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Chapter 1

Introduction

The solution of linear systems is currently regarded as a pillar in scientific computing.

Apart that the vast majority of the ideas on which this branch of science is founded

are depth and beauty form the mathematical point of view, countless applications could

be mentioned. The areas requiring the solution of linear systems range from applied

mathematics, physics, economics, management and economics to name only a few.

In addition, it is well recognized that a great amount of time spent in a given computation

is devoted to the solution of such linear systems. It is now common the solution of

systems containing millions or even billions of equations. Therefore the necessity of

efficient methods have been always present.

Currently a large variety of techniques for the solution of linear systems are available.

One of the most successful are iterative methods, specifically those regarded as Krylov

subspace methods. Several techniques have been proposed over the years in order to

increase the efficiency of such methods. Maybe the most important and widely extended

is preconditioning. But this is not the unique, fast Fourier solvers, domain decomposition

and multigrid, to name only a few, are also available. Even more, nowadays this is an

active and productive research field.

It is one of these novel strategies for the acceleration and improvement of Krylov subspace

methods in which we are interested in developing the present work. Such a technique is

currently, with some degree of consensus, known as deflation.

1.1 Motivation

The main motivation for devote my master thesis project to deflation of Krylov subspaces

goes back my past job before enrolling this master program. In that job I was in charge

1



Chapter 1. Introduction 2

of develop efficient computational programs mainly oriented in the finite element method

context and fitting special client requirements. During developing such a task I had my

first approach with these kind of iterative methods.

The situation could not be better after, because during the lectures on Viscous Naval

Hydrodynamics in École Centrale de Nantes my former lecturer, and currently thesis

adviser, made special emphasis in the importance of robust, efficient and reliable linear

solvers for the simulation of fluid flows of practical interest.

What was even more encouraging is the fact that the conclusions of this master thesis

would be applicable to a well established commercial software for the numerical simu-

lation in fluid dynamics, a topic that deserves me a special interest. The program we

refer to is ISIS. This code has been created and currently maintained and improved by

a research group in the mentioned institution.

1.2 Objectives

Three general objectives in this work are pursued. The first of them is to review the

state of the art of Krylov subspace methods in a very general way and with some detail

deflation techniques reported as promising in the computational fluid dynamics context.

The second general objective is the computational implementation of those techniques

seeming more appropriates for the problem we have in mind. The third objective in this

work is the application of the mentioned computational programs to some problems of

our practical interest such as the linear systems arising from the ISIS software.

1.3 Structure of the Work

The present work is organized as follow:

• Chapter 1. Present chapter. It defines the motivation and aim of this work.

• Chapter 2. It provides a very general background of the numerical simulation

of fluid flow. Far to pretend to be a formal presentation its only purpose is to

elucidate some key ideas about the underlying problem from which arise the linear

systems we are interested to solve.

• Chapter 3. It states the basic results of linear algebra that will be useful in the

subsequent development of this work.
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• Chapter 4. Probably this is the hearth of this thesis. Krylov subspace methods

are introduced in a natural and intuitive way. We have used an informal language

more focused in the algorithmic implementations. Almost nothing is said about

the theoretical properties and analysis of the presented methods.

• Chapter 5. A large variety of the most successful and popular preconditioners is

presented here. Again an informal exposition has been preferred.

• Chapter 6. This is maybe the most important one in the present work. It

is completely devoted to the yet mentioned technique we are more interested to

explore. At the contrary of the previous chapters it is slightly more formal, but

special attention is payed to the algorithmic implementation.

• Chapter 7. Six selected examples are presented. This selection have been car-

ried out carefully with the claim of being representative of the large amount of

numerical results we have at concluding this work.

• Chapter 8. This concluding chapter provides a discussion of the results obtained

in this work. Particular emphasis is done in the applications and limitations of

the methods explored. It concludes identifying further developments that can be

carried out as a direct consequence of this work.



Chapter 2

Numerical Simulation of Fluid

Flow

Problems involving flows are encountered in many branches of engineering and science.

Examples are flows in water supply and treatment systems, machinery, seas and rivers,

and around aircraft, buildings and ships. The mathematical formulation of the laws

that govern the motion of fluid is known already for well over a century. This formula-

tion consists of some thermodynamic relations and a set of coupled partial differential

equations, the so-called Navier-Stokes equations, which describe conservation of mass,

momentum and energy for a fluid.

Appropriately defined boundary and initial conditions conditions completes the prob-

lem definition. In general, the resulting mathematical problem is far too difficult to

be solved by analytical means. Therefore, in the past one had to rely heavily on ex-

periments or greatly simplified mathematical models for the majority of flow problems.

However, experiments are often very expensive, difficult, dangerous or even impossible

to perform. On the other hand, the use of methods that solve the governing equations by

numerical means is an obvious alternative. Thanks to the tremendous increase in com-

putational power in the last decades, this approach has gained substantial significance.

The new scientific discipline that has evolved is called computational fluid dynamics

(CFD). Nowadays, CFD has, besides the more traditional experimental and analytical

approaches, become an indispensable tool for the fluid dynamist.

In writing this chapter we are interested only in mention briefly a very general overview

making emphasis on the topics we are concerned with in developing the present work. It

does not pretend to be a detailed exposition neither of the fundamentals of mathematical

fluid dynamics nor the numerical methods used to approach the problem.

4



Chapter 2. Numerical Simulation of Fluid Flow 5

2.1 The Navier-Stokes Equations

As vaguely mentioned previously, the Navier-Stokes equations are a set of partial differ-

ential equations that describes the dynamical behavior of a fluid. They can be derived

from fundamental physical principles as conservation of mass, momentum and energy.

We shall be particularly interested in a Newtoinian fluid in incompressible regime.

The first characteristic previously mentioned refers to a fluid property. A fluid is a

substance that cannot support a shear stress at rest or in uniform flow, in fact, in a

fluid, shear deformation will continue as long as any shear stress is applied. If the

relationship between the applied shear stress and the dynamical response of the fluid is

linear, this one is called Newtonian.

If while the fluid flows it does not experiment a noticeable change in its density, we

can regard this flow as incompressible. Gases can be easily compressed while for the

majority of liquids such compression is virtually impossible in room conditions.

With this considerations in mind we now write the Navier-Stokes equations

∇ · v = 0, (2.1)

∂v
∂t

+ v · ∇v = −1
ρ
∇p+ ν∇2v, (2.2)

where ρ is the fluid density and ν is the dynamic viscosity, both regarded as constant

fluid properties. The fluid velocity is denoted by v and the pressure by p.

Equation (2.1) is directly derived from the balance of mass and it is commonly known

as the continuity equation. Conservation of linear momentum leads us equation (2.2).

Solving this set of equations means precisely, determine the velocity vector v and the

pressure p in a spatial domain Ω ⊂ Rd of interest, with d = 2 or 3. For doing so, this

system must be supplied with appropriate initial and boundary conditions. Then we

write

∂v
∂t

+ v · ∇v = −1
ρ
∇p+ ν∇2v in Ω× (0, T ), (2.3)

∇ · v = 0 in Ω× (0, T ), (2.4)

v = v on ΓD × (0, T ), (2.5)

∂v/∂n̂ = g on ΓD × (0, T ), (2.6)

v(x, t = 0) = vo with ∇ · vo = 0. (2.7)
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This is the strong formulation of the Navier-Stokes equations which consists of the mo-

mentum equation (2.3), the continuity equation (2.4), the velocity boundary conditions

v on the Dirichlet boundary ΓD, the Neumann boundary conditions ∂v/∂n̂ = g on the

Neumann boundary ΓN and the initial condition vo satisfying the continuity equation.

Finally t = [0 T ] is the time interval of interest.

2.2 Poisson Pressure Equation

Notice that we have clearly stated that the solution of the Navier-Stokes equations

implies determining the velocity and pressure fields. But notice also that the strong form

of these equations does not specify nothing about the initial and boundary conditions

for the pressure.

In order to clarify this situation consider a solution of the Navier-Stokes equations that,

for the sake of simplicity but without loss of generality, satisfies an homogeneous Dirichlet

boundary condition in the whole boundary domain. Now, we take the divergence at each

side of the momentum equation (2.3)

∇ · ∂v
∂t

+∇ · (v · ∇v) = −1
ρ
∇ · (∇p) + ν∇ ·

(
∇2v

)
, (2.8)

commuting the space and time derivatives in the first term and the second and first

order space derivatives in the last one and finally taking the divergence of the pressure

gradient we have

∂

∂t
(∇ · v) +∇ · (v · ∇v) = −1

ρ
∇2p+ ν∇2 (∇ · v) .

Taking into account the continuity equation (2.4) and rearranging terms

∇2p = −ρ∇ · (v · ∇v) , (2.9)

which shows that the pressure field is a solution of the Poisson’s equation with a source

which is quadratic in the derivatives of the velocities.

Now, equation (2.9) must be supplied with suitable boundary conditions for p. We

obtain the pressure boundary conditions taking the dot product of each term in the

momentum equation (2.4) with the unit vector n̂ normal to the boundary Γ

∂

∂t
(v · n̂) + (v · ∇v) · n̂ = −1

ρ
∇p · n̂ + ν

(
∇2v

)
· n̂,
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where we have yet interchanged the time derivative and the dot product in the first

term. Using the homogeneous Dirichlet boundary condition for v we obtain

∇p · n̂ = µ∇2v · n̂,

or, in terms of the normal derivative

∂p

∂n̂
= µ∇2v · n̂, (2.10)

as may be easily verified, via the divergence theorem, the right hand side of (2.8) and

(2.10) satisfy the consistency condition

ν

∫
Ω
∇2p dΩ =

∫
Γ

∂p

∂n̂
dΓ.

We conclude that the pressure field p can be expressed in terms of the velocity field

v by solving the pure Neumann problem defined by equation (2.8) supplied with the

boundary condition (2.10) to within an additive constant, and we can write that

p = p(v). (2.11)

The initial condition for the pressure field p(x, t = 0) = po(x) for all x ∈ Ω, can be

obtained noting that (2.11) holds at each instant of time, in particular

po = po (vo) . (2.12)

up to an additive constant. It is now clear by the preceding remarks, particularly

(2.11) and (2.12) that the Navier-Stokes equations amount to an evolution equation for

the velocity field v which is a functional equation and no longer a partial differential

equation for p.

2.3 Numerical Methods

The strong formulation of the Navier-Stokes equations is a very complex and difficult

problem to solve. Analytical solutions for such system of equations are available only

for a few of extremely simplified problems with little practical interest.

Since the flows encountered in our every life experience are very complicated to be

tractable by analytical means one must rely on numerical approximations. That is,

the continuous mathematical model (2.3-2.7) is transferred to a discrete model which

approximates the solution in some selected points of the domain. The process will be
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referred as discretization, making particular emphasis in the context of partial differential

equations.

Currently there exists a large variety of methods that have been devised over the years

to perform such a task. Some of them are based in very different concepts, other ones

share many ideas and techniques among them. As far as we known, the most popular

methods have been traditionally the Finite Difference Method, Finite Volume Method,

Boundary Element Method and Finite Element Method, to name only a few.

Each method has its own cons and pros, as usual, the most accurate and robust are

also the most expensive. Low computational cost is usually payed with lost of numerical

accuracy and robustness.

In our current knowledge, almost all the discretization methods for partial differential

equations leads us a linear system of equations that must be solved. The complexity of

such solving usually increases as the mathematical model do.

Furthermore, during this solving process we spend the majority of the time invested

in the overall numerical approximation. For this reason, the efficient solution of such

linear systems of equations is of great importance in the numerical discretization of

partial differential equations.

Is precisely the fluid dynamics community one of the most demanding in this respect.

It is not wear to find in current computations of flows in industrial applications systems

having millions and even billions of equations. It seems that in the near future this

situation will become even more and more demanding.

Several strategies are used by these numerical schemes to obtain the velocity and pressure

fields. Those which obtain both at once are usually referred to Fully Coupled Schemes.

They lead us to a linear system in which both, the discretized velocity and pressure

are included as unknowns. These linear systems have a very particular form. The

discretized continuity equation acts like a Lagrange multiplier, a consequence of the

incompressibility condition. These linear systems are called Saddle Point Systems by

its close relationship of those obtained in the context of restricted optimization.

Among the alternatives of this strategy are the decoupled or Segregated methods. They

obtain the velocity and pressure fields separately. They suppose a velocity guess is

known and with it they compute the corresponding pressure field. As we have see, this

is possible by using the Poisson Pressure equation that, given a velocity fields determines

the pressure. This pressure is used to refine the approximation for the velocity and so

on.
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Note that the Poisson pressure equation is a Laplacian type operator whose discretization

does not represent any special difficulty. Although this direct discretization is seldom

done in practice. Instead of that, an approximation of the operator is obtained in terms

of those used for the pressure gradient and divergence of the velocity. The common

purpose of doing that is the fulfillment of the LBB condition.

In this work we are interested in the solution of such linear systems arising in the dis-

cretization of partial differential equations in the computational fluids dynamics context.

Special attention will be payed to those corresponding to the Poisson pressure equation.



Chapter 3

Background in Linear Algebra

This chapter provides a general overview of basic concepts of linear algebra that will

be useful in subsequent chapters. It is also intended to introduce the notation used in

the rest of this work which is quite standard. We have mainly followed the classical

introductory book [121], the more focused ones in applied linear algebra [2, 3, 41, 103,

117, 132] and those oriented for the solution of linear systems [8, 64, 66, 71, 78, 87, 107,

138] where detailed proofs can be found.

3.1 Vector Spaces

We begin by defining a vector space V as a non-empty set over a numeric field K = R
or K = C, whose elements are called vectors together with two basic operations, namely

addition and scalar multiplication, that satisfies the following properties:

1. addition is commutative, that is u + v = v + u , ∀ u , v ∈ V;

2. there are two numbers called zero 0 and unity 1 of K such that ∀v ∈ V we have

0 · v = 0 and 1 · v = v ;

3. for each vector v ∈ V there exists its opposite, −v ∈ V such that v + (v) = 0 ;

4. the scalar multiplication is distributive, that is

∀α ∈ K, ∀u , v ∈ V, α (u + v) = αu + αv , (3.1)

∀α, β ∈ K, ∀v ∈ V, (α+ β) v = αv + βv , (3.2)

10
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5. additionally, it is also associative

∀α, β ∈ K, ∀v ∈ V, (αβ) v = α (βv) . (3.3)

For the sake of simplicity, we shall mainly work with the real case, K = R, unless

otherwise explicitly stated.

We are mainly interested in the set of the n−tuples of real numbers with n ≥ 1, therefore

V = Rn. Of great importance in this work is a nonempty part W of V which is called a

vector subspace of V iff W is a vector space over K.

Consider a set of p vectors of V, then the set W of the linear combination of those p

vectors is the generated subspace or span of the vector set denoted by

W = span {v1, · · · , vp} ,
= {v = α1v1 + · · ·+ αpvp | αi ∈ K, i = 1, · · · , p} .

(3.4)

The set {v1, · · · , vp} is the set of generators of W.

Let W1, · · · ,Wm be vector subspaces if V, then the set

S = {w : w = v1 + · · ·+ vm | v i ∈ Wi, i = 1, · · · ,m} (3.5)

is also a vector subspace of V. This subspace S is the direct sum of the subspaces Wi if

any element s ∈ S can be represented as

s = v1 + · · ·+ vm with v i ∈ Wi, i = 1, · · · ,m. (3.6)

In such a case we write

S =W1 ⊕ · · · ⊕Wm =
m⊕
i=1

Wi. (3.7)

A set of vectors v i ∈ V for i = 1, · · · ,m is linearly independent if

α1v1 + · · ·+ αmvm = 0 (3.8)

with α1, · · · , αm ∈ K implies α1 = · · · = αm = 0. Otherwise the set is called linearly

dependent.

Any set of linearly independent generators of V is a basis of V. Moreover, consider the

set of vectors {u1, · · · ,un} is a basis of V, the expression

v = v1u1 + · · ·+ vnun (3.9)
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is the decomposition of v with respect to the basis and the scalars v1, · · · , vn ∈ K are

the components of v with respect to the given basis.

Furthermore, let V be a vector space which admits a basis of n vectors. Then every set of

linearly independent vectors of V has at most n vectors. This number is the dimension

of V denoted by dim (V) = n. Our interest will be focused on the finite case.

3.2 Matrices and Vectors

Let m and n be two positive integers. A matrix with m rows and n columns is a set of

mn scalars aij ∈ K, with i = 1, · · · ,m and j = 1, · · · , n; represented in the rectangular

array

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 . (3.10)

The set of all m × n matrices is a vector space; which in the real case is denoted as

A ∈ Rm×n. The main operations with matrices are

• Addition: C = A + B , where A, B and C are m× n matrices. The entries of C

are given by

cij = aij + bij , i = 1, · · · ,m, j = 1, · · · , n. (3.11)

• Scalar multiplication: C = αA, where A and A are m× n matrices; then

cij = αaij + bij , i = 1, · · · ,m, j = 1, · · · , n. (3.12)

• Matrix product: C = AB , where A ∈ Rm×p, B ∈ Rp×n and C ∈ Rm×n with

entries given by

cij =
p∑

k=1

aikbkj . (3.13)

Given a matrix A ∈ Rm×n three special cases can be identified depending on the values

of m and n. The first is when m > 1 and n = 1 leading us a column vector ; the

alternative case when m = 1 and n > 1 give us a row vector. Finally, when m = n we

have a square matrix ; additionally we call the set (a11, · · · , ann) its main diagonal.

Of special interest is the square matrix I n having as entries all ones in the main diagonal

and zeros otherwise. It is called the identity of order n and represents the unity of Rn×n.

When the order n is clear we shall simply write I .
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Given A ∈ Rn×n and the integer p, we define Ap as the product of A repeated p times.

Note that A0 = I .

Of special interest are the so called elementary row operations performed on a matrix.

We list them here

• Pre-multiplying A by a diagonal matrix D = diag (1, · · · , 1, α, 1, · · · , 1), with α

occupying the i−th position is equivalent to multiply only the i−th row of A by

α and left all other rows unchanged.

• Pre-multiplying A by the elementary permutation matrix P (i,j) defined as

p(i,j)
rs =


1, if r = s = 1, · · · , i− 1, i+ 1, · · · , j − 1, j + 1, · · ·n,

1, if r = j, s = i or r = i, s = j,

0, otherwise.

(3.14)

interchanges the i−th and j−th rows, leading all remaining entries unchanged.

The successive product of elementary permutation matrices form a permutation

matrix. All them having the special property P2 = P , thus, they are projectors.

• Pre-multiplying A by the matrix I + N
(i,j)
α with the last one defined as

(
N (i,j)

α

)
rs

=

α, if r = i and s = j

0, otherwise.
(3.15)

adds α times the j−th row to the i−th.

