   } 

 

   else if (Zorglib_FSI_Con[i] == 2) 

   { 

    Node& FSI_Node1 = FSI_NodeSet.node(iZorg); 

 

    // 2D Properties  

    X_ITS_STR_IFS[iZorg] = FSI_Node1.coordinates().X(0); 

    Y_ITS_STR_IFS[iZorg] = FSI_Node1.coordinates().X(1); 

    Z_ITS_STR_IFS[iZorg] = 0.0; 

 

    outpFSI_Nodes << FSI_Node1.label() << " " << FSI_Node1.coordinates().X(0) 

    << " " << FSI_Node1.coordinates().X(1) << endl; 

 

    Zorglib_FSI_Nodes[iZorg] = FSI_Node1.label(); 
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    Zorglib_Force_Con[iZorg] = iZorg; 

    Zorglib_Force_Con[iZorg + 1] = iZorg + 1; 

 

    outpFSI_Nodes << Zorglib_FSI_Con[i] << endl; 

    outpFSI_Nodes << Zorglib_FSI_Con[i+1] << endl; 

    outpFSI_Nodes << Zorglib_FSI_Con[i+2] << endl; 

   

    i += Zorglib_FSI_Con[i]; 

    ++iZorg; 

 

    // 2D Properties  

    Size_ISIS_FSI_Con += 3; 

     

    // the number of segment for ISIS 

    *nt_its_str_ifs += 1; 

   } 

   

   } 

 } 

 

 // Check Zorglib_FSI_Nodes array 

 outpFSI_Nodes << endl; 

 outpFSI_Nodes << "Zorglib_FSI_Nodes" << endl; 

 

 for (int i = 0; i < FSI_Node_Size; ++i) 

 { 

   outpFSI_Nodes << Zorglib_FSI_Nodes[i] << endl; 

  } 

  

 

 // Build Con_ITS_STR_IFS 

 { 

  int j = 0, k = 1, l = 0; 
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  for (int i = 0; i < Size_Zorglib_Con; ++i) 

  { 

   // for quadratic element 

   if (Zorglib_FSI_Con[i] == 3) 

   { 

    // 2D Properties  

    Con_ITS_STR_IFS[j][0] = k; 

    Con_ITS_STR_IFS[j][1] = k+1; 

    Con_ITS_STR_IFS[j][2] = 0; 

    Con_ITS_STR_IFS[j+1][0] = k+1; 

    Con_ITS_STR_IFS[j+1][1] = k+2; 

    Con_ITS_STR_IFS[j+1][2] = 0; 

 

    // 2D Properties       

    j += 2; 

 

    i += Zorglib_FSI_Con[i]; 

 

    if (Zorglib_FSI_Con[i+2] == Zorglib_FSI_Nodes[l+2]) 

    { 

     k += 2; 

     l += 2; 

    } 

    else 

    { 

     k += 3; 

     l += 3;     

    }    

   } 

    

   // for linear element 

   else if (Zorglib_FSI_Con[i] == 2) 

   { 
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    // 2D Properties  

    Con_ITS_STR_IFS[j][0] = k; 

    Con_ITS_STR_IFS[j][1] = k+1; 

     Con_ITS_STR_IFS[j][2] = 0; 

 

    // 2D Properties  

    j += 1; 

 

    i += Zorglib_FSI_Con[i]; 

 

    if (Zorglib_FSI_Con[i+2] == Zorglib_FSI_Nodes[l+1]) 

    { 

     k += 1; 

     l += 1; 

    } 

    else 

    { 

     k += 2; 

     l += 2; 

    }    

   } 

 

  } 

 } 

 

} 

 

B.6  init_ISIS.cpp 

 

#include "init_ISIS.h" 

#include "IFSFunction.h" 

 

using namespace std;  
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#ifdef USE_ZORGLIB_NAMESPACE 

USING_ZORGLIB_NAMESPACE 

#endif 

 

// copy constructor 

IFSFunction::IFSFunction(const IFSFunction& src)  

 : Function(src) { 

 idx = src.idx; 

} 

 

// get value 

double IFSFunction::value(double t) { 

 unsigned int i; 

 unsigned int r;  

 i = idx/2; 

 r = idx%2; 

 if (r == 0) 

  return IFS_Force_X[i]; 

 else 

  return IFS_Force_Y[i]; 