The analogous operations can be also performed by columns by post-multiplying by

similarly defined matrices.

A square matrix A is said to be regular if there exist a square matrix B of the same

order such that AB = BA = I . We call such B as the inverse of A and denote it by

A−1. If such an inverse does not exist, then we say that A is singular.

The transpose of a matrix A ∈ Rm×n is a matrix C ∈ Rn×m whose entries are given by

cij = aji and denoted by AT . A square matrix satisfying A = AT is called symmetric.

Those for which A = −AT holds are called skew-symmetric.

Finally if AAT = ATA = D , with D a diagonal matrix having non vanishing diagonal

entries, then A is orthogonal ; moreover if D = I it is orthonormal implying that

A−1 = AT . This kind of matrix is commonly denoted by Q .
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3.3 Eigenvalues and Eigenvectors

Let A be a real or complex square matrix of order n, we call λ ∈ C an eigenvalue of

A if there exists a non zero vector x ∈ C such that Ax = λx . The vector x is the

eigenvector associated to the eigenvalue λ. The set of all eigenvalues of A is called the

spectrum of A and it is denoted by σ (A).

Furthermore, the eigenvalues can be determined by solving the characteristic equation

pA (λ) = det (A− λI ) = 0 (3.16)

where pA (λ) is the characteristic polynomial. Since it is of degree n in λ, then there

exists n eigenvalues, not necessary distinct.

An eigenvalue has algebraic multiplicity ka if it is a ka-fold root of the characteristic

polynomial. Moreover, for each eigenvalue λ the set of the eigenvectors associated with

it, together with the null vector is a subspace known as the eigenspace S associated with

λ and dimension kg called the geometric multiplicity of λ. It can not be greater than

the algebraic multiplicity ka of λ. Eigenvalues for which kg < ka are called defective. A

matrix having at least one defective eigenvalue is called defective.

We state without proof the following property

det (A) =
n∏
i=1

λi, (3.17)

from which is easy to conclude that a singular matrix has at least one eigenvalue equals

that zero.

We define the spectral radius as the maximum modulus of the eigenvalues and denote it

by ρ (A), that is

ρ (A) = max
λ∈σ(A)

= |λ|. (3.18)

Using the characteristic equation for AT it follows that ρ (A) = ρ
(
AT
)
. Moreover, let

α ∈ C we have ρ (αA) = |α|ρ (A) and given k a positive integer we have ρ
(
Ak
)

=

[ρ (A)]k.

We say that two regular matrices A and B are similar if there exits a third regular

matrix C such that

B = C−1AC . (3.19)
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One of the most important and useful properties of this similarity transformation is the

fact that σ (A) = σ (B). Moreover, it is easy to verify that, given an eigenpair (λ,x ) of

A then
(
λ,C−1x

)
is an eigenpair of the similar matrix B .

We say that A is diagonalizable if it is similar to a diagonal matrix, in this particular

case we write

AS = SΛ, (3.20)

with the columns of S being the eigenvectors; which are each other orthogonal; and Λ

a diagonal matrix containing the corresponding eigenvalues.

A special case is when A is real and symmetric since it can be proven that the spectrum

is real and we order the eigenvalues in non-decreasing form

λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn. (3.21)

The greatest one λn is known as the dominant eigenvalue and the smallest one is the

inverse dominant eigenvalue. The latter case comes from the fact that given a regular

matrix A, the eigenvalues of its inverse A−1 are the reciprocals of those eigenvalues of

A.

3.4 Norms

In subsequent chapters of the present work we will need to quantify errors or measure

distances in some sense which can be carried out by computing the magnitude of a vector

or a matrix. Then we introduce here the vector norm concept and after extend it to

matrices.

A vector space V over K is an inner vector space if its is endowed with a function

V × V → K denoted by (·, ·) called inner product which enjoys the following properties

• it is linear with respect to the vectors of V, that is

(αx + βz ,y) = α (x ,y) + β (z ,y) , ∀ x ,y , z ∈ V and α, β ∈ K; (3.22)

• is is Hermitian, that is

(x ,y) = (y ,x ), ∀ x ,y ∈ V (3.23)

where the overbar denotes the complex conjugate. Note that when K = R we can

omit it.
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• it is positive definite, that is

(x ,x ) ≥ 0, ∀ x 6= 0 (3.24)

equality holds iff x = 0 .

In the particular case of the vector space V = Kn the Euclidean inner product is of

paramount importance. It is defined as

(x ,y) =
n∑
i=1

xiyi. (3.25)

Moreover, consider the case V = Rn and any square matrix y ∈ Rn×n, the following

relation holds

(Ax ,y) =
(
x ,ATy

)
. (3.26)

It is easy to verify that orthonormal matrices Q preserves the Euclidean inner product

(Qx ,Qy) =
(
x ,QTQy

)
= (x ,y) . (3.27)

Once a vector space has been endowed with an inner product, it is possible to endow it

with a vector norm V → K, denoted by || · ||, in order to obtain a normed vector space

(V, || · ||) having the following properties

• it is positive definite, that is

||x || ≥ 0 ∀ x ∈ V (3.28)

equality holds iff x = 0 .

• it is homogeneous, that is

||αx || = |α| ||x || ∀ α ∈ K and ∀ x ∈ V (3.29)

• triangle inequality

||x + y || ≤ ||x ||+ ||y || ∀ x ,y ∈ V. (3.30)

Given a vector space V, several norms can be defined in it, they will be distinguished

among each other by suitable subscripts. For example, some of the most important

norms for V = Rn are the Hölder norms defined as

||x ||p =

(
n∑
i=1

|xi|p
) 1

p

, for 1 ≤ p ≤ ∞. (3.31)
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In the limit p→∞ the norm ||x ||p does exits, is finite and is called the maximum norm

since it equals the maximum module of the components of x , that is

||x ||∞ = max
1≤i≤n

|xi|. (3.32)

When p = 1 the norm ||x ||p is simply the module sum of the components of x , that is

||x ||1 =
n∑
i=1

|xi|, (3.33)

Another special and very useful norm is when p = 2, notice that this norm is induced by

the Euclidean inner product and therefore is referred as the Euclidean norm given by

||x ||2 =

(
n∑
i=1

|xi|2
) 1

2

=
√

(x ,x ), (3.34)

for which the Cauchy-Schwarz inequality holds which reads as follows

| (x ,y) | ≤ ||x ||2 ||y ||2, (3.35)

where strict equality holds iff one vector is a multiple of the other one.

The definition of norm makes now clear the definition of unitary vector which is one

with unit norm, that is x ∈ V is unitary iff ||x ||2 = 1.

It makes also clear, using together with the inner product, a more precise definition of

orthogonality. Given two non null vectors x ,y ∈ V they are each other orthogonal if

(x ,y) = 0.

Notice also that orthogonal matrices preserves the Euclidean norm of any vector

||Qx ||22 = (Qx ,Qx ) =
(
x ,QTQx

)
= (x ,x ) = ||x ||22. (3.36)

During this work we will be interested in sequences of vectors
{
x (k)

}
converging to the

vector x ∈ V such that

lim
k→∞

x (k) = x if lim
k=∞

x
(k)
i = xi, for i = 1, · · · , n; (3.37)

that is, local convergence is a necessary condition to attain global convergence. If this

is the case we have

lim
k=∞

x (k) = x ⇔ lim
k=∞
||x (k) − x || = 0. (3.38)
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The space K(n×n) containing the (n×n) matrices is also a linear vector space of dimension

n2; hence, we may define norms on it. We call them as matrix norms and in sake of

clearness the previously discussed ones are vector norms.

The generalization of the Euclidean vector norm leads to the Frobenius norm defined as

||A||F =

√√√√ n∑
i=1

n∑
j=1

|aij |2. (3.39)

The most important matrix norms are those induced by a vector norm, in such a case

they are defined as

||A|| = sup
||x ||=1

||Ax ||, (3.40)

all these norms are positive definite, homogeneous and satisfy the triangle inequality.

Among the most important matrix norms are the 1-norm and infinite norm defined as

||A||1 = max
j=1,··· ,n

n∑
i=1

|aij |, and ||A||∞ = max
i=1,··· ,n

n∑
j=1

|aij |. (3.41)

Probably the most important matrix norm is the one obtained with p = 2 and known as

the spectral norm, we state without prof the fact that when A = AT ∈ R(n×n) we have

||A||2 = ρ (A) , (3.42)

having the important consequence that, for orthogonal matrices ||Q ||2 = 1.

3.5 Special Matrices

Several kinds of special matrices have been mentioned during the present chapter de-

pending mainly on two different criteria. The first criteria is related with the structural

properties of the matrices at hand as square or diagonal matrices. The second crite-

ria is related with the algebraic properties of matrices such as regularity, projection,

defectiveness, symmetry or orthogonality.

In this concluding section we shall mention some special matrices endowing certain useful

properties that will be exploited in subsequent chapters.

We shall consider here only real matrices A ∈ R(m×n), the extension to the complex

case is straightforward. We say that a matrix A ∈ R(m×n) has lower band p if aij = 0

when i > j+ p and upper band q if aij = 0 when j > i+ q. Note that the yet mentioned
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diagonal matrices are banded matrices with p = q = 0, while lower trapezoidal matrices

have p = m− 1, q = 0 and upper trapezoidal matrices have p = 0, q = n− 1.

Special cases of trapezoidal matrices arise when they are also square, in such situations

we have a lower triangular matrix for which aij = 0 when i < j and similarly a upper

triangular matrix for which aij = 0 when i > j. They are usually denoted by L and U ,

respectively, and have the generic form

L =


l11 0 · · · 0

l21 l22 · · · 0
...

...
. . .

...

ln1 ln2 · · · lnn

 and U =


u11 u12 · · · u1n

0 u22 · · · u2n

...
...

. . .
...

0 0 · · · unn

 , (3.43)

additionally, when the entries on the main diagonal are all equal to one, then they are

called unit lower and unit upper triangular matrices.

Other useful cases of banded square matrices are the tridiagonal matrices for which

p = q = 1. They are frequently denoted in abbreviated form as tridiagn (b,d , c), having

as lower diagonal the vector b = [b1, · · · , bn−1]T , main diagonal d = [d1, · · · , dn]T and

upper diagonal c = [c1, · · · , cn−1]T .

Of great importance in this work are the so-called upper Hessenberg matrices, for which

hij = 0 for any pair i, j such that i > j + 1. In the square case they will be denoted as

H n and the (n+ 1)× n case by H n. They can be sketched as

H n =


h11 h12 · · · h1n

h21 h22 · · · h2n

...
...

. . .
...

0 0 hn,n−1 hnn

 and H n =



h11 h12 · · · h1n

h21 h22 · · · h2n

...
...

. . .
...

0 0 hn,n−1 hnn

0 0 0 hn+1,n


,

(3.44)

the definition of the lower cases are straightforward.

The Givens elementary matrices are orthogonal rotation matrices which allow us to

introduce zeros in certain position of a matrix or a vector. Given a pair of indices r and

s and an angle θ, we define these matrices as

G (r, s, θ) = I −Y (3.45)



Chapter 3. Background in Linear Algebra 20

where Y ∈ Rn×n is defined as

yij =



1− cos (θ) , if i = j = r or i = j = s

− sin (θ) , if i = r and j = s

sin (θ) , if i = s and j = r

0, otherwise.

(3.46)

For a given vector x ∈ Rn, the product z = GTx rotates x counterclockwise by an

angle θ in the plane (xi, xj). Then the components of z are given by

zk =


xk, if k 6= i, j

cxi − sxj , if k = i

sxi + cxj , if k = j

(3.47)

where we have done c = cos (θ) ans s = sin (θ). If we take θ = tan−1 (−xj/xi) we get

zj = 0 and zi =
√
x2
i + x2

j . The opposite case with zi = 0 and zj =
√
x2
i + x2

j is obtained

taking θ = tan−1 (xi/xj).

For concluding this section we shall review one of the fundamental concepts on which

is based the overall present work, namely sparsivity. Going back to the basic definition

of matrix we see that it contains n2 in the square case, such a matrix is referred to as

a dense matrix. We have seen also special cases of matrices with only some of their

entries as non zeros such as banded matrices which for instance are a special case of

sparse matrices. Although sparse matrix is defined somewhat vaguely we can regard

a matrix as sparse whenever special techniques can be used to take advantage of the,

possibly large, number of zero entries and their location. The most basic idea is the fact

that these zeros may not be stored.

3.6 Linear Systems

A linear system of m equations with n unknowns is a set of algebraic linear relations of

the form
n∑
j=1

aijxj = bi, for i = 1, · · · ,m (3.48)

where xj are the unknowns, aij are the coefficients of the linear system and bi are the

components of the right hand side. During this work we are mainly interested in the

real case when the number of unknowns is equal to the number of equations m = n.
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Therefore the system (3.48) can be written compactly in matrix form as

Ax = b, (3.49)

where A ∈ R(n×n) is the coefficient matrix, b ∈ Rn is the right hand side and x ∈ Rn is

the solution vector.

Solution a linear system means, given A ∈ R(n×n) and b ∈ Rn find x satisfying

(3.49).The existence and uniqueness of the solution are ensured if the coefficient ma-

trix is regular, in such a case the solution is given by

x = A−1b. (3.50)

The solution of linear systems is among the most important, common and time con-

suming problems in scientific computing. These linear systems arise in a wide range of

applications; the main is probably the discretization of partial differential equations but

several branches of science such as chemical engineering processes, economic models and

analysis of circuits, to name only a few, lead linear systems to solve.

Dense direct solvers for solving (3.49), mainly based on the factorization A into easily

invertible matrices, have been the first techniques devised to handle the problem but

they suffer from the significant drawback that, although the operation count is fixed and

known it is usually O
(
n3
)
.

Important savings in storage and computational cost can be achieved if the matrix

involved is sparse, leading to specialized implementations known as sparse direct solvers

which are widely used in industrial and commercial applications. This is mainly due to

the fact that they are robust, well studied and require predictable amounts of memory

and operations. But even so this methods still suffers from poor scaling as the dimension

of the linear systems grow even more and more.

Iterative methods represent an alternative technique for the same purpose because in

principle they does not require either access or modify individual entries of the coefficient

matrix. It is required only to form matrix by vector products, that is, given a vector y

we need to compute z = Ay , and in the unsymmetric case some methods also require

the product ATy . In both cases suppose the matrix has, as average, µ entries per row

then we need approximately µn arithmetic operations to perform such a product.

Then an ideal iterative method is one that finds the solution x after n iterations and

for which the main cost per iteration is involved in evaluating matrix by vector prod-

ucts, thus the arithmetic operation count is O
(
µn2

)
. If µ � n, considerable gains in

time could be achieved. Furthermore, iterative methods, in principle, does not require
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more memory positions for the matrix itself and usually a few additional vectors are

required. This situation is when iterative methods are competitive, faster or even the

only alternative to direct methods.

Although in the preceding discussion we have segregated in a very simplistic way direct

and iterative solvers, we shall have the opportunity to see that currently the border be-

tween both kind of techniques are more and more blurred, borrowing ideas and concepts

mutually each other. This will be more clear in subsequent chapters, particularly in the

one devoted to preconditioning.



Chapter 4

Krylov Subspace Methods

4.1 Iterative Methods

Now we are faced with the problem of solving a linear system as (3.49) by an iterative

method. The basic idea underlying this kind of techniques is to construct a sequence of

vectors
{
x (k)

}
such that

lim
k→∞

x (k) = x , (4.1)

where x will be referred as the exact solution given by (3.50) and x (k) is the k−th

approximation. When k = 0 it is called the initial guess. Note that in (4.1) we have

implicitly assumed that the method is convergent a matter we shall discuss about briefly.

In theory, the iterative process consists of an infinite number of iterations, although in

practice it is stopped as soon as the inequality ||x (k) − x || < ε is satisfyed, being || · || a

suitable norm and ε a predefined parameter called tolerance. However, the exact solution

x is not known making this stopping criterion useless in practice, then it is necessary to

introduce suitable stopping criteria.

In doing so we define two vectors that will be useful in measuring the effectiveness of

the iterative process. The first one is the error vector of the k−th approximation as

e(k) = x (k) − x , (4.2)

the second one is the residual vector of the k−th approximation as

r (k) = b −Ax (k). (4.3)

23
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Solving for x (k) from (4.2) and substituting in (4.3) we found that both are related by

Ae(k) = −r (k). (4.4)

We consider a method of the form

Given x (0), x (k+1) = Bx (k) + f , k ≥ 0, (4.5)

with B ∈ Rn×n the iteration matrix and f ∈ Rn obtained from b.

From (4.1) we expect that the difference between two successive approximations x (k)

and x (k+1) becomes more and more negligible as k grows, implying that the solution x

is a fixed point of (4.5), that is

x = Bx + f , (4.6)

where, in order to compute f we use the exact solution x = A−1b

f = (I −B)A−1b. (4.7)

Such a method for which (4.6) is satisfied is known to be consistent. Note that this

analysis is only of theoretical interest since it implies the computation of the inverse of the

coefficient matrix. Furthermore, consistency is a necessary but not sufficient condition

for guarantee that effectively, when k grows x (k) is a more accurate approximation to x

in some sense; that is, if the method is convergent.

In order to verify if an iterative method is convergent we take f as in (4.7) and substitute

it in (4.6) to get

x (k+1) = Bx (k) + (I − b)A−1b, (4.8)

substituting the exact solution x = A−1b we have

x (k+1) − x = B
(
x (k) − x

)
, (4.9)

by the error vector definition (4.2) and induction on k we can write

e(k+1) = Be(k) ⇒ e(k) = Bke(0). (4.10)

Using the diagonalization of the iteration matrix B as in (3.20) and the already men-

tioned result ρ
(
Ak
)

= [ρ (A)]k we have

B = SΛS−1 ⇒ Bk = SΛkS−1, (4.11)
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thus, for any initial guess, convergence is ensured if

lim
k→∞

Bke(0) = 0 , ∀ e(0) ⇔ ρ (B) = max
λ∈σ(B)

|λ| < 1. (4.12)

The most intuitive way to construct an iterative method is using a splitting of the form

A = M − N where M is easily invertible. Then, given x (0), we compute x (k+1) for

k ≥ 0 solving the systems

Mx (k+1) = Nx (k) + b. (4.13)

Multiplying by M−1 and substituting N = M −A we get

x (k+1) = x (k) + M−1r (k), (4.14)

where r (k) = b−Ax (k) is the k−th residual vector. Furthermore it is posible to introduce

a relaxation parameter αk

x (k+1) = x (k) + αkM
−1r (k), (4.15)

which leads us to the non stationary Richardson method. Otherwise, if αk = α we

obtain the stationary Richardson method.