} 

 

// get derivative 

double IFSFunction::slope(double t) { 

     return 0.0; 

} 

 

// get value and derivative 

double IFSFunction::value(double t,double& df) { 

   df = 0.0e0; 

     unsigned int i; 

     unsigned int r; 

     i = idx/2; 
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     r = idx%2; 

     if (r == 0) 

  return IFS_Force_X[i]; 

 else 

  return IFS_Force_Y[i]; 

} 

 

// print-out 

std::string IFSFunction::toString() const { 

 std::string s = "nothing";  

 return s; 

} 

 

// Zorglib Static Parameters 

double FEMtimeStep; 

int dimFEM; 

int dimFEMelem; 

int FSIPhyNum; 

double SPECTRAL_RADIUS; 

string Constitutive_Model;  

string TwoD_Assumption; 

string System_Integrator; 

string System_Solver; 

int Archive_Interval; 

string RunType; 

int RestartStep; 

MeshedBody* themesh; 

vector<Element*> ElemSet; 

vector<Node*> nodeSetFSI; 

ElementSet FSI_ElementSet; 

NodeSet FSI_NodeSet; 

ConstitutiveModel* model; 

MaterialProperties theproperties; 

MaterialModel* theMaterial; 
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FEMechanicalSystem* FEMSystem; 

SystemArray* u; 

SystemArray* v; 

SystemArray* uSaved; 

SystemArray* vSaved; 

SystemArray* ExtForces; 

NewmarkIntegrator* FEMIntegrator; 

StationaryEquation* StaticEquation; 

LinearEquationSolver* StaticSolver; 

FEGmshArchivalTask* FEMTask1;  

FEGmshArchivalTask* FEMTask2; 

FEGmshArchivalTask* FEMTask3; 

FEGmshArchivalTask* FEMTask4; 

int numberArch1 = 0, numberArch2 = 0, numberArch3 = 0; 

int nNLIter = 1;  

 

// Connectivity array to transfer structural displacement from Zorglib to ISIS 

int* Zorglib_Force_Con; 

 

// Arrays of displacements of the current iteration 

double* iterdispX; 

double* iterdispY; 

double* iterdispZ; 

 

// Arrays of displacements from the previous iteration 

double* iterdispX_old; 

double* iterdispY_old; 

double* iterdispZ_old; 

 

// Under-relaxation parameter 

double omegaFSI; 

 

// To store mesh data 

int FSI_Node_Size; 
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int* Zorglib_FSI_Nodes; 

int* MESH_FSI_Con; 

int* Zorglib_FSI_Con; 

 

// To store fluid force 

double* IFS_Force_X; 

double* IFS_Force_Y; 

double* IFS_Force_Z; 

 

// To store initial FSI coordinates 

double *Xinit, *Yinit, *Zinit; 

 

// Current step time for archival purposes 

double Time_curent = 0.0; 

 

// Output file declaration 

ofstream TipDisp("TipDisp.txt"); 

ofstream NL_TipDisp("NL_TipDisp.txt"); 

ofstream ForceX("IFS_Force_X.txt"); 

ofstream ForceY("IFS_Force_Y.txt"); 

ofstream outpNodeDOF("outpNodeDOF.txt"); 

 

// Input and output streams for Restart computation 

ifstream* input_U; 

ifstream* input_V; 

ifstream* input_A; 

ofstream* output_U; 

ofstream* output_V; 

ofstream* output_A; 
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B.7  init_ISIS.h 

 

#ifndef INIT_ISIS_H 

#define INIT_ISIS_H 

 

// std C++ library 

#include <cstdlib> 

#include <iostream> 

#include <fstream> 

#include <sstream> 

#include <string> 

#include <math.h> 

 

// local 

#include <algo/NewmarkIntegrator.h> 

#include <algo/ConstantTimeStepper.h> 

#include <algo/NewtonSolver.h> 

#include <algo/LinearEquationSolver.h> 

#include <algo/StationaryEquation.h> 

#include <zfem/FEMechanicalSystem.h> 

#include <mesh/GmshMeshIO.h> 

#include <mesh/GmshViewIO.h> 

#include <zfem/FEGmshArchivalTask.h> 

#include <zfem/FEReactionArchivalTask.h> 

#include <matl/ModelDictionary.h> 

#include <data/Chronometer.h> 

#include <data/MixedData.h> 

#include <matl/MaterialModel.h> 

 

using namespace std;  

       

#ifdef USE_ZORGLIB_NAMESPACE 

USING_ZORGLIB_NAMESPACE 

#endif 
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// Internal Functions 

void Read_FSI_Inputs(); 

void FSI_Run_Type(); 

void Zorglib_FE_Initialization(); 

void Zorglib_Integrator_Initialization(); 

void Zorglib_Archival_Initialization(); 

void Build_FSI_Arrays(int *, int *, double *, double *, double *, int [][3]); 

 

// Zorglib Static Parameters 

extern int dimFEM; 

extern double FEMtimeStep; 

extern int FSIPhyNum; 

extern double SPECTRAL_RADIUS; 

extern string Constitutive_Model; 

extern string TwoD_Assumption; 

extern string System_Integrator; 

extern string System_Solver; 

extern int Archive_Interval; 

extern string RunType; 

extern int RestartStep; 

extern MeshedBody* themesh; 

extern vector<Element*> ElemSet; 

extern vector<Node*> nodeSetFSI; 

extern ElementSet FSI_ElementSet; 

extern NodeSet FSI_NodeSet; 

extern ConstitutiveModel* model; 

extern MaterialProperties theproperties; 

extern int dimFEMelem; 

extern MaterialModel* theMaterial; 

extern FEMechanicalSystem* FEMSystem; 

extern FEMechanicalSystem* FEMSystemInit; 

extern FEMechanicalSystem* FEMSystemStatic; 

extern SystemArray* u; 



 

88 

 

extern SystemArray* v; 

extern SystemArray* uSaved; 

extern SystemArray* vSaved; 

extern NewmarkIntegrator* FEMIntegrator; 

extern SystemArray* ExtForces; 

extern StationaryEquation* StaticEquation; 

extern LinearEquationSolver* StaticSolver; 

extern double FEMtimeStep; 

extern FEGmshArchivalTask* FEMTask1;  

extern FEGmshArchivalTask* FEMTask2; 

extern FEGmshArchivalTask* FEMTask3; 

extern FEGmshArchivalTask* FEMTask4; 

extern int numberArch1, numberArch2, numberArch3; 

 

// Connectivity array to transfer structural displacement from Zorglib to ISIS 

extern int* Zorglib_Force_Con; 

 

// Arrays of displacements of the current iteration 

extern double* iterdispX; 

extern double* iterdispY; 

extern double* iterdispZ; 

 

// Arrays of displacements from the previous iteration 

extern double* iterdispX_old; 

extern double* iterdispY_old; 

extern double* iterdispZ_old; 

 

// Under-relaxation parameter 

extern double omegaFSI; 

 

// To store mesh data 

extern int FSI_Node_Size; 

extern int* Zorglib_FSI_Nodes; 

extern int* MESH_FSI_Con; 
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extern int* Zorglib_FSI_Con; 

 

// To store initial FSI coordinates 

extern double *Xinit, *Yinit, *Zinit; 

 

// To store fluid force 

extern double* IFS_Force_X; 

extern double* IFS_Force_Y; 

extern double* IFS_Force_Z; 

 

// Output file declaration 

extern ofstream TipDisp; 

extern ofstream NL_TipDisp; 

extern ofstream ForceX; 

extern ofstream ForceY; 

extern ofstream outpNodeDOF; 

 

// Input and output streams for Restart computation 

extern ifstream* input_U; 

extern ifstream* input_V; 

extern ifstream* input_A; 

extern ofstream* output_U; 

extern ofstream* output_V; 

extern ofstream* output_A; 

 

// Current step time for archival purposes 

extern double Time_curent; 

 

#endif 
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B.8  Zorglib_FE_Initialization.cpp 

 

#include "init_ISIS.h" 

#include "IFSFunction.h" 

 

using namespace std; 

 

void Zorglib_FE_Initialization() 

{   

 // Build Material Model  

 model = ModelDictionary::build( Constitutive_Model,dimFEM);  

  