We now consider the most simple case by taking M = I and α = 1, implying B = I−A,

we obtain the simple Richardson method which iterates as

x (k+1) = x (k) + r (k), (4.16)

multiplying by −A and adding b in both sides we have

b −Ax (k+1) = b −Ax (k) −Ar (k), (4.17)

which in turns can be expressed in terms of residuals

r (k+1) = (I −A) r (k), (4.18)

and finally, by induction on k, we can write

r (k+1) = (I −A)k+1 r (0). (4.19)

Expression (4.19) can be modified to handle the non stationary case as

r (k+1) = (I − αkA)k r (0). (4.20)
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More important is the fact that x (k+1) can be expressed as a linear combination of the

initial guess and the previous residuals

x (k+1) = x (0) +
k∑
j=0

αjr
(j). (4.21)

which is the departure expression for the subsequent section.

4.2 The Krylov Subspace

From (4.20) it is clear that the k−th residual lies in the subspace

r (k) ∈ span
{
r (0),Ar (0),A2r (0), ...,Ak−1r (0)

}
. (4.22)

The m−dimensional subspace spanned by a given vector v and increasing powers of A

applied to v , until the (m− 1)−th power is the m−dimensional Krylov subspace which

we now define formally as

Km (A; v) = span
{
v ,Av ,A2v , ...,Am−1v

}
. (4.23)

Moreover, from (4.21) it is also clear that we can find approximations to the solution

using a basis constructed with this subspace as follows

x (k+1) ∈ x (0) ⊕Kk

(
A; r (0)

)
, (4.24)

that is, the correction that makes the initial guess closer to the solution of the linear

system (3.49) also lies in this Krylov subspace, therefore, in order to find better successive

approximations a good alternative is explore the Krylov subspace.

Methods attempting to improve approximations using the Krylov subspace are usually

referred as Krylov subspace methods. These methods can be roughly classified in four

families depending on the manner in which they identify x ∈ Kk

(
A; r (0)

)
:

1. Ritz-Galerkin.- Constructs x (k) in a way that the residual must be orthogonal to

the Krylov subspace: r (k) ⊥ Kk

(
A; r (0)

)
.

2. Residual norm minimization.- Selects x (k) such that ||r (k)||2 is minimized over

Kk

(
A; r (0)

)
.

3. Petrov-Galerkin.- Constructs x (k) in a way that the residual is orthogonal to other

subspace: r (k) ⊥ Lk.
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4. Error norm minimization.- Selects x (k) such that the error norm ||e(k)||2 is mini-

mized on ATKk

(
AT ; r (0)

)
.

4.3 Arnoldi Methods

In order to generate better approximations x (k) to the solution (3.50) with any of the

families already enumerated we must first construct a suitable basis for the Krylov

subspace Kk

(
A; r (0)

)
. The most obvious one could be

r (0),Ar (0),A2r (0), ...,Ak−1r (0). (4.25)

However, this basis results being not very good from the numerical point of view because

as k increases the successive generated vectors Ajr (0) align more and more in the direc-

tion of the dominant eigenvalue as done with the power method. Hence they becomes

to be linear dependent doing the basis formed with them ill conditioned.

In order to generate a most suitable basis for the Krylov subspace, an process can be

used and in this manner obtain an orthogonal basis for the Krylov subspace Kk

(
A; r (0)

)
.

This situation can be handle by the Arnoldi’s method introduced in 1951 as a procedure

for transforming a general matrix into Hessenberg form of dimension m � n with the

purpose to, instead of solving linear systems, approximate the extreme eigenvalues of

the original matrix. The method proved its profitability even more when the matrices at

hand were large and sparse. Moreover it can also be used for constructing an orthogonal

basis of the Krylov subspace.

The mentioned orthogonalization process can be performed with the classical Gram-

Schmidt procedure which for a fixed m and a unit vector ||v ||2 = 1, it computes for

k = 1, 2, ...,m

hik = (v i,Avk) , i = 1, 2, ..., k (4.26)

ṽk+1 = Avk −
k∑
i=1

hikv i, (4.27)

hk+1,k = ||ṽk+1||2, (4.28)

vk+1 = ṽk+1/||ṽk+1||2. (4.29)

note that, if hk+1,k = 0 in (4.28) the algorithm stops because in such a case (4.29) is

not defined; but this is not an undesired situation as we shall see shortly. The vectors

v1, · · · , vk+1 are called Arnoldi vectors.
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Unfortunately, it is widely known that the classical Gram-Schmidt suffers of loss of

orthogonality among the computed vectors in finite precision arithmetic due to the

presence of round off errors. A simple remedy of this situation leads to what it is

commonly referred as the Modified Gram-Schmidt orthogonalization procedure which

we present in the algorithm 4.3.

Given a vector v1 with ||v1||2 = 1

for k = 1, 2, ...,m do

w = Avk

for i = 1, 2, ..., k do

hik = (w , v i)

w = w − hikvk
end for

hk+1,k = ||w ||2. If hk+1,k = 0 stop.

vk+1 = w/hk+1,k

end for

Algorithm 1: Modified Gram-Schmidt Orthogonalization.

It is important to mention that both algorithms perform the same number of arithmetic

operations, thus their computational costs are the same. Additionally, it is easy to verify

that in exact arithmetic without round off errors, both algorithms, the classical and

modified Gram-Schmidt are equivalent. A third and even more accurate implementation

uses Householder reflectors to achieve the required orthogonality but in this case the

operations count is slightly increased. Other alternatives have been proposed in order to

improve the orthogonality among the Arnoldi vectors, one of them consists in performing

a re-orthogonalization of the last computed Arnoldi vector against the set already stored.

Now, suppose k steps of the Arnoldi algorithm has been run, then v1, v2, ..., vk is an

orthonormal basis for Kk (A; v), if additionally we define the n × k matrix satisfying

V T
kV k = I k as

V k = [v1, v2, ..., vk] ∈ Rn×k, (4.30)

we have that

V T
kAV k = H kk and V T

k+1AV k = H k+1,k, (4.31)

where H k+1,k ∈ Rk+1×k is the upper Hessenberg matrix with hij computed by the

Arnoldi algorithm.

By setting the first Arnoldi vector as v1 = r (0)/ρ with ρ = ||r (0)||2, the Arnoldi algo-

rithm will provide us with an orthonormal basis for the Krylov subspace and according
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with (4.24) the k−th approximation will be given by

x (k) = x (0) + V ky
(k), (4.32)

where y (k) is chosen in accordance with one of the four families of Krylov methods yet

mentioned.

4.3.1 Full Orthogonalization Method

We first study a method based on the Ritz-Galerkin condition satisfying r (k) ⊥ Kk

(
A; r (0)

)
,

which is equivalent to

V T
k r

(k) = 0 , (4.33)

since r (k) = b −Ax (k) and taking x (k) as (4.32) we obtain

V T
kAV ky

(k) = V T
k r

(0), (4.34)

this system is the projection of the original system Ax = b onto the Krylov subspace.

Given the orthogonality of V k and the choice of v1 as the normalized initial residual, it

follows that V T
k r

(0) = ρê1 with ê1 being the first canonical unit vector in Rk. Moreover,

we do not need to additionally compute the (k×k) matrix V T
kAV k since it has already

been provided by the Arnoldi method as stated in the first expression in (4.31). Then

we have

H k,ky
(k) = ρê1. (4.35)

Now we must solve this system for y (k). Once it has been determined we obtain x (k)

substituting it in (4.32). An obvious option is to use Gaussian elimination in order to

obtain the LU factorization of the upper Hessenberg matrix H k,k. It is important to

notice that this matrix has a well defined and regular structure which must be exploited

in order to save storage and reduce the operation count.

All this together gives us the Full orthogonalization method, abbreviated in what follows

as FOM. Note that, as k increases, the computational cost increases as O
(
k2n

)
and the

storage requirements as O (kn) because of the Gram-Schmidt orthogonalization. If n is

large, as in the case we are mainly interested, these upper bounds could be unacceptable

and k must be limited for a practical implementation.

One way to carry out such a practical implementation relies on restarting the algorithm

periodically. First we chose a k � n, and with the initial residual r (0) = Ax (0) run the

Arnoldi algorithm to get, together the solution of the projected linear system (4.35), the

k−th approximation x (k). If the k−th residual corresponding to those approximation
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is small enough we accept this approximation as the solution of the linear system; if

not we set x (0) = x (k) and repeat the process. This gives us the Restarted full orthog-

onalization method, usually abbreviated as FOM(k). We present in algorithm 4.3.1 its

implementation.

Given x (0), compute r (0) = b −Ax (0)

Set v1 = r (0)/ρ with ρ = ||r (0)||2
for k = 1, 2, ...,m do

w = Avk

for i = 1, 2, ..., k do

hik = (w , v i)

w = w − hikvk
end for

hk+1,k = ||w ||2. If hk+1,k = 0 stop.

vk+1 = w/hk+1,k

end for

Solve H k,ky
(k) = ρê1 for y (k).

Update x (k) = x (0) + V ky
(k)

Compute r (k) = b −Ax (k) and ρ = ||r (0)||2
if ρ is small enough then

Take x ≈ x (k) and stop.

else

Set x (0) = x (k) and restart.

end if

Algorithm 2: FOM(k): Restarted Full Orthogonalization Method.

The situation when hk+1,k = ||w ||2 = 0, at least in finite precision arithmetic, which

stops the Gram-Schmidt orthogonalization process is what is known as a happy break-

down because in such a case the Arnoldi vectors span completely the Krylov subspace,

therefore the exact solution can be immediately computed.

4.3.2 Generalized Minimum Residual Method

It is now the turn to explore the second family of the Krylov subspace methods which

attempts to select x (k) in such a way that the norm of its corresponding residual is

minimized. We take the k−th approximation as in (4.32), multiplying by −A and
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adding b in both sides we obtain

r (k) = r (0) −AV ky
(k). (4.36)

Due to the way in which we have chosen the first Arnoldi vector, v1 = r (0)/ρ with

ρ = ||r (0)||2, we have that V k+1ê1 = v1 being in this case ê1 ∈ Rk+1. Additionally,

exploiting now the second expression from (4.31) we obtain

r (k) = V k+1

(
ρê1 −H k+1,ky

(k)
)
, (4.37)

Taking norms on both sides and using the orthogonality of V k+1 we have

||r (k)||2 = ||ρê1 −H k+1,ky
(k)||2, (4.38)

what remains is to find a vector y (k) ∈ Rk+1 which minimizes the right hand side of

(4.38); this is equivalent to solving the following least squares problem

H k+1,ky
(k) = ρê1. (4.39)

A common technique for solving the least squares problem (4.39) is performing a QR

factorization, with Q being orthonormal and R upper triangular. As done with FOM,

we must take into account the special structure of the upper Hessenberg matrix, being

in this case rectangular. Since only the subdiagonal is non zero under the main diagonal,

Givens rotations is clearly the most suitable method for carry out such QR factorization.

First, we observe in detail the structure of H k+1,k obtained by the Arnoldi algorithm

and denote it by H
(0)
k . Similarly it is done for the right hand side of (4.38) denoted by

z
(0)
k

H
(0)
k =



h11 h12 h13 · · · h1k

h21 h22 h23 · · · h2k

0 h32 h33 · · · h2k

...
...

...
. . .

...

0 0 0 hk,k−1 hkk

0 0 0 0 hk+1,k


, and z

(0)
k =



ρ

0

0
...

0

0


.

Our goal is to eliminate entries below the main diagonal in H
(0)
k . This can be achieved by

plane rotations using Givens elementary matrices as defined in (3.45). Moreover, since

we wish introduce zeros only in the contiguous subdiagonal to the main one the notation

can be simplified. We write the i−th Givens rotator as Gi = G (i, i+ 1, θ) = I − Y

with θ chosen in such a way that entries below the main diagonal are annihilated one
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by one. For instance, consider the case for the first Givens rotator

G1 =



c1 s1 0 · · · 0

−s1 c1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1


.

with

s1 =
h21√

h2
11 + h2

21

and c1 =
h11√

h2
11 + h2

21

.

Premultiplying both, H
(0)
k and z

(0)
k by this first Givens rotator we get

H
(1)
k =



h
(1)
11 h

(1)
12 h

(1)
13 · · · h

(1)
1k

0 h
(1)
22 h

(1)
23 · · · h

(1)
2k

0 h32 h33 · · · h2k

...
...

...
. . .

...

0 0 0 hk,k−1 hkk

0 0 0 0 hk+1,k


, and z

(1)
k =



c1ρ

−s1ρ

0
...

0

0


.

Applying this process recursively until i = k we finally obtain H
(k)
k which is upper

triangular and the full vector z
(k)
k .

Notice that all the Givens rotators are orthogonal matrices, thus any product of them

is also orthogonal, then we define

Qk = GkGk−1 · · ·G1.

Therefore, the successive rotations effectively achieve the QR factorization of the upper

Hessenberg matrix since

Rk = H
(k)
k = QkH k and z

(k)
k = Qk (ρê1) .

Using the orthonormality of Qk we have the equivalence

min ||ρê1 −H ky
(k)||2 = min ||z (k)

k −Rky
(k)||2,

therefore, the solution of this problem is obtained by simply solving the upper triangular

linear system

Rky
(k) = z

(k)
k .
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Once y (k) has been determined, we obtain x (k) by substituting in (4.32). All this together

give us what is known as the Generalized Minimal Residual method abbreviated as

GMRes.

When n is large, it suffers the same drawbacks in operations count and memory require-

ments as FOM, but the remedies are almost identical. We focus again in restarting which

yield us the Restarted Generalized Minimal Residual method, with GMRes(k) used as

its abbreviation. We sketch as follows its implementation in algorithm 4.3.2.

Given x (0), compute r (0) = b −Ax (0)

Set v1 = r (0)/ρ with ρ = ||r (0)||2 and z
(0)
k = ρê1

for k = 1, 2, ...,m do

w = Avk

for i = 1, 2, ..., k do

hik = (w , v i)

w = w − hikvk
end for

hk+1,k = ||w ||2. If hk+1,k = 0 stop.

vk+1 = w/hk+1,k

H
(k)
k,k+1 = GkH

(k−1)
k,k+1

z
(k)
k = Gkz

(k−1)
k

end for

Solve Rky
(k) = z

(0)
k for y (k).

Update x (k) = x (0) + V ky
(k)

Compute r (k) = b −Ax (k) and ρ = ||r (0)||2
if ρ is small enought then

Take x ≈ x (k) and stop.

else

Set x (0) = x (k) and restart.

end if

Algorithm 3: GMRes(k): Restarted Generalized Minimal Residual

As with FOM, the situation hk+1,k = 0 is also a happy breakdown and furthermore, it

is not necessary to apply the next Givens rotation because the entry which it attempts

to annihilate is already zero.
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4.4 Lanczos Methods

4.4.1 Symmetric Lanczos Method

The Arnoldi algorithm can be further simplified in the case when A = AT noting that

from the first expression in (4.31) that the upper Hessenberg matrix is also symmetric

H k,k = H T
k,k and therefore tridiagonal, we denote it by T k

T k =



α1 β2

β2 α2 β3

. . . . . . . . .

βk−1 αk−1 βk

βk αk


, (4.40)

where αi = hi,i and βi = hi−1,i.

By doing the required modifications we get the symmetric Lanczos algorithm for which

the computation of the orthogonal basis for the Krylov subspace can be performed using

a three term recursive relation to generate the Lanczos vectors. That is, when computing

the (k+1)−th Lanczos vector vk+1 only the two previous ones vk and vk−1 are required.

With these observations we sketch the symmetric Lanczos method in algorithm 4.4.1.

Given a vector v1 with ||v1||2 = 1

Set v0 = 0 and β1 = 0

for k = 1, 2, ...,m do

w = Avk − βkvk−1

αk = (w , vk)

w = w − αkvk
βk+1 = ||w ||2. If βk+1 = 0 stop.

vk+1 = w/βk+1

end for

Algorithm 4: Symmetric Lanczos Algorithm.

This algorithm guarantees, at least in exact arithmetic, that the Lanczos vectors are

each other orthogonal. Unfortunately, exact orthogonality is only observed in early

stages of the process in finite precision arithmetic, since as k increases we lose global

orthogonality. Several strategies have been devised in order to overcome this problem

such as complete or selective re-orthogonalization.
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As with the Arnoldi algorithm, the present Lanczos algorithm can also be used for

solving linear systems. By using the same arguments as those for FOM but this time

with T k instead of H kk and taking advantage of the symmetry of the tridiagonal matrix

T k. Then we must solve the linear system

T ky
(k) = ρê1, (4.41)

usually with Gaussian elimination. Once y (k) has been computed, we obtain x (k) sub-

stituting in (4.32). This yields what is known as the Lanczos method for linear systems.

4.4.2 Conjugate Gradient

In the previous section we have assumed symmetry of the coefficient matrix. Further

simplifications and consequently improvements in efficiency can be achieved if addition-

ally the coefficient matrix is positive definite, that is

(Au ,u) > 0 ∀u ∈ Rn, u 6= 0 . (4.42)

From the first expression in (4.31) with H kk substituted by T k we have

(T kz , z ) =
(
V T

kAV kz , z
)
,

= (AV kz ,V kz ) ,

= (Au ,u) ,

> 0,

(4.43)

for all non null vector z ∈ Rk. That is, if A is symmetric positive definite, T k is too.

Hence it is now clear that Krylov subspace projections preserve the desirable property

of positive definiteness.

Being that T k = LkU k positive definite it is ensured that its LU factorizations exists

and is stable even if no pivoting is strategy is employed. Hence we write T k as the

product

T k =



1

λ2 1
. . . . . .

λk−1 1

λk 1





η1 β2

η1 β3

. . . . . .

ηk−1 βk

ηk


(4.44)

where λ1 = 0, λi = βi

ηi−1
, for i = 2, 3, ..., k and ηi = αi − λiβi, for i = 1, 2, ..., k.
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The k−th approximation can be written as

x (k) = x (0) + V kU
−1
k L−1

k (ρê1) , (4.45)

now, we let

Pk = V kU
−1
k and z k = L−1

k (ρê1) , (4.46)

postmultiplying the first expression in (4.46) by U k we get

PkU k = V k ⇒ pk =
1
ηk

[
vk − βkpk−1

]
, (4.47)

where we have used the fact that U k is upper bidiagonal. If now we premultiply the

second expression in (4.46) by Lk

Lkz k = ρê1 (4.48)

and using the fact that Lk is lower bidiagonal we get

zi = −λizi−1, i = 2, 3, ..., k (4.49)

with z1 = ρ. Moreover we use a partition of vector z k as

z k =

[
z k−1

zk

]
. (4.50)

Substituting a suitable partition of (4.47) by columns and (4.50) in (4.45) we obtain

x (k) = x (0) + Pkz k

= x (0) + [Pk−1,pk]

[
z k−1

zk

]
= x (k−1) + zkpk.

(4.51)

where going from the second to the third line recursion on k has been employed.

Now we shall make some important and useful observations. The first one is concerned

with the orthogonality of the residual vectors. This property is not exclusive of the

Lanczos algorithm, in fact the k−th residual vector generated by the Arnoldi algorithm

is orthogonal to all the previous ones, at least in exact arithmetic. This can be verified
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as follows
r (k) = b −Ax (k),

= b −A
(
x (0) + V ky

(k)
)
,

= r (0) −AV ky
(k),

= r (0) −V k+1H k+1,ky
(k),

= r (0) −V kH k,ky
(k) − hk+1,ky

(k)
k vk+1,

= ρv1 −V kH k,ky
(k) − hk+1,ky

(k)
k vk+1,

= −hk+1,ky
(k)
k vk+1.

(4.52)

For the symmetric Lanczos algorithm this can be particularized by

r (k) = βk+1y
(k)
k vk+1, (4.53)

that is, since the Arnoldi or Lanczos {v j} are mutually orthogonal, and because the

residual vectors are scalar multiples of the former ones, they are also mutually orthogo-

nal.

The second observation is particularly oriented for the Lanczos algorithm and it is about

the A-orthogonality of the auxiliary vectors pk which form, column by column, the

substitution matrix Pk = V kU
−1
k . This can be verified as follows

PT
kAPk = U−Tk V T

kAV kU
−1
k ,

= U−Tk T kU
−1
k ,

= U−Tk Lk,

= Dk.

(4.54)

We have used the fact that T k = LkU k while going from the second to the third

lines. The U−Tk Lk is the product of two lower triangular matrices and hence it is also

lower triangular. Additionally it is equal to a symmetric matrix PT
kAPk which is also

symmetric. Finally, by being a symmetric triangular matrix, it is diagonal. Therefore

we have
(
pi,Apj

)
6= 0 iff i = j. A set of vectors satisfying this property are called

A-orthogonal of conjugate.

From (4.47) and (4.51) it can be seen that the (k + 1)−th approximation, residual and

auxiliary vectors can be computed using, instead of three, two term recurrence relations
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that can be sketched as follows

x (k+1) = x (k) + αkp
(k),

r (k+1) = r (k) − αkAp(k),

p(k+1) = r (k+1) + βkp
(k).

(4.55)

Where we have used, for the second line, the basic definition of residual. It is important

to notice that the coefficients αk and βk and the vectors p(k) are not exactly the same

as those used previously.

In order to obtain αk we take the inner product of the second line of (4.55) with r (k)

and use the orthogonality of the residual vectors(
r (k), r (k+1)

)
−
(
r (k), r (k)

)
+ αk

(
r (k),Ap(k)

)
= 0, (4.56)

hence

αk =

(
r (k), r (k)

)(
r (k),Ap(k)

) . (4.57)

Furthermore, an alternative and more useful expression can be obtained by substituting

r (k) in the denominator of (4.56); solving for the residual vector from the third line in

(4.55) but for the k−th instead of the (k + 1)−th to get

(
r (k),Ap(k)

)
=

(
p(k) − βk−1p

(k−1),Ap(k)
)
,

=
(
p(k),Ap(k)

)
,

(4.58)

where we have used the fact that the vectors pj are mutually conjugate. Finally we

obtain

αk =

(
r (k), r (k)

)(
p(k),Ap(k)

) . (4.59)

It remains to compute the second coefficient βk. For that we take the inner product of

the third line of (4.55) with the vector Ap(k)

(
p(k+1),Ap(k)

)
=
(
r (k+1),Ap(k)

)
+ βk

(
p(k),Ap(k)

)
, (4.60)

using again the fact that the auxiliary vectors pj are conjugate, the left hand side

vanisches and we can solve for βk getting

βk = −
(
r (k+1),Ap(k)

)(
p(k),Ap(k)

) . (4.61)
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Solving for Ap(k) from the second line in (4.55) we have

Ap(k) = − 1
αk

(
r (k+1) − r (k)

)
, (4.62)

substituting it in (4.61)

βk = 1
αk

(r (k+1)−r (k),r (k+1))
(p(k),Ap(k)) ,

= (r (k+1),r (k+1))
(r (k),r (k)) ,

(4.63)

where for passing from the first to the second line we have used the orthogonality of the

residuals and the definition of the coefficient αk given by (4.59).

Putting all this together we obtain the Conjugate Gradient method for which we sketch

it algorithmically in 4.4.2.

Given x (0) compute r (0) = b −Ax (0)

Set p(0) = r (0)

for k = 0, 1, 2, ... do

αk = (r (k),r (k))
(p(k),Ap(k))

x (k+1) = x (k) + αkp
(k)

r (k+1) = r (k) − αkAp(k)

βk = (r (k+1),r (k+1))
(r (k),r (k))

p(k+1) = r (k+1) + βkp
(k)

end for

Algorithm 5: CG: Conjugate Gradient.

The Conjugate Gradient method is probably the most known and used Krylov subspace

method. It was first published independently and almost simultaneously by Hestenes

and Stiefel [74] and Lanczos [82] in 1952. The paper of Hestenes and Stieffel is completely

oriented to solving linear systems of equations. They regard this method as a direct one

because they proved that it converges in no more that n iterations. Nevertheless the

paper of Lanczos is mainly concerned with the approximation of the extreme eigenvalues,

and possibly the corresponding eigenvalues, of a matrix by means of projection and the

solution of linear systems is regarded as an additional application of his method.

It is quite amazing that the power and effectiveness of this method was not noticed

for more than twenty years until it has been rediscovered and demonstrated that it
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can provide good approximations after performing much fewer than n iterations on well

conditioned matrices.

4.4.3 Unsymmetric Lanczos Method

The previous section has been devoted to several Krylov subspace methods relying on

an orthogonalization process in order to compute an approximate solution. On the other

hand, this section is devoted to a class of Krylov subspace methods that are instead based

on a biorthogonalization algorithm but with the same purpose of the former methods.

Such kind of methods are based on the biorthogonalization Lanczos algorithm which

in turns is an extension to unsymmetric matrices of the previously studied symmetric

Lanczos algorithm.

First we notice that when A 6= AT the construction of an orthogonal basis for the Krylov

subspace is not possible using three term recurrence relations. We can, however, obtain

a suitable non-orthogonal basis with a three term recurrence relation, by requiring that

this basis be orthogonal with respect to some other basis.

From (4.31) it is clear that we can construct a basis V k for Kk (A; v). furthermore,

suppose we can also construct another basis W k for which W T
kV k = Dk, with Dk a

diagonal matrix and for which W T
k v (k+1) = 0 . Then

W T
kAV k = DkH k,k. (4.64)

In order to preserve the three term recurrence relation we must be able to find a W T
k

in such a way that H k,k is tridiagonal. Then

V T
kA

TW k = H T
k,kDk, (4.65)

must also be tridiagonal. Obviously this suggest to generate W k with AT .

Thus, we choose two arbitrary unit vectors v1 and w1 with (v1,w1) 6= 0. then we

generate v2 as

h2,1v2 = Av1 − h1,1v1 with h1,1 =
(w1,Av1)
(w1, v1)

where h1,1 has been chosen in such a manner to make v2 orthogonal to w1. By (3.26)

we known that (w1,Av1) = (ATw1v1), implying that w2 generated with

h2,1w2 = ATw1 − h1,1w1
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is orthogonal to v1. This process can be continued for a fixed m in order to compute

such biorthogonal basis leading us to the unsymmetric Lanczos algorithm sketched in

algorithm 4.4.3.

Given two vectors v1 and w1 with (v1,w1) = 1

Set v0 = w0 = 0 and β1 = δ1 = 0

for k = 1, 2, ...,m do

αk = (Avk,wk)

ṽk+1 = Avk − αkvk − βkvk−1

w̃k+1 = ATwk − αkwk − δkwk−1

δk+1 =
√
|(ṽk+1, w̃k+1)|. If δk+1 = 0 stop.

βk+1 = (ṽk+1, w̃k+1)/δk+1

vk+1 = ṽk+1/δk+1

wk+1 = w̃k+1/βk+1

end for

Algorithm 6: Unsymmetric Lanczos Algorithm.

Notice that the election of the scalars βk+1 and δk+1 is not unique and in the present

algorithm we choose them in such a manner that ṽk+1 and w̃k+1 are divided by two

numbers with the same modulus avoiding numerical instabilities.

Unfortunately, in this case δk+1 = 0 is not a happy breakdown as the analogous sit-

uation with the Arnoldi or Lanczos algorithms because in the absence of a complete

orthogonalization process, the projection is not optimal making the analysis and im-

plementation of overcoming strategies for this methods harder than for the previously

studied algorithms.

Now, suppose k steps of the unsymmetric Lanczos algorithm have been run, then

v1, v2, ..., vk and w1,w2, ...,wk are two set of bi-orthogonal vectors, if additionally we

define the n× k matrices satisfying W T
kV k = Dk as

V k = [v1, v2, ..., vk] y W k = [w1,w2, ...,wk] , (4.66)

then we have

W T
kAV k = T k, (4.67)
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where T k is a tridiagonal matrix whose entries have been computed by the unsymmetric

Lanczos algorith and has the form

T k =



α1 β2

δ2 α2 β3

. . . . . . . . .

δk−1 αk−1 βk

δk αk


. (4.68)

Hence it is now clear that we have generated two basis V k and W k for the Krylov

subspaces

Kk (A; v1) = span
{
v1,Av1,A

2v1, ...,A
k−1v1

}
, (4.69)

Lk

(
AT ;w1

)
= span

{
w1,A

Tw1,
(
AT
)2

w1, ...,
(
AT
)k−1

w1

}
, (4.70)

respectively.

We can compute approximations x (k) with this bi-orthogonalization procedure by choos-

ing v1 = r (0)/ρ with ρ = ||r (0)||2 and w1 = v1 generating two basis corresponding to

the Krylov subspaces Kk

(
A; r (0)

)
and Lk

(
AT ; r (0)

)
.

Even more, in view that we have generated two different Krylov subspace bases it is

obvious that the most natural option for such bi-orthogonalization process is a Petrov-

Galerkin scheme. The condition r (k) ⊥ Lk

(
AT ; r (0)

)
implies that

W T
k r

(k) = 0 , (4.71)

since r (k) = b −Ax (k) and taking x (k) as (4.32) we obtain

W T
kAV ky

(k) = W T
k r

(0), (4.72)

substituting (4.66) and due to the choose of w1 we have that

T ky
(k) = ρê1, (4.73)

As with the Arnoldi method, we must solve this projected linear system for y (k), once it

has been determined we obtain x (k) by substituting in (4.32). Also Gaussian elimination

is a common choose.

Putting all this together lead us the Bi-Lanczos algorithm for linear systems from which

a plenty variety of algorithms can be derived.
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4.4.4 Bi-Conjugate Gradient

The Bi-Conjugate Gradient, BiCG for short, algorithm for solving unsymmetric linear

systems can be derived from the unsymmetric Lanczos algorithm in exactly the same way

as the Conjugate Gradient method was derived from the symmetric Lanczos algorithm.

It was originally proposed by Lanczos in the celebrated paper [82] in 1952 and in a

different manner by Fletcher in 1975 [53] in 1975. In what follows we present the latter

implementation.

As we have seen previously, the biorthogonalization Lanczos algorithm produces two

bases for the Krylov subspaces Kk (A; v1) and Lk

(
AT ;w1

)
. We take, as usual, v1 =

r (0)/ρ with ρ = ||r (0)||2 and the only requirement for w1 is that (v1,w1) 6= 0. Suppose

that we are also interested in solving the dual system ATx ′ = Ab ′, then an obvious

option is provide w1 = r ′/ρ′ with ρ′ = ||r ′(0)||2 being r ′(0) = b ′ − ATx ′(0) the dual

residual.

As we have done in the derivation of the conjugate gradient, we write the LU factorization

of the tridiagonal matrix (4.68) obtained from the biorthogonalization Lanczos algorithm

as T k = LkU k and we set

Pk = V kU
−1
k . (4.74)

From (4.32) and (4.67) the solution can be expressed as

x (k) = x (0) + V kT
−1
k (ρê1)

= x (0) + V kU
−1
k L−1

k (ρê1)

= x (0) + PkL
−1
k (ρê1)

(4.75)

We do not have to wait until the k has been completed in order to obtain intermediate

approximations for j < k by defining, as done with the conjugate gradient method, a

vector z k ∈ Rk such that Lkz k = ρ.

Remember that the vectors vk+1 and wk+1 are biorthogonal and because the vectors

rk and r ′k are in the same direction as the formers, respectively, they also form a

biorthogonal sequence. Moreover, we define the matrix

P ′k = W kL
−1
k , (4.76)
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formed, column by column, by the dual auxiliary vectors p ′k; and being conjugate with

Pk because
(P ′k)

T
APk = L−1

k W T
kAV kU

−1
k

= L−1
k T kU

−1
k

= L−1
k LkU kU

−1
k

= I k

(4.77)

Putting all this together we obtain the Bi-Conjugate Gradient method sketched in al-

gorithm 4.4.4.

Given x (0) compute r (0) = b −Ax (0)

and x ′(0) compute r ′(0) = b −ATx ′(0)

Set p(0) = r (0) and p ′(0) = r ′(0)

for k = 0, 1, 2, ... do

αk = (r ′(k),r (k))
(p′(k),Ap(k))

x (k+1) = x (k) + αkp
(k)

x ′(k+1) = x ′(k) + αkp
′(k)

r (k+1) = r (k) − αkAp(k)

r ′(k+1) = r ′(k) − αkATp ′(k)

βk = (r ′(k+1),r (k+1))
(r ′(k),r (k))

p(k+1) = r (k+1) + βkp
(k)

p ′(k+1) = r ′(k+1) + βkp
′(k)

end for

Algorithm 7: BiCG: Bi-Conjugate Gradient

If the solution if the dual system is not required, it is not required to provide the

corresponding initial guess x ′(0). Furthermore, the computation of the dual residual

r ′(0) is not required and usually it is set as r ′(0) = r (0). Also the update of x ′(k+1) and

its storage can be avoided.

4.4.5 Quasi-Minimal Residual

With a slight modification, the biorthogonalization Lanczos algorithm lead us to with

the alternative relation

AV k = V k+1T k, (4.78)
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where T k ∈ R(k+1)×k is defined similarly that (4.68) as

T k =



α1 β2

δ2 α2 β3

. . . . . . . . .

δk−1 αk−1 βk

δk αk

δk+1


. (4.79)

We can notice that (4.78) can be used in the same way we have done for GMRes. In

order to do so we take, as usual, v1 = r (0)/ρ with ρ = ||r (0)||2

r (k) = b −Ax (k),

= b −A
(
x (0) + V ky

k
)
,

= r (0) −AV ky
k,

= ρv1 −V k+1T ky
k,

= V k+1

(
ρê1 −T ky

k
)
.

(4.80)

While going from the first to the second line we have substituted (4.32) for x (k), (4.78)

for going from the third to the forth lines and finally we get the last expression because

the definition of the first Lanczos vector v1.

Taking norms of both sides of (4.80) we have∣∣∣∣∣∣r (k)
∣∣∣∣∣∣

2
=
∣∣∣∣∣∣V k+1

(
ρê1 −T ky

k
)∣∣∣∣∣∣

2
(4.81)

But notice that unfortunately we cannot simply take off V k+1 as done with GMRes

because it is still not orthonormal. This has the important consequence that the least

squares problem can not be posed properly and then we can not aim any optimality

property. However, it is still a reasonable idea just take off V k+1 from the Euclidean

norm and then solve the least squares problem

T ky
(k) = ρê1, (4.82)

in exactly the same manner as with GMRes using Givens rotations, but this time taking

advantage of the fact that the matrix involved is now tridiagonal.

Once y (k) is computed the k−th approximation can be computed, as usual, with (4.32).

In this case we omit the algorithm implementation since it is almost immediate to obtain

it from the the biorthogonalization Lanczos and GMRes algorithms.
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4.4.6 Transpose Free Variants

We have seen that the unsymmetric Lanczos algorithms and hence the algorithms de-

rived from it require at each iteration the computation of two matrix by vector products,

one of them with the matrix transpose. However, if the dual solution is not required,

all the computations involving the dual vectors do not contribute directly to the solu-

tion updating. We have tried to do this complete clear in the Bi-Conjugate Gradient

algorithm.

Additionally, there are applications in which the matrix is not assembled and preform

products with the matrix transpose could be more expensive or difficult than with the

matrix itself, sometimes even impossible.

A large variety of techniques have been developed in order to avoid such iterative meth-

ods using the transpose matrix leading a quite inhomogeneous family of transpose free

variants. The vast majority of these techniques rely in the fact that the k−th residual

can also be expressed as the initial residual multiplied by a polynomial in A of k degree

r (k) = pk (A) r (0), (4.83)

with p (0) = 1. Similarly, polynomial expression for other recurrence vectors can be

defined.

The first developed method using this idea was the Conjugate Gradient Squared of

Sonneveld [116] by exploiteng the following observation(
pk (A) r (0), pk

(
AT
)
r ′(0)

)
=
(
p2
k (A) r (0), r ′(0)

)
. (4.84)

Then the dual residual vector can be computed as

r ′(k) = p2
k (A) r (0). (4.85)

Other dual quantities can be expressed in this manner and then the evaluation of matrix

transpose by vector products could be avoided.

Notice that, if we have irregular convergence with BiCG, for instance, then this phenom-

ena will be magnified when using CGS due to the squaring of the implicit polynomial

making convergence of this method quite irregular. A possible remedy to this situa-

tion is, instead of square the polynomials in pk (A) we take their product with other

polynomial satisfying the same properties. Then the dual residual can be expressed as

r (k) = pk (A) qk (A) r (0). (4.86)
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How to choose the qk (A) polynomial has lead to different Krylov subspace methods.

One of the most popular and well known of them is the Bi-Conjugate Gradient Squared

method of van der Vorst [135] which chooses this second polynomial with the goal of

stabilizing or smoothing the convergence behavior of the BiCG algorithm. The success

and popularity of the method is mainly due it posses very desirable properties yielding

smooth convergence curves.

The last alternative we will review is the Transpose Free Quasi-Minimal Residual method

of Freund [57] which is derived from the Conjugate Gradient Squared method using the

same principle of express recurrence vectors as polynomials or products of them but

dividing the computation in two stages. The first stage is devoted to perform a Bi-

conjugate Gradient search and the second a minimization of the residual. Despite its

name this method is not really related to the QMR method.



Chapter 5

Preconditioning

Although the iterative methods seen in the previous chapter are well founded theoreti-

cally, they are likely to suffer deterioration of some of their desirable properties mainly

in their convergence rate being irregular or slower for problems arising in practical ap-

plications such as fluid dynamics, the one which we are interested.

Moreover, lack of robustness is a widely recognized drawback of iterative solvers relative

to direct solvers. This has traditionally reduced the acceptance of iterative solvers in

industrial applications and commercial codes for direct methods have been more favored.