 // Read and Initialize Material Properties  

 theproperties.readFrom("Solid_Properties.mat");  

 theMaterial = new MaterialModel(*model,theproperties);  

 theMaterial->initialize(); 

 

 // Context   

 Context ContextCTX(dimFEM); 

 Context::Symmetry inputSymmetry = Context::NONE; 

 ContextCTX.setSymmetry(inputSymmetry); 

  

 // Create FE system  

 FEMSystem = new FEMechanicalSystem(ContextCTX,*themesh); 

 FEMSystem->addDeformableBody(*themesh,"DISPLACEMENTS"); 

  

 // set FE formulation  

 MixedData* FEMParams = new MixedData[1]; 

 FEMParams[0] = 1.0; 

 std::vector<std::string> FEDofs(1); 

 FEDofs[0] = "DISPLACEMENTS"; 

FEMSystem-

>setFormulation("body",dimFEM,1,TwoD_Assumption,FEMParams,*theMaterial,FEDofs); 
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 // Apply Boundary Conditions   

 FEMSystem->setSimpleConstraint("body",dimFEM-1,101,0.0,0,FEDofs[0]); 

 FEMSystem->setSimpleConstraint("body",dimFEM-1,101,0.0,1,FEDofs[0]); 

 

 // Initialize fluid force arrays  

 IFS_Force_X = new double[FSI_Node_Size]; 

 IFS_Force_Y = new double[FSI_Node_Size]; 

 IFS_Force_Z = new double[FSI_Node_Size]; 

  

 for (int i = 0; i < FSI_Node_Size; ++i) 

 {      

  IFS_Force_X[i] = 0.0; 

  IFS_Force_Y[i] = 0.0; 

 } 

  

 // Create and fnitialize force function (IFSFunction) and Node objects 

 IFSFunction* fcts[FSI_Node_Size*2]; 

  

 for (int i = 0; i < FSI_Node_Size*2; ++i) 

 { 

  fcts[i] = new IFSFunction(i); 

 }   

   

 { 

  int iF = 0; 

  for(int i = 0; i < FSI_Node_Size; ++i) 

  { 

   Node& FSI_Node = FSI_NodeSet.node(Zorglib_Force_Con[i]); 

   FEMSystem->setAppliedForce(FSI_Node,*fcts[iF],0,"DISPLACEMENTS"); 

   FEMSystem->setAppliedForce(FSI_Node,*fcts[iF+1],1,"DISPLACEMENTS"); 

 

   iF += 2; 

  }  

 } 
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 // Initialize FE System  

 FEMSystem->initialize(); 

} 

 

B.9  Zorglib_Integrator_Initialization.cpp 

 

#include "init_ISIS.h" 

using namespace std; 

 

void Zorglib_Integrator_Initialization() 

{ 

 // Initialize System Arrays  

 u = new SystemArray(*FEMSystem); 

 v = new SystemArray(*FEMSystem); 

     

 *u = 0.0; 

 *v = 0.0; 

  

 // Saved u and v variables  

 uSaved = new SystemArray(*FEMSystem); 

 vSaved = new SystemArray(*FEMSystem); 

 *uSaved = 0.0; 

 *vSaved = 0.0; 

 

 // Initialize time integrator  

 FEMIntegrator = new NewmarkIntegrator(*FEMSystem,"","FULL",false,false); 

  

 // Set algorithmic parameters for the time integrator 

  

 StringMap<double>::Type FEMalgParams; 

 double AL_F = 0.0, AL_M = 0.0, BET = 0.0, GAM = 0.0; 
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 if(System_Integrator == "STANDARD_NEWMARK") 

 { 

  // Standard Newmark Paramaters 

 

  AL_F = 0.0; 

  AL_M = 0.0; 

  BET = 0.25; 

  GAM = 0.5; 

 } 

 else if(System_Integrator == "GENERAL_ALPHA") 

 { 

  // General-alpha Paramaters 

 

  AL_F = SPECTRAL_RADIUS / (1 + SPECTRAL_RADIUS); 

  AL_M = (2*SPECTRAL_RADIUS - 1) / (1 + SPECTRAL_RADIUS); 

  BET = 0.25 * (pow((1 - AL_M + AL_F),2)); 

  GAM = 0.5 - AL_M + AL_F; 

 } 

 

     // Set Integrator Parameters 

  