One way to improve the convergence rate of Krylov subspace methods is a family of

techniques known as preconditioning, the basic idea is, instead of solving the original

system (3.49), we solve a related one

M−1Ax = M−1b, (5.1)

where M is the preconditioner which approximates A in some sense trying to improve

the spectral properties of the system to be solved.

Also the direct approximation of A−1 is possible, but in this case we solve the precon-

ditioned system multiplying by M directly

MAx = Mb. (5.2)

In both cases we have the left preconditioned systems, right and centered preconditioning

is also possible.

48
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Centered or split preconditioning will only be considered in the framework of the con-

jugate gradient method in the form

M−1
1 AM−1

2 y = M−1
1 b, with x = M−1

2 y , (5.3)

where the preconditioner is in the form M = M 1M 2. Right preconditioning will not

be considered at all in this work.

There are two major desirable properties one have to take into account when developing

a preconditioning technique. In general, a good preconditioner M should meet the

following requirements:

• The preconditioned system (5.1) should be easier to solve that the original one

(3.49). This means that the preconditioned iteration should converge, at least,

faster that the unpreconditioned one.

• The preconditioner should be easy to construct and apply. That is, the precondi-

toned iteration is not significantly more costly than the unpreconditioned one.

Unfortunately, these two basic requirements are in competition with each other. Deter-

mination of a good balance is highly problem dependent and far from being a trivial

task. Heuristic and trial-error strategies are often used in this respect.

Taking about a good preconditioner, usually means that the overall time for constructing

such a preconditioner and solve the preconditioned iteration is less than the time spent

for the unpreconditioned iteration. Nevertheless there are situations in which this criteria

can not be applied; the most obvious case is when the unpreconditioned iteration does

not converge after it performs a reasonable number of iterations and the success of such

iterative method is only possible with the preconditioned system.

Some authors assert that the preconditioning concept goes as far as the 19-th century

when Jacobi used plane rotations to achieve diagonal dominance of matrices arising from

least squares problems before applying the method named after him [11, 71]. After that

pioneering work, a large variety if techniques have emerged, some of them prompted in

quite different concepts.

We shall discuss some of the most used, popular and successful preconditioners that we

have implemented and used in the tests of this work. They basically belong to three

different families and only the unsymmetric case is treated in detail since the symmetric

case is in many cases a special case.
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5.1 Preconditioned Krylov Methods

Before going in depth to the development of specific preconditioning techniques we first

review the way in which preconditioning is applied in practical applications of Krylov

subspace methods and along the way explore, very generally, the effect of preconditioning

when applied to such iterative methods.

With this purpose in mind we shall consider a general preconditioner in the form M ≈ A

in some sense. Remember that as we have seen in the previous chapter, and in contrast

with direct methods, Krylov subspace methods only requires to be able to compute

matrix by vector products in the form z = Ay , or eventually with the matrix transpose

z = ATy , without the need of either accessing or modifying individual entries of the

matrix A. Moreover, even the preconditioner M is sparse, we have not any guarantee

that sparsity is preserved for its inverse. Even worse the product M−1A could be

completely full.

In spite of this it is easy to notice that the explicit computation of the preconditioned

system M−1A is never formed in practice, doing so will destroy all efficiency that can be

obtained from the sparsity of A. Instead, when the computation of the preconditioned

matrix by vector product is required as z = M−1Ay , we segregate it in two stages

using an auxiliary vector w . First we compute the product Ay storing it in w and then

apply the operator M−1 to the result. This last stage will be referred generically as

apply preconditioner. This can be clarified, in the case of left preconditioning as follows

w = Ay and solve Mz = w . (5.4)

In the case that the preconditioner represents a explicit approximation to the inverse

of A the solving in the second stage is simply substituted by other matrix by vector

product

w = Ay and z = Mw . (5.5)

Note that in both cases in putting M = I the unpreconditioned case is recovered and

then this procedure is consistent with the unpreconditioned Krylov subspace methods.

5.1.1 Preconditioned GMRes

In order to obtain the preconditioned version of the Generalized Minimal Residual

method, and particularly in its restarted practical version, first take into account that

instead of solving the linear system (3.49) we are interested in solving the precondi-

tioned linear system (5.1). For such preconditioned systems it is easy to see that its
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preconditioned residual is given by

r = M−1 (b −Ax ) (5.6)

in the case M ≈ A which will be the one discussed hereafter. Additionally, since we are

solving a linear system with coefficient matrix M−1A instead of A, each time a product

with the latter appears it must be substituted by a product with the former matrix. With

this observations we obtain the Preconditioned Generalized Minimal Residual method

shown in algorithm 5.1.1.

Given x (0), compute r (0) = M−1
(
b −Ax (0)

)
Set v1 = r (0)/ρ with ρ = ||r (0)||2 and z

(0)
k = ρê1

for k = 1, 2, ...,m do

w = M−1Avk

for i = 1, 2, ..., k do

hik = (w , v i)

w = w − hikvk
end for

hk+1,k = ||w ||2. If hk+1,k = 0 stop.

vk+1 = w/hk+1,k

H
(k)
k,k+1 = GkH

(k−1)
k,k+1

z
(k)
k = Gkz

(k−1)
k

end for

Solve Rky
(k) = z

(0)
k for y (k).

Update x (k) = x (0) + V ky
(k)

Compute r (k) = b −Ax (k) and ρ = ||r (0)||2
if ρ is small enough then

Take x ≈ x (k) and stop.

else

Set x (0) = x (k) and restart.

end if

Algorithm 8: PGMRes(k): Preconditioned Generalized Minimal Residual

The differences from the unpreconditioned version have been remarked in red. Note that

they are minimal and the general implementation does not suffer significant changes.
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More important, note that the underlying Arnoldi algorithm is now constructing an

orthogonal basis for the Krylov subspace defined by the preconditioned system

Km

(
M−1A; r (0)

)
= span

{
r (0),M−1Ar (0), ...,

(
M−1A

)m−1
r (0)

}
, (5.7)

with the modified Gram-Schmidt process having the intrinsic difficulty that the true

residual is not available inside the Arnoldi orthogonalization process since we are getting

only the preconditioned one. Then the true residual can only be evaluated at the end

of each restart before applying the preconditioner.

Derivation of the preconditioned versions of other Krylov subspace methods based on

the Arnoldi orthogonalization process are very similar and, with few exemptions, they

follows straightforward.

5.1.2 Preconditioned Conjugate Gradient

One of the exceptions previously mentioned applies for probably the most known, popu-

lar and used Krylov subspace method, the Conjugate Gradient. The reason is that it has

been designed, as we have seen in the previous chapter, for symmetric positive definite

matrices. From the previous discussion in the present chapter it is now obvious that,

when preconditionig is applied we are solving for another related linear system instead

of the original one. It may happen that even if A is symmetric positive definite, the pre-

conditioned systems can suffer lack of any, or both, desirable and required properties for

the success of the Conjugate Gradient method. Then, while choosing a preconditioner

for such a system we must be sure that the resulting preconditioner system is symmetric

positive definite if application of the conjugate gradient method is pursued.

In order to avoid such lack of desirable properties of the original system while obtaining

the preconditioned one, we first suppose that a split preconditioner is available as a

product of a lower triangular matrix and its transpose as

M = LLT (5.8)

then a simple way to preserve symmetry is to use a split preconditioning of the form

L−1
1 AL−Ty = L−1

1 b, with x = L−Ty , (5.9)

and if both A and L are positive definite, the preconditioned system is also positive

definite.
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However, it is not necessary to split the preconditioner in this manner in order to preserve

symmetry. We define the M−inner product

(x ,y)M = (Mx ,y) = (x ,My) , (5.10)

it can be verified that M−1A is self adjoint to respect this inner product as follows

(
M−1Ax ,y

)
M

= (Ax ,y) = (x ,Ay) =
(
x ,M

(
M−1A

)
y
)

=
(
x ,M−1Ay

)
M
.

(5.11)

Therefore we can replace the usual Euclidean inner product by the M−inner product.

Writing the Conjugate Gradient for this yet defined inner product and denotingthe

original residual by r (k) = b−Ax (k) and the preconditioned residual by z (k) = M−1r (k)

and noting that the M−inner products must not be computed explicitly because(
z (k), z (k)

)
M

=
(
r (k), z (k)

)
and

(
M−1Ap(k),p(k)

)
=
(
Ap(k),p(k)

)
M
. (5.12)

This defines the Preconditioned Conjugate Gradient method shown in algorithm 5.1.2 in

which the differences with its unpreconditioned counter part have been marked in red.

Given x (0) compute r (0) = b −Ax (0)

Set z (0) = M−1r (0) and p(0) = z (0)

for k = 0, 1, 2, ... do

αk = (r (k),z (k))
(p(k),Ap(k))

x (k+1) = x (k) + αkp
(k)

r (k+1) = r (k) − αkAp(k)

z (k+1) = M−1r (k+1)

βk = (r (k+1),z (k+1))
(r (k),z (k))

p(k+1) = z (k+1) + βkp
(k)

end for

Algorithm 9: PCG: Preconditioned Conjugate Gradient.

Explicit split preconditioning is also possible but it is not considered in this work.

5.2 Classical Iterative Methods

The development of classical iterative methods goes back to the pioneering work of

Gauss, Seidel and Jacobi and have dominated the solution of sparse linear systems
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during the 1950 to 1960’s with the advent of digital computers mainly focused on the

solution of systems arising from elliptic partial differential equations. Roughly speaking,

they are constructed by splitting the coefficient matrix as A = M −N requiring M

being regular and easier to invert than A. Usually they are regarded as the precursors

of Krylov subspace methods and, as we have seen in chapter 3 with the Richardson

method, the classical methods motivate those that use the Krylov subspace.

5.2.1 Jacobi Method

The most obvious and simplest preconditioner is based on the classical iterative method

of Jacobi which splits the coefficient matrix as

A = D + (A−D) , (5.13)

where D is the main diagonal of the coefficient matrix which in turns will be used as

the preconditioner M = D . Thus we solve the preconditioned linear system

D−1Ax = D−1b, (5.14)

where it is assumed D−1 does exists. The only requirement to ensure such existence is

that entries on the main diagonal of the coefficient matrix are not zero aii 6= 0 for all

i = 1, · · · , n.

The main advantage of the Jacobi preconditioning relies on the fact that it is inexpen-

sive to compute and apply. Additionally, being the preconditioner diagonal it is also

symmetric, a fact that preserves the symmetry of the preconditioned system.

However, it is well known, even in the classical iterative methods context, that the

convergence of this method is usually very slow. Furthermore, the method is ensured to

converge only when the coefficient matrix is diagonal dominant.

It is important to observe that it has ones on the main diagonal, therefore it can be

interpreted as a row scaling operation.

5.2.2 Symmetric Gauss-Seidel Method

Implementation of the Jacobi method compute all the n entries of the (k + 1)−th ap-

proximation by using only the previous k−th approximation with no matter that, when

computing the i−th entry x(k+1)
i all from the first to the (i− 1)−th entries are already

available.
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Improvements in the convergence rate in this respect have been obtained by taking

into account updated values of the (k + 1)−th approximated solution. That is, the

computation of the x(k+1)
i entry is carried out as

x
(k+1)
i =

1
aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 , for i = 1, · · · , n, (5.15)

which is the forward version of the Gauss-Seidel method. Moreover, the backward version

can also be implemented. It reads as

x
(k+1)
i =

1
aii

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k+1)
j

 , for i = 1, · · · , n, (5.16)

In the preconditioning context, the forward Gauss-Seidel method is equivalent to split-

ting the coefficient matrix as M = D − E and N = F where E and F are the strict

lower and upper parts of the coefficient matrix and, as usual, D its main diagonal. For

the backward version the places of E and F are mutually interchanged.

Combining both versions together we get the symmetric version. The corresponding

preconditioner reads as follows

M = (D −E)D−1 (D − F ) . (5.17)

Again, this preconditioner is undefined in case when at least one diagonal entry of the

coefficient matrix vanishes.

Notice that the left factor in (5.15) is lower triangular while the right one is upper

triangular, therefore the preconditioner M can be expressed as the product of two

matrices, one lower and the other upper triangular as M = LU with

L = (D −E)D−1 and U = (D − F ) , (5.18)

where, for convenience, we have chosen to make L unit triangular, but the other alter-

native is perfectly possible.

When the coefficient matrix is also symmetric a slight modification preserves the sym-

metry of preconditioner which can be expressed as the product M = LLT , but in this

case the lower matrix is no longer unit triangular and it is given by

L = (D −E)D−
1
2 , (5.19)
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which requires the additional condition that all the entries in the main diagonal being

strictly positive.

In the classical iterative methods context relaxed versions of the present method are

extensively used and well studied. Nevertheless plenty of numerical experiments have

demonstrated that the effect of relaxation is almost unnoticeable when used as precon-

ditioners.

5.3 Incomplete Factorizations

When a sparse matrix is expressed by a product of its lower and upper factors as A = LU

computed via Gaussian elimination, usually fill-in takes place, that is, the triangular

factors L and U are denser than the corresponding parts of A.

There exist several techniques devoted to reducing such fill-in when the matrix is factored

in the framework of direct method. Although these techniques are sometimes not enough

for the tractability of the problem at hand, specially when n is very large or the sparse

matrix is unstructured. Serious problems also arises when pivoting is mandatory for the

stability of such factors because it usually destroys sparsity.

However, powerful preconditioners can be obtained with an incomplete factorization of

the form M = LU , preserving sparsity by discarding some entries of the factorization

process, where L and U are the incomplete LU factors.

Incomplete factorizations algorithms differ in the rules used in order to discard or accept

entries in the incomplete factors. These rules are mainly based on several different

criteria as position or values of these entries.

In order to clarify the previous discussion we let an enumeration N = {1, · · · , n}, with it

we define a sparsity pattern as a subset S (A) ⊆ N ×N of ordered pairs (i, j) for which

aij 6= 0. For convenience we shall also always include in such sparsity pattern all the

diagonal entries of A regardless of whether they are zero or not. Note that, when the

matrix is symmetric A = AT it does not matter the order in the pairs (i, j) and moreover,

this sparsity patter contains redundant information. Thus the pattern corresponding to

the triangular lower or upper part of the original matrix is enough to describe the whole

matrix. This concept can be extended to matrices that, although being numerically

unsymmetric they are structurally symmetric; that is, if aij 6= 0 implies that aji 6= 0.

Discretization of partial differential equations usually leads us to such kind of matrices.

When the matrix used is clear from the context we shall occasionally avoid its writing,

then S (A) = SA or simply S (A) = S.
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We can extend the definition of sparsity pattern to any factorization for which the two

by two intersection of the sparsity patterns of the factors is always empty or it is regular

and can be easily identified. In particular when working with LU factorization it is

useful to define the coupling matrix as

C = L + U − I , (5.20)

where subtraction of the identity matrix is performed with the unique purpose to avoid

storing the main diagonal of the lower factor which is assumed to be unit lower triangular.

Then, given such a set of non zeros in the incomplete factors L and U represented by

SC , the incomplete factorization process based in Gaussian elimination can be sketched

as

aij =

aij − aikakj/akk, if (i, j) ∈ SC

aij , otherwise,
(5.21)

for each k and for i, j > k. Note that if akk = 0 for any k, the incomplete factorization

process cannot be completed successfully yielding what is referred as a breakdown.

5.3.1 ILU(0) Factorization

The most intuitive way of preserving sparsity consists in computing entries of the in-

complete factors only if their corresponding entries in the coefficient matrix are non

zero. That is, the sparsity pattern of the coupling matrix is a simply copy of those

corresponding to the original matrix. That is

S = {(i, j) | aij 6= 0} , (5.22)

where the absence of any subscript can not cause any confusion.

Then we have obtained what is commonly known as the the no-fill of ILU(0) precondi-

tioner. A general implementation based on the ikj version of Gaussian elimination reads

as shown in algorithm 5.3.1.

Note that, if we skip the lines in red we get the traditional algorithm for computing the

complete factors. Practical implementations does not perform such test since the data

structures used to store the matrix and the incomplete factors are adapted to handle this

situation. Then it must be clear that the presented implementation has only conceptual

purposes.
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for i = 1, 2, ..., n do

for k = 1, 2, ..., i− 1 do

if (i, k) ∈ S then

aik = aik/akk

end if

for j = k + 1, k + 2, ..., n do

if (i, j) ∈ S then

aij = aij − aikakj
end if

end for

end for

end for

Algorithm 10: General ILU Factorization.

The main advantages of this preconditioner relies on its easy implementation, almost

inexpensive computation and effectiveness in some model problems such as the dis-

cretization of elliptic partial differential equations, context in which they have arisen.

For several kind of matrices, diagonal dominant for example, it can be proven that the

ILU(0) factorization always exists and the factors are stable.

On the other hand, as already mentioned, this factorization can breakdown if a zero pivot

is encountered. Even worse is the situation when the computation can be completed

but the factors are unstable due to near breakdowns happening when pivots of small

modulus pollutes the factorization. These problems have been traditionally observed in

matrices that does not come from the specific areas for which this preconditioner have

been originally proposed.

5.3.2 Modified ILU Factorization

The ILU(0) preconditioner simply discards entries dropped out during the incomplete

elimination process. There are techniques that attempt to reduce the effect of drop-

ping by compensating the discarded entries trying to improve the performance of the

preconditioner.

A popular technique which performs such a compensation takes, at the end of the k loop

os the ILU algorithm, all the elements that have been dropped and subtract them from
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ukk giving us the MILU(0) factorization which now satisfies

Ae = LUe , (5.23)

where e is the n vector of ones. This ensures that the row sums of A are equal to

those of LU , a desirable property in the discretization of partial differential equations

since the vector e represents the discretization of a constant function. This additional

constrain forces the ILU factorization to be exact for some functions in some sense.

It can be proven that, when a scalar elliptic partial differential equation is descretized

using finite difference or finite elements, the spectral condition number of the resulting

coefficient matrix grows as O
(
h−2

)
, where h is the mesh size. When a factorization

like ILU(0) is used, the preconditioned system reduces its condition number but it still

remains in the same order making no significant improvements in reducing the number

of iterations of a Krylov subspace method. Nevertheless, specifically for these kind of

problems, it has been shown also that the simple compensation performed by MILU(0)

with respect to ILU(0) yields a preconditioned system whose spectral condition number

behaves as O
(
h−1

)
and thus significant reductions in the number of iterations required

to achieve a prescribed accuracy are expected by performing an almost inexpensive

computation. Note that additionally, the implementation for MILU(0) is straightforward

from those of ILU(0).

5.3.3 ILU Factorization with Fill-in

The accuracy of the ILU(0) preconditioner may be insufficient to yield an acceptable rate

of convergence. More robust and accurate ILU factorizations often represent significant

improvements in efficiency.

The quality of ILU preconditioners can be improved by allowing some fill-in in the

factors. This is done by attributing to each entry that is processed by the factorization

procedure a level of fill. For instance, consider the algorithm of the ILU factorization

without taking into account the statements in red. The foundation of this idea is the level

of fill-in should be an indicative of the size, the higher the level, the smaller the elements.

This can be intuitively verified attributing, somewhat arbitrarily, to any element whose

level if fill is k the size εk, where ε < 1. Initially, a non zero element has a level of fill of

one and a zero element has a level of fill of ∞. From the ILU factorization algorithm,

notice that the element aij is modified accordingly to

aij = aij − aikakj (5.24)
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If levij is the current level of the entry aij , then the its size after modification will be

given by

εlevij − εlevikεlevkj = εlevij − εlevik+levkj . (5.25)

Then, the size of aij will be proportional to the maximum of the two sizes εlevij and

εlevik+levkj . Therefore it is now natural to define the new level of fill as

levij = min {levij − levik + levkj} . (5.26)

Nevertheless, we shift all the levels in the previous definitions by −1 with the only

purpose to be consistent with the definition of the ILU(0) factorization. Thus we define

the initial level of fill related to a matrix entry aij as

levij =

0, if aij 6= 0 or i = j

∞, otherwise.
(5.27)

Each time this element is modified by the ILU process, its level of fill is updated according

to

levij = min {levij , levik + levkj + 1} . (5.28)

Including only entries whose level is equal or lesser than p, with p a positive integer, we

obtain the ILU(p) preconditioner. It is important to mention now that an important

drawback of this method is the impossibility to predict and then control the memory

requirements for p > 0.

Notice that, even though the updating strategy used for the level of fill is numerically

founded, the actual numerical values of the corresponding entries are not taken into

account. Therefore its computation depends only in the sparsity pattern and has nothing

to do with the numerical entries of the coefficient matrix. This has some pros and cons.

First we mention the advantages of this incomplete factorization strategy. Probably the

most important is the possibility to break up this process in two phases that can be run

sequentially, one symbolic and one numeric. The first phase is used to determine the

level of fill in the factors, and the second to carry out the actual numerical factorization.

Even more, similar strategies are used in the framework of direct methods in order to

allocate only the necessary memory positions for the factorization of a sparse matrix

[40, 45, 62].

On the other hand, the main numerical drawback of this approach is that it has been

originally designed for matrices arising in the finite difference discretization of scalar

elliptic partial differential equations, mainly using structured and uniform meshes in

simply shaped domains which are diagonal dominant, banded and most important the
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heuristic given by (5.25) is completely valid. This is not the case for matrices with

irregular structure or not diagonal dominant. The situation could be worse when several

physical quantities are approximated at once or anisotropy is present.

5.3.4 ILU Factorization with Dropping

Notice that the idea of compensation of dropped entries during the factorization pro-

cess used for the MILU(0) factorization is quite generic and it can be adapted and

implemented in several different contexts.

Additionally and maybe more importantlt, notice that in the previous variants of ILU

factorization, dropping strategies are based only on the sparsity pattern of the matrix

which, for certain problems, would give us a poor quality preconditioner.

An alternative strategy for controlling fill-in is to accept or discard a new fill on the

basis of its size instead of such position based criterion. Then, as a first approach in this

context consider that, given a drop tolerance τ we discard all the entries in the factors

smaller than τ . It immediately arises that this strategy will de discriminatory if the

matrix is badly scaled, a common situation in the already mentioned situation when

anisotropy or different physical quantities are discretized.

In order to overcome such difficulty we slightly modify the original idea by accept or

discard entries using a relative dropping strategy. Therefore we store and use in the

subsequent factorization process the entry aij in the i-th row if it satisfies the criterion

|aij | > τ

(
1
n

n∑
k=1

|aik|

)
. (5.29)

The reason for choosing row sums and not column sums in evaluating the average is

due to the fact that our generic implementation of the incomplete factorization is based

in the ikj version of Gaussian elimination which computes the factors row by row; but

other options are possible.

Furthermore, a relaxed diagonal compensation can be implemented by subtracting a

portion of the sum of all dropped entries s to the k-th diagonal entry of U

aii = aii − αs, with 0 ≤ α ≤ 1. (5.30)

Note that ILU(0) and MILU(0) are two extreme cases of a similarly defined method

with α = 0 and α = 1 respectively.
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Putting all this together gives us the ILU factorization with standard dropping ILUD(α, τ).

which has been demonstrated to outperform ILU(p) preconditioners with about the same

memory usage.

The major drawback of this strategy is that it is virtually impossible to predict and

directly control the fill-in in the factors of the preconditioner. Additionally, choosing

good values for τ is strongly problem dependent making the situation quite complicated

because a smaller τ will, at least intuitively, lead us a more stable and effective pre-

conditioner but increasing the cost in both computation and application of the present

incomplete factorization.

5.3.5 ILU Factorization with Threshold

As already stated in the previous subsection, when using ILUD preconditioners, memory

requirements might be unpredictable because the dropping is based only on a numerical

criterion. A remedy for this situation is to limit the number of entries to be allowed in

each row of the incomplete LU factors.

First a dropping strategy is used to accept or discard entries in the factorization based

on their magnitude,as done similarly with ILUD but this time using the Euclidean norm

of the current row as

|aij | > τ

(
n∑
k=1

|aik|2
) 1

2

. (5.31)

Once they have been filtered, we store and use only the remaining p greatest entries in

magnitude, apart from the diagonal entry, in the current row of the coupled matrix C .

This give us the ILU with dual threshold strategy, ILUT (τ, p) which have been demon-

strated to be quite powerful even for problems not arising from the discretization of

partial differential equations making it robust and reliable.

Although the selection of the parameters p and τ is also problem dependent this de-

pendency is not so strong as the observed with the ILUD preconditioner. Even more,

if the computation of the ILUT preconditioner breaks down or the resulting factors are

unstable for a given a pair of such parameters, it will often succeed by taking a smaller

value of τ or increasing p, usually a combination of these two modifications will markedly

increase the effectiveness of the preconditioner.
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5.3.6 ILUD and ILUT factorization with Pivoting

The presence of zero or small pivots during the Gaussian elimination process is a serious

and well studied problem even in the case of dense complete factorization methods.

An exactly zero pivot will immediately cause a breakdown in the factorization process

and the LU factors in this case do not exist even with A being regular. The second

situation, when a small pivot is encountered in the factorization process, could be even

worse because, although the factorization process can be completed the resulting factor

happens to be unstable and therefore useless.

This situation has been extensively studied in the frame of complete factorization and

the direct solution of general, and mainly dense, linear systems. The simplest and most

popular remedy has traditionally been the use of pivoting, which consist in interchanging

rows and columns in order to move entries better suited to be taken as pivots, which

generally are those with the greatest magnitude. Note that row interchange is equivalent

to pre-multiplication by a elementary permutation matrix P as those defined by (3.14)

while column interchanges are achieved with post-multiplication of similarly defined

matrices.

The simplest strategy consists in looking for, at the k−th stage of the factorization

process, the greatest module entry in the k−th column below the main diagonal; this is

what is usually called partial pivoting and for the vast majority of situations it is enough

to improve the stability of the resulting factors. In case the mentioned strategy is not

enough total pivoting can be used requiring row as column interchanges in order to move

the greatest module entry contained in the square sub matrix known as the k−th Schur

complement of A respect Gaussian elimination. As a cheaper but effective strategy rook

pivoting can be alternatively used.

Therefore in order to increase the quality of incomplete LU factorizations it is quite

intuitive that pivoting strategies will be useful in this regard. Unfortunately perform-

ing total and rook pivoting is only possible when the kij of kji versions of Gaussian

elimination are used. Performing partial pivoting by rows, as described previously, is

possible when any of the kij, kji, jik or jki versions of Gaussian elimination is used.

In view that the incomplete factorization algorithms described previously are based on

the ikj version of Gaussian elimination pivoting can only be performed by columns.

Furthermore, a relaxed pivoting strategy has been implemented in order to determine

whether or not to permute two columns based on a pivoting tolerance δ. At step i

columns i and j are permuted when

δ|aij | > |aii|, (5.32)
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note that δ = 0 corresponds to the unpivoted versions.

Additionally, the search for pivots could be performed only in a block of size r previously

specified, a feature useful with systems arising from discretization of partial differential

equations with several physical quantities per node or cell.

The implementation of the present pivoting strategy with the ILUD and ILUT methods

gives us the ILUDP (α, τ ; r, δ) and ILUTP (τ, p; r, δ) incomplete factorizations.

Since the pivoting strategy does not imply arithmetical operations, except n divisions of

the form aii/δ, it is expected that this pivoting strategy does not significantly increase

the cost of computing the corresponding preconditioners in comparison to the unpivoted

versions. On the other hand, if there is reliable evidence that the entries with the greatest

modules are close to the main diagonal we can restrict the magnitude of the parameter

r reducing the number of comparisons to be done.

In general, since the pivoted version requires two more parameters than their unpivoted

counterparts they are even more problem dependent and a good combination of all these

parameters could be a trial and error task. Usually this tuning process is carried out

with sample matrices when a reliable and robust implementation is sought.

5.4 Sparse Approximate Inverses

The ILU techniques discussed in the previous section were originally developed for matri-

ces arising from the discretization of elliptic partial differential equations in one variable.

As we have seen such factorization processes can completely break down if a zero pivot

is encountered during the elimination process. Even in the presence of non zero but

small pivots the provided factors might be unstable and they can not improve, or even

worse, the convergence rate of the Krylov subspace method used to solve the related

preconditioned system.

This situation has been observed experimentally when lack of diagonal dominance takes

place. A common situation in the discretization of convection diffusion problems dom-

inated by the former or in the discretization of partial differential equations where

different physical quantities are approximated at once, a classical example being the

Navier-Stokes equations in which we are interested. Other branches having these types

of difficulties are circuit simulation, chemistry and economy to name only a few.

One possible remedy is to try to find a preconditioner that does not require the solution

of a linear system as done for the incomplete LU factors. One option is the direct

approximation of the inverse of the coefficient matrix A−1 by a matrix M and to use it
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a a preconditioner by performing its product with A−1 removing the necessity of solving

a linear system when the preconditioner is applied. This yields a variety of techniques

referred to as sparse approximate inverse preconditioning.

This kind of technique relies on the assumption that for a given sparse matrix A it is

possible to find a sparse matrix M which approximates its inverse A−1 in some sense.

Although this is, at least at the first glace, not obvious at all because even in the case

when A is sparse its inverse is usually completely full. Nevertheless, it is often the case

that many of the entries in such an inverse are small in modulus, thus we can take and

approximation by sparsifying using a dropping strategy.

The most important result in this concern is for banded symmetric positive definite

matrices is the classical result of Demko, Moss and Smith [42]. It states that for such

kind of matrix the magnitudes in its inverse are bounded in an exponentially decaying

manner as ∣∣∣[A−1
]
ij

∣∣∣ ≤ Cρ|i−j| ∀ i, j = 1, 2, · · · , n; (5.33)

where 0 ≤ ρ(κ, β) ≤ 1 and also C = C(κ, β) with κ the spectral condition number and β

the bandwidth of the matrix A. Thus, it follows that the most influential entries, those

having greatest modulus, are confined in a narrow region around the main diagonal.

Unfortunately, as the condition number grows the factor ρ approaches to one quickly

doing the decay almost imperceptible but the basic idea can be, even in this unfavorable

case, exploited.

It is important to note that the most attractive feature of this sparse approximate inverse

approach is its easy and intuitive parallel implementation, since its application consists

of matrix-vector products. In what follows we shall see also that for some schemes, also

the computation of the preconditioner requires a high degree of ingenuity.

5.4.1 Sparse Inverse Preconditioner

This is one of the oldest suggested and investigated preconditioning schemes in the

context of sparse inverse approximation and belongs to a family of methods referred as

Frobenius norm minimization.

The basic idea in this framework is to compute a direct approximation of the inverse

solving the constrained minimization problem

min
M∈S

||I −AM | |F = min
M∈S

||AM − I | |F (5.34)

with S being a set of matrices with a given sparsity pattern.
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This minimization problem can be decoupled in n independent least squares problems

because

||I −AM | |2F =
n∑
j=1

||ej −Am j | |22, (5.35)

where ej and m j denote the j-th columns of the identity and the approximate inverse

respectively. From (5.35) it is now clear the reason by choosing the Frobenius norm.

Then we must solve, possibly is parallel, n minimization problems of the form

min
S(mj)

||ej −Am j | |22, for j = 1, · · · , n. (5.36)

where S (m j) is the sparsity pattern of each of the columns m j of the approximate

inverse, which is completely defined from the sparsity pattern of the overall approximate

inverse S (M ).

Notice that (5.36) is in fact a least squares problem of small size, although n can be

large, due to the sparsity of A.

The main issue with this approach is to choose the sparsity pattern S (M ). Early

implementations of this approach choose the sparsity pattern S (M ) in advance, for

example setting it the same as the original matrix or a power of it Ak with k small .

Although this strategy has proved to be quite inefficient an adaptive strategies has been

devised and implemented. First, in the sake of simplicity, we shall assume that such

sparsity pattern has been suitable choose in advance, after we shall explain how it is

updated in order to improve the approximate inverse.

Let the column vector m j have kj � n non zeros and let J = {i | mij 6= 0} be the set of

non zeros in such a column m j , then (5.36) is effectively reduced to a problem involving

a submatrix Aj of A consisting of the kj columns of A corresponding to the non zero

positions of m j , that is Aj = A (N ,J ). As A is sparse Aj has only rj rows that are

non zeros expected to be much smaller than n to sparsity of A. With this definitions we

now let I the set of such rj indices and denote by Â = A (I,J ) the submatrix extracted

from A, the right hand side êj = ej (I) and the unknown vector m̂ j = m j (J ) and

solve the least squares problem ∥∥∥êj − Âm̂ j

∥∥∥
2

= min, (5.37)

for m̂ j by QR factorization in order to determine the non zero entries in m j . Note that,

if we force that the sparsity pattern S (M ) contains at least the main diagonal we get

that rj ≥ kj and the reduced least squares problem defined by (5.37) is well suited for

such QR factorization.
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Now, we set the entries in the j− th column of M according to m j (J ) = m̂ j and define

the residual of the least squares solution provided by (5.37) as

r = ej −Am j ,

= ej −Ajm̂ j ,

= ej −A (N ,J ) m̂ j .

(5.38)

Taking norms on both sides, and given a tolerance ε we expect that

‖r‖2 =
∥∥∥êj − Âm̂ j

∥∥∥
2
< ε, (5.39)

is satisfied, otherwise we can try again by modifying the originally proposed sparsity

pattern S (m j) suggesting such a yet mentioned adaptive strategy.

The underlying idea of this adaptive strategy is to enlarge S (m j) systematically to get

a better approximation for m j for which (5.39) is eventually satisfied. The most natural

and used strategy for enlarging S (m j) is done by defining the set of non zeros in the

residual vector given by (5.38) as

L = {` | r` 6= 0} , (5.40)

which will be referred as the set of candidates form which will be obtained the indices of

the most profitable columns to be appended while enlarging S (m j). This profitability is

evaluated by computing the norm of the residual vector when the k index, contained in

L, is added to J for each k ∈ L. Note that doing so is extremely costly and since what

we need is an approximation we can use an heuristic to approximates this computation

with the expression

ρ̃k = ρ− (r ,Aek)
2

‖Aek‖22
(5.41)

where ρ = ‖r‖2. Then we append the index k to J for which mink∈L ρ̃k, or possibly

several of them. with this enlarged set of columns indices J = J ∪ k we get its cor-

responding set of row indices I and compute again the problem given by (5.37). We

continue this process iteratively until (5.39) is satisfied or we reach the limitation in the

number of rows allowed in Â which is equal the cardinality of the set of column indices

|Jk| < p.

This lead us to the SPAI(ε, p) preconditioner, which have proved to be very effective

even for weakly diagonal dominant matrices and which computation and applying in

parallel is almost trivial.
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5.4.2 Approximate Inverse by Minimal Residual

Setup time for SPAI preconditioners is usually very high even when performed in parallel.

This has motivated the use of cheaper strategies in order to reduce the time spent while

computing such approximate inverse.

One of those strategies is, instead of the exact minimization of ||I −AM | |F performed

column by column, we replace it by an approximate one.

This can be done with a few iterations of a one dimensional projection method such as

Minimum Residual applied to each of the systems

Am j = ej for j = 1, · · · , n, (5.42)

using an initial guess M 0 for the approximate inverse we get algorithm 5.4.2.

Given M = M 0

for j = 0, 1, 2, ... do

Define m j = Mej

for i = 0, 1, 2, ..., nj do

Compute r j = ej −Am j

αj = (rj ,Arj)
(Arj ,Arj)

m j = m j + αjr j

Drop small entries in m j

If ||r | |2 < ε stop

end for

end for

Algorithm 11: AIMR(p, τ): Approximate Inverse by Minimal Residual.

Where nj is the number of iterations allowed in the residual minimization of the corre-

sponding m j column and ε is a previously specified residual tolerance.

In order to preserve sparsity the small entries are dropped and memory limiting can be

included similarly as done with ILUT techniques by allowing only the p largest entries

in each column m j of the approximate inverse M .

It has been experimentally demonstrated that we do not need to specify any sparsity

pattern in advance since large entries in m j emerge automatically after few iterations,

then we take M 0 = I .
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It is important to mention that all the operations in the previous algorithm must be

performed in sparse-sparse mode in order to improve the speed and keep as low as

possible the memory requirements. Then the residual vector r and the columns of the

approximate inverse m j are stored and operated with in sparse mode.

This gives us the AIMR(p, τ) preconditioner which reduces substantially the cost of

computing the approximate inverse compared to the SPAI algorithm. It has been proved

its defectiveness specially with diagonal dominant and even weakly diagonal dominant

matrices. Although, notice that the accuracy of this preconditioner is subjected to

convergence of the minimal residual method representing a drawback of this method.

As with ILUT techniques, the selection of the parameters p and τ is very problem

dependent and even more, this algorithm requires two additional input parameters nj
and ε. In our current implementation we have set t = nj .

5.4.3 Incomplete Bi-Conjugation

It is now the time to review and alternative of the Frobenius norm minimization schemes

presented in the two previous subsections. This techniques relies in a generalization of

the Gram-Schmidt algorithm is a very similar way in which the orthogonalization Lanc-

zos algorithm for symmetric matrices has been generalized to the biorthogonalization

Lanczos algorithm for unsymmetric matrices.

furthermore, we are now interested in the possibility to express the preconditioner M ≈
A−1 as the product of k matrices as

M =
k∏
i=1

M i; (5.43)

giving us a family of preconditioners usually referred as factored sparse approximate

inverses.