 FEMalgParams["ALPHA_F"] = AL_F; 

     FEMalgParams["ALPHA_M"] = AL_M; 

     FEMalgParams["BETA"]    = BET; 

     FEMalgParams["GAMMA"]   = GAM; 

 

 FEMalgParams["INITIAL_TIME_STEP"] = FEMtimeStep; 

 FEMalgParams["MIN_TIME_STEP"] = 0.1*FEMtimeStep; 

 FEMalgParams["MAX_TIME_STEP"] = FEMtimeStep; 

 FEMalgParams["MAX_DIVISIONS"] = 10.; 

  

 FEMIntegrator->setParameters(FEMalgParams); 
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 if(System_Solver == "LINEAR") 

 { 

  // Initialize LinearEquationSolver  

  

  LinearEquationSolver* FEMSolver; 

  FEMSolver = new LinearEquationSolver(*FEMSystem); 

  FEMIntegrator->setSolver(*FEMSolver); 

 } 

 else if(System_Solver == "NEWTON") 

 { 

  // Initialize NewtonSolver 

  

  NewtonSolver* FEMSolver; 

  FEMSolver = new NewtonSolver(*FEMSystem,"","FULL"); 

  LineSearch* FEMlsrch; 

  FEMlsrch = new LineSearch(1e-2,5,1000); 

  FEMSolver->setLineSearch(*FEMlsrch); 

  FEMSolver->setMaxIter(50); 

  FEMSolver->setTolerance(1.e-8); 

  FEMSolver->setAbsoluteTolerance(1.e-12); 

  FEMSolver->setPrecision(1.e-12); 

  FEMIntegrator->setSolver(*FEMSolver); 

 } 

 

 // Time integrator general log file 

  

 FEMIntegrator->setLogFile("integ_log.plt"); 

} 
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B.10  Zorglib_Archival_Initialization.cpp 

 

#include "init_ISIS.h" 

 

using namespace std; 

 

void Zorglib_Archival_Initialization() 

{ 

 

     GmshMeshIO::writeMesh(*themesh,"resultsZorg.msh"); 

 GmshViewIO::Data outputNode = GmshViewIO::NODE; 

 GmshViewIO::Data outputElement_Node = GmshViewIO::ELEMENT_NODE; 

 GmshViewIO::Type outputVector = GmshViewIO::VECTOR; 

 GmshViewIO::Type outputTensor = GmshViewIO::TENSOR; 

 FEGmshArchivalTask::Format outputFormat = FEGmshArchivalTask::ASCII; 

  

 // Save displacement values during NonLinear Iteration 

FEMTask1 = new 

FEGmshArchivalTask("DISPLACEMENTS","body",dimFEMelem,1,outputNode,outputVe

ctor,"Displacements","resultsZorg-NL_Iteration",outputFormat,0); 

 FEMTask1->setFormatWidth(5); 

 FEMTask1->setTimeInterval(FEMtimeStep); 

 

 // Save displacement values after a certain time interval 

FEMTask2 = new 

FEGmshArchivalTask("DISPLACEMENTS","body",dimFEMelem,1,outputNode,outputVe

ctor,"Displacements","resultsZorg-Displ",outputFormat,0); 

 FEMTask2->setFormatWidth(5); 

 FEMTask2->setTimeInterval(FEMtimeStep); 

 

 // Save stress values after a certain time interval 

FEMTask3 = new 

FEGmshArchivalTask("stress","body",dimFEMelem,1,outputElement_Node,outputTensor,"

Stresses","resultsZorg-Stress",outputFormat,0); 
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 FEMTask3->setFormatWidth(5); 

 FEMTask3->setTimeInterval(FEMtimeStep); 

 

 // Save velocity values after a certain time interval 

FEMTask4 = new 

FEGmshArchivalTask("DISPLACEMENTS","body",dimFEMelem,1,outputNode,outputVe

ctor,"Velocities","resultsZorg-Velocity",outputFormat,0); 

     FEMTask4->setRateFlag(true); 

 FEMTask4->setFormatWidth(5); 

 FEMTask4->setTimeInterval(FEMtimeStep); 

} 

 

B.11  FSI_Run_Type.cpp  

 

#include "init_ISIS.h" 

 

using namespace std; 