As previously mentioned, a generalization of the Gram-Schmidt process know as bi-

conjugation provides a natural way to compute a triangular factorization of A−1 working

only and directly with A.

Suppose that A admits the factorization A = LDV , where L is unit lower triangular,

D is diagonal and V is unit upper triangular, then A−1 can be factored in the form

A−1 = V −1D−1L−1 = ZD−1W T , (5.44)

where, for instance, Z and W are unit upper triangular matrices. Note that, by con-

struction, the sets of vectors {z 1, · · · , zn} and {w1, · · · ,wn} forming the columns of Z
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and W are A-biconjugate, that is, the following relationship among them holds

(w i,Az j) =

δi, if i = j

0, otherwise.
(5.45)

Obtaining a factored sparse inverse, means that the factors, and not its product, are

sparse matrices. The diagonal matrix D−1 meets this requirement by definition. Al-

though there is no reason to expect that any or both of these upper triangular matrices

Z and W are sparse even when A is.

Here we claim again to the result of Demko, Moss and Smith (5.33) and suppose the

modulus of the entries in the factors Z and W decay from the main diagonal in a nice

behaved manner. Therefore we set a drop tolerance τ and a maximum number of allowed

entries in each column of Z and W p which are applied in the same manner as we have

done for ILUT or AIMR.

If the triangular factors Z and W are sparsified by means of these dropping strategies,

we get the factored approximate inverse of the form

M = ZD−1W
T ≈ A−1. (5.46)

Putting all this together leads us algorithm 5.4.3 for computing the AINV(p, τ) precon-

ditioner.

It has been proved that, when the matrix A is regular, the biconjugation algorithm can

always be completed, at least in exact arithmetical. Unfortunately, because incomplete-

ness divisions by zero may occur even when regularity of A is ensured; even worse is the

situation when the the algorithm can be completed but the resulting factors are unstable

yielding no acceleration when using it in conjunction with a Krylov subspace method.

There is plenty of experimental evidence that this preconditioner is quite effective in

the same cases when ILU(p) with a small p is. It is also reported that it is possible

to implement diagonal modifications to force the success of the computation, we have

not explored this techniques in the present work. It is very important to notice that

this algorithm is naturally sequential because the columns of Z and W are biorthog-

onalized each other by using all the previously computed columns making the parallel

implementation of this algorithm far from being trivial.

5.4.4 Approximate Inverse via Bordering

As we have seen, an important drawback of the AINV preconditioner is its sequen-

tial manner in which it operates difficult its parallelization. For this reason alternative
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Given Z 0 and W 0

for i = 1, 2, ...n do

for j = i, i+ 1, ..., n do

δ
(i−1)
j =

(
ATe i, z

(i−1)
j

)
γ

(i−1)
j =

(
Ae i,w

(i−1)
j

)
end for

for j = i+ 1, i+ 2, ..., n do

z
(i)
j = z

(i−1)
j − δ

(i−1)
j

δ
(i−1)
i

z
(i−1)
i

w
(i)
j = w

(i−1)
j − γ

(i−1)
j

γ
(i−1)
i

w
(i−1)
i

end for

Drop small entries in z
(i)
j and w

(i)
j

Retain only the p largest entries in z
(i)
j and w

(i)
j

end for

Take z i = z
(i−1)
i and w i = w

(i−1)
i

Algorithm 12: AINV(p, τ): Approximate Inverse.

techniques methods more suitable for parallelization have been developed. An alterna-

tive strategy for the factored sparse inverses approach is derived by seeking two unit

triangular matrices such that

LAV = D ⇒ A−1 = VD−1L. (5.47)

But notice that such expression is exactly the same as (5.44) apart of the proper changes

in notation. Now L is unit lower triangular, V is unit upper triangular and D remains

as a diagonal matrix. In this case we call to L and V the inverse LV factors of A.

Furthermore, these matrices can be built one column or row at a time. In order to clarify

the subsequent discussion we introduce the notation referring to sequence of matrices in

the form

Ak+1 =

[
Ak vk

wT
k αk+1

]
, (5.48)

in which, by definition An = A.
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Suppose we have computed the inverse factors until stage k and then Lk and V k are

available. Thus, the inverse factors in the next stage k + 1 can be obtained by writing[
Lk 0

−yTk 1

][
Ak vk

wT
k αk+1

][
U k −z k

0T 1

]
=

[
Dk 0

0T δk+1

]
. (5.49)

From which follows immediately that at each k step we must solve two linear systems

of size k in order to determine the next row −yTk of Lk+1 and the next column −z k of

V k+1. These linear systems are the following

Akz k = vk and AT
k yk = wk. (5.50)

In turns, the k + 1 entry of the diagonal matrix D is given by

δk+1 = αk+1 −wT
k z k − yTk vk + yTkAkz k. (5.51)

Notice that (5.51) can be evaluated once the solution of both systems in (5.50) are avail-

able. These solutions can be sought using a approximate method requiring a relative low

accuracy. More important such linear systems are closely related, the second is the dual

of the first one; this is a becoming situation for methods based on biorthogonalization

Lanczos algorithms, in fact, in chapter 3 we have stated a version being able to produce

both solutions in the algorithm corresponding to the Bi-Conjugate Gradient method.

Therefore performing few BiCG iterations together with numerical dropping and mem-

ory limiting we get the AIB(p, τ) preconditioner which is sketched in algorithm 5.4.4.

for k = 1, 2, ...n do
Solve Akz k = vk and AT

k yk = wk

Compute δk+1 = αk+1 −wT
k z k − yTk vk + yTkAkz k

Drop small entries in z k and yk

Retain only the p largest entries in z k and yk

end for

Algorithm 13: AIB(p, τ): Approximate Inverse by Bordering.

In order to save memory usage and retain the computational cost low, the implemen-

tation of the BiCG method used with this algorithm has been tuned in order to take

advantage of this particular situation, for example, the vectors used are set as sparse

vectors, then all the operations like inner products, matrix by vector product and vector

updates are performed in sparse-sparse mode.
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Notice that a parallel implementation is possible in this situation since all the k steps are

independent each other, although the computational cost for all them is not exactly the

same as we can see with the two extreme cases k = 1 and k = n, the first representing

a single equation while the second involves the whole matrix A.

A major drawback of this method is the fact that it is subjected to convergence of the

BiCG method for which it is known to be quite irregular even in favorable situations.

This could pollute the stability of the inverse factors obtained once the algorithm is

completed. Even more, notice that strictly speaking this methods requires all the se-

quence matrices Ak being regular; if any of these matrices is singular the preconditioner

is not properly defined, although alternative strategies could be implemented in order

to overcome such situation.

As usual, a good choice of the dropping parameters τ and p is strongly problem de-

pendent. Moreover, the BiCG algorithm requires by itself the maximum number of

iterations allowed and the residual tolerance, even the dual residual tolerance could be

required. If we take both tolerances equal it still requires two parameters. As we have

seen in the previous chapter, the number of iterations required for a Krylov subspace

methods to converge is strongly related with the size of the linear system involved, and

since in this case the size of such linear systems is changing for every k it would be more

convenient to specify a factor φ controlling the number of iterations in each k step as

tk = φk. since what we are looking for is an approximation values for φ much smaller

than one would be enough.



Chapter 6

Deflation

This chapter is devoted to the main topic of the present work, a family of techniques

we will call deflation. The motivation of these techniques is quite similar that those for

preconditioning but by different means. Since the convergence rate of Krylov subspace

methods is directly and intricately affected by the spectral properties of the coefficient

matrix. Therefore preconditioning attempts to improve such spectral properties in an

indirect way based on the fact that, if the preconditioner M matches exactly with the

coefficient matrix A, then any Krylov subspace method will perform a single iteration to

deliver the exact solution of the system. The important observation here is that in such

ideal, and non practical, situations the preconditioned system is precisely the identity

matrix having a condition number equal to one all its spectrum clustered at one. What

preconditioning techniques do is in fact an attempt to close the preconditioned system as

much as possible to the identity matrix which has an ideally suited spectrum for Krylov

subspace methods.

On the other hand, deflation works by trying to directly modify favorably the spectrum

of the deflated linear system, a concept to be clarified in this chapter, with respect to

the spectrum of the original coefficient matrix. While preconditioning works globally

and indirectly with the spectrum of the matrix, deflation techniques work directly with

some specific members of the spectrum or a portion of it.

Despite early developments of such techniques which took place in the late eighties and

early nineties they do not enjoy the unification and common background like precondi-

tioning techniques which in turn have achieved a high maturity level. Clear evidence of

this fact is the vast terminology used for these methods. The theoretical, and sometimes

heuristic, different points of view from which these kind of techniques are approached is

also an indicator of this absence of a general consensus.

74
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Even more, many authors have regarded, and some others still do, deflation techniques

as a special technique of preconditioning. It seems that this situation is changing in order

to regard deflation techniques as a different strategy not subordinated to another family

of techniques although relationships and similarities have been identified and recently

studied from the practical and theoretical point of view. We support the later one, for

this reason we have devoted an independent chapter for a such technique.

6.1 Evolution of Deflation

The word deflation has been used traditionally in the spectral environment, devoted to

study and compute the eigenvalues and eigenvectors of a matrix, for long time. Several

techniques have been devised in order to improve the performance and accuracy of

iterative methods for the solution of the eigenvalue problem, deflation is one of them.

Although deflation techniques are always used, in our knowledge, in conjunction with

other techniques.

The concepts used in deflation for spectral computations posses a high degree of elegance,

being simple but very powerful. Then, it seems like a natural idea to take advantage of

them for the problem with which we are concerned. Now we are interested in deflation

for the solution of linear systems.

Roughly speaking, and in accordance with our current knowledge on this subject, the

term deflation focused for solving linear systems of equations first appeared in the paper

of Nicolaides [96]. In this paper a methodology is developed attempting to accelerate the

conjugate gradient method. An example is presented where it is used for the solution of

the linear system arising from the discretization of the Poisson equation and from this

ground a method very similar to what we call domain deflation is explained, which will

be discussed in what follows.

After, Guillard and Désidéri presented a paper [67] in which a spectral preconditioner

is developed and applied to a linear system arising from Chebyshev approximation of

a generalized Helmholtz problem in conjunction with the Richardson method. This

methodology is completely based on the spectral properties of the continuous operator.

It claims to use as much as possible the spectral information from the continuum model

in the solution of the discretized one.

In 1996 two papers appeared which explicitly stated they were attempting to remove the

negative impact in the convergence rate of Krylov subspace methods of small eigenvaues

of the coefficient matrix. In the first of these papers Erhel, Burrage and Pohl [52] the

term preconditioning by deflation is used to refer to such a technique used in conjunction
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with GMRes. The second of these papers was written by Bielawski, Mulyarchik and

Popov [18] who regarded their method as an algebraically reduced system whose operators

may be viewed as the prolongation and restriction operators used in multigrid.

Champan and Saad published in 1997 a paper in which the GMRes method in endowed

with an augmenting strategy, also with the specific purpose of removing the eigenval-

ues that hamper the convergence rate of Krylov subspace methods. Clear examples of

deflation vectors are given and ways of reducing the computational cost invested in com-

puting them are suggested. Additionally, some theoretical considerations are presented

supporting more firmly these kinds of techniques. Maybe the most important contribu-

tion of this paper, in our particular point of view, is the fact that the method is applied

to a large variety of matrices from the Matrix Market collection coming from different

applications. This last point is of paramount importance because it demonstrates that

the method is suitable for general matrices even if not very much information of the

original problem from where they arose is available.

In the same year, Erhel and Guyomarc’h presented in their research report [51] an

augmented subspace conjugate gradient method with a very clear and easy to follow

algorithmic implementation and more importantly an elegant theoretical discussion in

terms of matrix polynomials.

A year after, Burrage, Erhel, Pohl and Williams presented an acceleration technique

explicitly called deflation for the solution of linear systems but more oriented to work

together with classical iterative methods.

Finally, in 2000 a paper appeared authored by Saad, Yeung, Erhel and Guyomarc’h.

It seems, to our particular criteria, that this paper attempted to unify the practical

implementation of the conjugate gradient method given previously in the report of the

two latter authors with the elegant theoretical background presented in the paper of

Saad. More important to mention is the fact that in both previous papers the term

augmentation was preferred over deflation but from this paper a slight consensus can

be noticed about the latter term.

Around the same time a paper by Vuik, Segal and Meijerink [143] appeared in which the

title does not refer at all to deflation and this technique is not classified as a special case

of another procedure such as preconditioning or augmentation. Moreover they imple-

ment this methodology in conjunction or not with incomplete Cholesky preconditioning,

segregating both methodologies and providing this family of techniques a proper per-

sonality. The method is applied with much success to very specialized problems coming

from the oil industry, one that has traditionally supported the development of iterative

methods, and suggests the construction of the deflation vectors on physical grounds.
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Soon after, in 2001, the same authors together with Wijma presented in [144] a detailed

comparative study about the way the deflation vectors are chosen. This paper follows

the same aim as the previous, it does not subordinate deflation to other techniques.

Also the problems presented all came from the oil industry and are strongly related

with those of the previous paper.

Although the same year Vuik in conjunction with Frank presented in [56] a deflation

based preconditioner. They presented what is now almost uniformly know as sub-domain

deflation and applied it to linear systems arising from the discretization of the two

dimensional Laplacian in square domains. The case of large differences in the coefficients

of this Laplacian is analyzed and, very shallowly, the unsymetric case is mentioned.

More advanced applications of deflation techniques began to appear from the mid-two

thousands, among those focused on problems in computational fluid dynamics we can

mention [6, 25, 86, 123–127, 151]. The first three completely focused on the pressure

Poisson equation in which we are particularly interested.

Finally, we mention the paper of Gutknecht [70] which provides an elegant and exhaus-

tive theoretical foundation of spectral deflation definitively regarding it as an indepen-

dent technique not subordinated to any other. Although from a different point of view,

Tang, Vuik and coworkers have extensively studied the relationships of deflation with

domain decomposition and multigrid methods regarding it as a second level precondi-

tioner [128–130]. A detailed study where applications are also presented can be found

in the PhD thesis of Tang [122].

6.2 Hotelling Power Method

The determination of eigenvalues, and possibly their corresponding eigenvectors, is of

great importance in scientific computing not only for theoretical reasons. Spectral infor-

mation is extensively used in several branches of engineering and science; vibration in

mechanical devises, natural frequencies in structures subjected to earthquakes or fluid

flow stability to name only a few.

As we have seen in chapter 3, determining the eigenvectors of a given matrix is equiva-

lent to solving the characteristic polynomial (3.16). The Abel theorem states that such

a solving is impossible for polynomials of order greater than four using formulas employ-

ing only arithmetical operations. Then methods for determining the eigenvalues, and

eventually also the eigenvectors, of a matrix are in essence iterative. This has motivated

one of the most active and solid branches of numerical analysis.
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One of the first methods devised for this task is the power method which delivers the

dominant eigenpair λn and vn by successive approximations. In doing so, this method

neither access nor modifies individual entries of the matrix A, what it needs with the

coefficient matrix is only to perform its product with a vector in each iteration. As we

have mentioned previously in chapter 4 this method can be regarded as one exploiting

information contained in the Krylov subspace.

The main success of the basic implementation of the power method relies on its low

cost in terms of operations and storage requirements which apart of the matrix and the

required eigenvector are virtually null. Additionally, in plenty of applications we are

interested only in the dominant eigenpair delivered by this method. But this situation

can pass to be a drawback if more eigenpairs are required. For such a task there have

been developed several variants of the basic power method. The inverse power method

computes the dominant eigenpair of A−1 which in turns consists in the reciprocal of the

eigenvalue of smallest module in σ (A) and its corresponding eigenvector. The shifted

power method takes a value µ and apply the power method to the shifted system A−µI
with the purpose to get the eigenvalue of A closest to µ.

The method in which are now interested have emerged from the necessity to get the n−1

eigenpair once the corresponding to the dominant eigenvalue has been computed. Such

situation is common in the dynamic analysis of structures where it has been extensively

used even in commercial software [10]. Suppose such a dominant eigenpair is already

available, we take n− 1 unit vectors pi, being among each other orthogonal, and define

an orthonormal matrix whose first column is the dominant eigenvector as

P1 = [vn,p2, · · · ,pn] , with (vn,pi) = 0 ∀ i = 2, 3, · · · , n. (6.1)

Consider now the deflated matrix

P1APT
1 =

[
λn 0

0T A1

]
. (6.2)

Since P1 is an orthonormal matrix PT
1 = P−1

1 , the deflated matrix (6.2) is similar to

A, and thus their spectrum are the same

σ (A) = σ
(
P1APT

1

)
= {λ1, λ2, · · · , λn} , (6.3)

even what is more important for us is the fact that the spectrum of the n− 1 principal

minor of the deflated matrix is exactly the same as the matrix A with the dominant
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eigenvalue removed, that is

σ (A1) = {λ1, λ2, · · · , λn−1} . (6.4)

Then, by applying the power method to this n − 1 principal minor A1 we will get

the eigenvalue with second largest module and its corresponding eigenvector. Once the

n − 1 eigenpair has been found we can repeat the process to get the desired number

of eigenpairs. The similarity transformation (6.2) is usually referred to as Hotelling

deflation.

Note that the matrix P1 is not unique. Several matrices can perform such similarity

transformation. This gives us the advantage that we can chose it in such a manner

that some desirable properties, like sparsity, are retained. But it has some implicitly

drawbacks, for instance, the orthonormalization of a set of vectors could be expensive to

perform and could be even more difficult if conditions for preserve sparsity are imposed.

6.3 Wielandt Method

Now we turn our attention to a generalization of the Hotelling deflation discussed in

the previous section. Only for notational purposes we are going to reverse the ordering

of the matrix spectrum by changing the ≤ signs by ≥ in (3.21), then λ1 is now the

dominant eigenvector.

Suppose again once we have available the dominant eigenpair of the matrix A we wish

to obtain the second dominant eigenpair with eigenvalue λ2. It is possible to displace the

eigenvalue λ1 by applying a rank one modification to the original matrix while keeping

the rest of the spectrum unchanged. This rank one modification is chosen so that the

eigenvalue λ2 becomes the one with largest module of the modified matrix.

After applying this rank one modification we obtain the deflated matrix

A1 = A− αv1u
T , (6.5)

where v1 is the dominant eigenvector of A, u is an arbitrary vector satisfying (v1,u) = 1

and α is an appropriate shift. We take the product of this deflated matrix by the
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dominant eigenvector
A1v1 =

(
A− αv1u

T
)
v1,

= Av1 − αv1u
Tv1,

= Av1 − α (u , v1) v1,

= λ1v1 − αv1,

= (λ1 − α) v1.