 

void FSI_Run_Type() 

{ 

        if (RunType == "FULL") 

        { 

           output_U = new ofstream("FE_Displacements.txt"); 

           output_V = new ofstream("FE_Velocities.txt"); 

           output_A = new ofstream("FE_Accelerations.txt"); 

           

           FEMSystem->change(*u,*v); 

 

     for (int i = 0; i < FSI_Node_Size; ++i) 

     { 

            iterdispX[i] = 0.0; 

            iterdispY[i] = 0.0; 

            iterdispZ[i] = 0.0;      
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     } 

        } 

         

        else if (RunType == "RESTART") 

        { 

            input_U = new ifstream("FE_Displacements.txt"); 

           input_V = new ifstream("FE_Velocities.txt"); 

           input_A = new ifstream("FE_Accelerations.txt"); 

           string lineInput_U,lineInput_V,lineInput_A; 

           Partition PFree = FEMSystem->getPartition(Partition::FREE); 

           SystemArray a(*FEMSystem,PFree); 

           int size_U = u->size(); 

           int size_V = v->size(); 

           int size_A = a.size(); 

           

           for(int i = 0; i < RestartStep-1; ++i) 

           { 

              getline(*input_U,lineInput_U); 

              getline(*input_V,lineInput_V); 

              getline(*input_A,lineInput_A); 

           } 

           

           getline(*input_U,lineInput_U); 

           istringstream iss_U(lineInput_U); 

     string inp1; 

     iss_U >> inp1; 

           

           for(int i = 0; i < size_U; ++i) 

           { 

              iss_U >> (*u)[i]; 

           } 

           

           getline(*input_V,lineInput_V); 

           istringstream iss_V(lineInput_V); 
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     iss_V >> inp1;    

           

           for(int i = 0; i < size_V; ++i) 

           { 

              iss_V >> (*v)[i]; 

           } 

           

           getline(*input_A,lineInput_A); 

           istringstream iss_A(lineInput_A); 

   iss_A >> inp1;  

           

           for(int i = 0; i < size_A; ++i) 

           { 

              iss_A >> a[i]; 

           } 

 

           FEMSystem->change(*u,*v); 

           FEMIntegrator->setAcceleration(a); 

           

           output_U = new ofstream("FE_Displacements.txt"); 

           output_V = new ofstream("FE_Velocities.txt"); 

           output_A = new ofstream("FE_Accelerations.txt"); 

 

           ifstream input_FSI_Interface_Disp("FSI_Interface_Disp.txt"); 

           string line_FSI_Int; 

           getline(input_FSI_Interface_Disp,line_FSI_Int); 

           getline(input_FSI_Interface_Disp,line_FSI_Int); 

           istringstream iss_FSI_U(line_FSI_Int); 

 

           for (int i = 0; i < FSI_Node_Size; ++i) 

           {         

            iss_FSI_U >> iterdispX[i]; 

           }  
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           getline(input_FSI_Interface_Disp,line_FSI_Int); 

           istringstream iss_FSI_V(line_FSI_Int); 

 

           for (int i = 0; i < FSI_Node_Size; ++i) 

           {         

             iss_FSI_V >> iterdispY[i]; 

           }  

           

        }  

}  

 

B.12  IFSFunction.h 

 

#ifndef IFSFunction_H 

#define IFSFunction_H 

 

#include <data/Function.h> 

#include <string> 

 

#ifdef USE_ZORGLIB_NAMESPACE 

USING_ZORGLIB_NAMESPACE 

#endif 

 

class IFSFunction : virtual public Function { 

 

 protected: 

 

    unsigned int idx; 

 

 public: 

   

  // constructor 

    IFSFunction(unsigned int i, const std::string& s = "no name") 
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  : Function(s) { 

   idx = i;    

  } 

 

  // copy constructor 

    IFSFunction(const IFSFunction& ); 

   

  // destructor 

  ~IFSFunction() {} 

    

  // duplicate object 

  IFSFunction* clone() const {return new IFSFunction(*this);} 

 

  // get value     

  double value(double ); 

 

  // get derivative 

    double slope(double );  

   

  // get value and derivative 

  double value(double, double& ); 

   

  // print-out 

  std::string toString() const;  

}; 

 

#endif 
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