(6.6)

This proves that (λ1 − α) is an eigenvalue of the deflated matrix. Now we take the

product of its transpose with v i for any i = 2, · · · , n

AT
1 v i =

(
AT − αuvT1

)
v i,

= ATv i − αuvT1 v i,

= ATv i − α (v1, v i)u ,

= λiv i.

(6.7)

Where we have used the fact that the eigenvectors are each other orthogonal. This

proves that the n−1 eigenpairs for i = 2, · · · , n of the original and the deflated matrices

are exactly the same. Therefore, the spectrum of this deflated matrix is given by

σ (A1) = {λ1 − α, λ2, · · · , λn} . (6.8)

Furthermore, taking α = λ1 and u = v1 we get

A1 =
(
I − v1v

T
1

)
A, (6.9)

for which λ1 has been annihilated. Note that in all this discussion the choice of the

dominant eigenvector has been completely arbitrary but it does not imply any sacrifice

of generality. Instead of choosing the dominant eigenpair, any other eigenpair could

be taken in order to perform such deflation process. At the end, its corresponding

eigenvalue will be annihilated in the spectrum of the deflated matrix.

Methods computing several eigenpairs at once have also been developed. Many of them

use Krylov subspaces and only matrix-vector products are required. Without going

into the details of such methods we only wish to clarify that they usually provides the

extreme values of the spectrum which correspond to the smallest and largest eigenvalues.

Suppose one of them has been used to get m eigenpairs and we are interested in compute

with the method previously used other eigenpairs corresponding to interior eigenvalues.
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We can apply (6.9) recursively as

Am =

(
I −

m∑
i=1

v iv
T
i

)
A = PA, (6.10)

for which the m eigenvalues corresponding to the eigenvectors v i used have been anni-

hilated. In what follows we shall refer to the matrix P as the deflator

P = I −
m∑
i=1

v iv
T
i . (6.11)

Although this method is not widely known in dense eigenproblem computations it has

been extensively used when the involved matrix is large and sparse. From the point of

view of the practical implementation an important consideration is that we never need

to form the deflated matrix explicitly. This is important because in general, even if A is

sparse, Am is dense. Furthermore, in many algorithms for eigenproblem computation,

the only operation required is matrix by vector products z = Ay . Suppose the most

basic case with the deflated matrix as in (6.5). First we compute z = Ay , then the

scalar ϕ = α (u ,y) and finally z = z − ϕv1.

6.4 Spectral Deflation

From the Wielandt method we have devised a technique that given a matrix A and m of

its eigenpairs it annihilates the m corresponding eigenvalues after premultiplying by the

deflator P without explicitly forming the deflated matrix Am. It is well known that the

convergence rate of Krylov subspace methods depends directly on the condition number

of the coefficient matrix. Then it seems a natural and obvious idea to annihilate the

extreme eigenvalues by deflation. It has been observed that are the smallest eigenvalues

those having a worse effect in the convergence behavior of iterative methods.

In order to obtain an alternative expression for the deflator P more suitable for its ap-

plication in the context of Krylov subspace methods let us define the matrix W ∈ Rn×m

whose columns are the m eigenvectors. Also define the coarse matrix Â = W TAW .

Then the deflation matrix can also be written as

P = I −AWÂ
−1

W T . (6.12)
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In order to verify the equivalence between (6.11) and (6.12) we write W by columns

P = I −A [v1 · · · vm]




vT1
...

vTm

A [v1 · · · vm]


−1 

vT1
...

vTm

 ,

= I − [Av1 · · ·Avm]


vT1 Av1 · · · vT1 Avm

...
. . .

...

vTmAv1 · · · vTmAvm


−1 

vT1
...

vTm

 ,

= I − [λ1v1 · · ·λmvm]


λ1

. . .

λm


−1 

vT1
...

vTm

 ,

= I − [v1 · · · vm]


vT1
...

vTm

 ,
= I −

∑m
i=1 v iv

T
i .

(6.13)

Now, it is easy to see that we can apply any Krylov subspace method to the deflated

linear system

PAx = Pb, (6.14)

from this and the previous comments it is clear that we do not need to form explicitly

the deflated matrix. The effect of deflation is obtained by forming the product of P with

a vector exactly in the same way as preconditioning.

6.5 Domain Deflation

Although several efficient methods for the eigenproblem have been developed over the

years, the computation of eigenpairs is usually a very expensive task, specially those in

the leftmost extreme of the spectrum. In addition, if get the desired eigenvalues with

the only purpose of construct the deflator, its speed up time could be prohibitive.

Several techniques take advantage of the information provided by the orthogonalization

process when a long term recurrence method like FOM(k) of GMRes(k) is used. At

the end, the underlying orthoormalization algorithm on which all this methods rely was

originally proposed for the approximation of eigenvalues. Suppose an iteration of the

FOM(k) method have been run. We compute the eigenvectors of the upper Hessenberg

matrix H k denoted by z i. The approximation to m eigenvectors v i of the original
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coefficient matrix is given by

v i = Vz i. (6.15)

The vectors z i are the Ritz vectors while its corresponding eigenvalues θi are the Ritz

values. This is in fact, the basis a one of the most successful family of methods for

computing eigenvalues and eigenvectors of large and sparse matrices. They are known

generically as Implicitly Restarted Arnoldi Methods.

This alternative has the disadvantage that it can only be used when a short recurrence

method is employed to solve the linear system. In addition, the deflation is not applied

in the first iteration and formally speaking we are changing to a different system inside

the iteration. The price to pay is that a correction at the end is required as done with

flexible preconditioning.

A cheap alternative to overcome these problems consist in going back to the origins of

this technique when it was proposed for the solution of linear systems. Nicolades have

proposed in his paper to divide the domain in which the partial differential equation,

which after discretization, provides the linear system we are interested to solve, in m

several disjoint subdomains Ωi ∩ Ωj = for i 6= j. All they together forming the original

domain
⋃m
i=1 Ωi = Ω [96]. After discretization, all the points where the unknown variable

of the original partial differential equation belong to one and only one subdomain. Being

xi the unknown associated tho point i. We take m vectors, each one corresponding to

one subdomain. Their entries are given by

w
(j)
i =

1, if point i belongs to Ωj

0, Otherwise.
(6.16)

Although Nicolaides did not present numerical results with such a strategy it has been

reported in the literature it has some considerable degree of success [6, 56]. Several

other variants oriented in this manner have been proposed. Many of them inspired

by the physics of the underlying problem. In our knowledge one of the most studied

problems is the case in which the coefficients of the partial differential equation vary

drastically in space [140, 143, 144]. An inherent characteristic of layered groundwater

reservoirs in which the flow of water is modeled by the Darcy equation. Other example

in which this approach have been applied successfully is the numerical simulation of

bubbly flows [127].

When no information about the coefficients of the partial differential equation yielding

the linear system with must solve a similar strategy can be obtained by setting the first q
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entries of the first deflation vector w1 equal to one and zero otherwise, being q = bn/mc:

w
(1)
j =

1, for j = 1, 2, ..., q

0, for j = q + 1, q + 2, ..., n.
(6.17)

The second deflation vector is defined as follows

w
(2)
j =


0, for j = 1, 2, ..., q

1, for j = q + 1, q + 2, ..., 2q

0, for j = 2q + 1, 2q + 2, ..., n.

(6.18)

The definition of the m− 2 remaining deflation vectors is straightforward.

In the present work we have used the last approach. It is important to mention that

these options for choosing the deflation vectors in W are in some way related to domain

decomposition and multigrid methods. Detailed discussion, analysis and comparison

from the theoretical and experimental points of view can be found in [128, 129].

6.6 Implementation

As we have seen and stressed in the previous sections, explicit computation of the de-

flated system is never formed explicitly. Consider the case when eigenvectors, or some

approximation, are used as deflation vectors. Being these deflator vectors dense we have

not many reasons, if any, to expect the deflator P being sparse. With this in mind

would be completely naive to expect sparsity in the deflated matrix PA.

Furthermore, note from 6.12 that the deflator application requires the inverse of the

coarse matrix Â given by

Â = W TAW . (6.19)
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Taking the column partition of the matrix containing the deflation vectors will be very

elucidating to see the compuatational cost of such coarsening operation

Â =


wT

1
...

wT
m

A [w1 · · ·wm] ,

=


wT

1
...

wT
m

 [ Aw1 · · ·Awm] ,

=


wT

1 Aw1 · · · wT
1 Awm

...
. . .

...

wT
mAw1 · · · wT

mAwm

 .

(6.20)

As we can see, obtaining such coarse matrix requires the evaluation of m matrix by vector

products and m2 inner products. When the coefficient matrix is symmetric the amount

of inner products is reduced to m(m + 1)/2. Note that any of the parameters used in

such process change as the iterations run. Then we need to perform such coarsening

only one time.

For this reason we have segregated the deflation process in two stages, one devoted to

compute the deflator and the second to apply it. Note that the first one is independent

of any particular Krylov subspace implementation, or even other kind of methods, while

the second must be included inside those iterative methods.

In what follows we shall assume the deflation vectors are available when we start the

computing phase, although several comments will be done when they are convenient in

order to clarify some fine detals about the implementation. After we will back again in

describing how the deflation vectors in the framework of spectral deflation have been

obtained in the present work.

From (6.20) we have obtained a rough estimative of the operation count required for the

coarsening process. But more important, it exemplifies the general procedure in which

it is actually carried out. First the m matrix by vector products are evaluated, then we

compute the m2 inner products. Once the coarse matrix Â is evaluated we proceed to

factorize it instead of explicitly compute its inverse. For such a task several options and

observations can be done, we list them as follows

1. If the matrix A is symmetric positive definite we compute its Cholesky factoriza-

tion, alternatively the root free and diagonal pivoted versions have been imple-

mented.
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2. If the matrix A is symmetric but positive semidefinite we compute its LDLT

factorization, the diagonal pivoted version has been implemented.

3. If the matrix A is symmetric but indefinete or if we known, or at least suspect,

that orthogonality of the columns of A is not well conditioned, we compute the

Bunch-Kaufmann factorization where two by two block pivots are allowed.

4. If the matrix A is unsymmetric and strongly diagonal dominant, LU factorization

without pivoting is applied.

5. If the matrix A is unsymmetric but not diagonal dominant, or possibly in a weakly

manner, an adaptive strategy has been implemented. LU factorization with partial

pivoting is run with monitoring of the grown factor ρ. If such ρ increases above

a predefined tolerance we switch to a rook pivoting strategy. If the grown factor

increases even more a last switch to total pivoting is done. At each switch it is

possible to continue the factorization from the current stage or recompute it from

scratch.

Once the deflation vectors and an adequate factorization of the coarse matrix are ready

we are in position to apply deflation together with any Krylov subspace method. As

done with preconditioning, what we need is to compute the product of the projector P

with a given vector. This relies on the fact that Krylov subspace methods only need

to perform matrix by vector products and because we are now interested in solving a

system with the deflated matrix PA as the coefficient matrix. Therefore products of

the form z = PAy are now required. As done with preconditioning, we segregate this

double product in two steps as follows

w = Ay and z = Pw . (6.21)

But remember again that the deflator P is not explicitly formed. Its product with a

vector can be preformed as

Pw =
[
I −AWÂ

−1
W T

]
w ,

= w −AWÂ
−1

W Tw ,

= w −AWÂ
−1

d0,

= w −AWd ,

= w −Ap,

= w − t .

(6.22)
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Overwriting could be used in the solution of the, presumably small, coarse linear system.

Then the same storage used for d can be used for d0.

Note that passing from the second to the third lines, m inner products are computed.

Then a forward and backward substitution is done for passing to the fourth line. Going

to the fifth requires m scalar by vector products. Finally, a matrix by vector product

and a vector addition are needed to complete the process.

Of course the operation PTw for methods requiring the matrix transpose by vector

product is perfectly defined and can be easily derived in a similar way that (6.22).

It seems convenient now at closing the present chapter describe in some detail the

methods used for the computation of the deflation vectors. Of course we refer to the

spectral deflation case since the domain deflation case have been clearly stated in the

previous subsection and because there is not precisely a computation involved. Although

we must take into account that domain deflation vectors are by definition sparse, a fact

exploited in our current implementations. Furthermore, the coarse matrix is banded,

its bandwidth depends on the connectivity of the subdomains. Although this feature

has been sacrified for the sake numerical stability in the matrix factorization, due to

inherent difficulties in the implementation of pivoting techniques with a matrix storage

format different to the explicit storage of a dense matrix. This prioritization has been

done having in mind that the number of subdomains m would be much smaller that the

dimension of the linear system.

For the computation of the eigenvalues used for the spectral deflation we have an im-

plementation of the Implicitly Restarted Arnoldi Method, which is nowadays deserved as

one of the most reliable procedures for the eigenproblem calculations. Generally speak-

ing it takes a vector, makes it unit and run ` steps of the Arnoldi algorithm. Then

it proceed by computing the eigenvalues of the upper Hessenberg matrix, that is, the

Ritz values. This is done with the QR method without shifts but an aggressive early

deflation technique using a neighbor wise criterion as described in [81]. We found such

a technique much faster that the shifted QR algorithm at the cost of some accuracy.

Although the application we are concerned with does not require a high degree of such

accuracy in the computation of the eigenvectors.

It is important to mention that plenty of difficulties have been encountered in such

an implementation when applied to unsymmetric matrices apart the need of work in

complex arithmetic. We observed that in the symmetric case, which reduces to the

symmetric Lanczos algorithm, not very much difficulties were found. Maybe the most

important one has been the lack of othogonality among the Lanczos vectors. This

situation can be remedied using complete or selective re-orthogonalization. We have
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choose the latter one due to its lower computational cost, as usual sacrificing some degree

of accuracy that in the present application does not have a great negative impact.



Chapter 7

Applications

In this chapter we describe the most relevant and interesting cases of the large amount of

numerical experiments performed during this work. The selection of these examples has

been done by trying to emphasize as much as possible the pros an cons of the methods

previously described and implemented. In doing this selection, information of other

problems have been taken also into account. Therefore we claim this selection is a good

representative. Putting in a document all the available information would be virtually

impossible due to space reasons.

We have tried also to present the information we are interested as much as possible in

graphical form. Doing so we are not following the traditional way in which it is done

in the iterative methods literature. The purpose of that is to avoid tables plagued by

numbers which are difficult to follow, specially when a large amount of information is

available as in the present case. Thus we hope this presentation being more friendly

with the reader.

We have implemented all the methods described previously in this work in a function

oriented fashion. The purpose of use only implemented code by ourselves has been

mainly to get an objective comparison. This has the added value that we are now able

to modify and possibly improve such algorithms.

The elected programming language has been Matlab, due to its easy implementation

and flexibility in the development stage. Although all the algorithms have ben coded in

a way easy to translate to Fortran, minimizing or avoiding completely the use of intrinsic

and closed Matlab functions.

All the test were run in a personal computer DELL Optiplex 980 with 8Gb of RAM and

eight Intel 2.8GHz Intel Core processor. Although any parallelism has been implemented

in our algorithms that are essentially sequential.

89
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For all the matrices we have taken as the right hand side and artificially created vector.

It has been computed as follows. First a vector with random entries is created, having

zero mean and deviation of one. This vector is multiplied by the coefficient matrix and

the result is normalized. Finally we take this vector as the right hand side.

Then the true solution is obtained by using the backslash command of Matlab. Is this

vector the one used to compute the error of the iteration when Krylov subspace methods

run. For all the test we have set a stooping criterion based on norm of the residual. The

tolerance has been set as 10−6. The maximum number of iterations allowed has been

set, for symmetric matrices as one an a half times the size of the linear system and for

unsymmetric matrices as twice the same number.

As we have seen in chapter 5 many of the preconditioners requires as input one or

more parameters. It is well known that the selection of such values is strongly problem

dependent. Nevertheless we have used generic values trying to match them with the

most widely used in the literature. But we claim that tuning the preconditioners for a

particular application will improve their performance.

Something similar can be said about deflation. For symmetric matrices we have chose the

number of deflation vectors someway arbitrary while we were performing our numerical

experiments. For unsymmetric matrices we have always chose the number of delation

vectors as a function of the size of the linear system. Until a maximum of a tenth of

this size. For both cases spectral and domain deflation have been tested.

7.1 Symmetric Matrices

The matrix we are mainly interested is those arising from the discretization of the

Poisson pressure equation which in turns is symmetric. For this kind of matrices we

have tested only two preconditioning techniques, namely Jacobi and incomplete Cholesky

factorization with no fill in.

Additionally, two renumbering strategies has been tested for this kind of matrices. The

first one is the well known Reverse Cuthill-McKee method which is a bandwidth reducing

method. The second is the the also well known Minimum Degree algorithm which in

turns is a fill in reducing method.

7.1.1 Two Dimensional Laplacian

The first of the examples we will show is basically a toy problem which does not represent

almost any difficulty for its solution by Krylov Subspace methods. It has been tested
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i λi
1 0.04467669509947992
2 0.11119273597746462
3 0.11119273597747378
4 0.17770877685544381
5 0.22040061174490241
6 0.22040061174490935

Table 7.1: The six smallest eigenvalues of 20× 20 Laplacian matrix.

and included here with the only purpose of validation since we have reproduced exactly

the parameters used by Champan and Saad in [26].

It consist in the discretization of the Laplace equation in a square domain using twenty

cells in each direction by a five point stencil finite difference method. This lead us a

pentadiagonal symmetric matrix with size n = 400.

We have solved such a matrix with the conjugate Gradient method in accordance with

the mentioned paper. No prenconditioning is used and only spectral deflation with

1, 2, 3, 4, 5 and 6 deflation vectors have been tested.

As have done Champan and Saad, we show the six smallest eigenvalues of the matrix at

hand in table 7.1.1.

In figure (7.1) we show the convergence curves of the Conjugate Gradient using spectral

deflation. The case when zero deflation vectors are used correspond to the classical

Conjugate Gradient method without deflation and shown with a black line.

Note that the iterations corresponding to the cases when one and two deflation vectors

are used are practically identical. This is due to the fact that, at leas in finite precision

arithmetic, the coefficient matrix is defective. From the table 7.1.1 we can see that the

second and third eigenvalues are equal up to thirteen figures. In terms of the iterations

this difference is completely unnoticeable.

A similar effect happens when four and five deflation vectors are used, but this time it

takes place almost at the end of the iteration. This is due the fifth and sixth eigenvectors

are almost equal, in this case within one more significant figure.

The results obtained with our implementation are in completely agree with those pre-

sented in the mentioned paper. Furthermore the convergence of the iterative method

have been significantly accelerated fulfilling our purposes. This gives us the insight that

our implementation works as expected.
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Figure 7.1: Conjugate Gradient convergence curves for two dimensional 20×20 Lapla-
cian using the eigenvectors orresponding to the 0, 1, 2, 3, 4, 5 and 6 smallest eigenvalues

as deflation vectors.

7.1.2 Matrix Market Possion Pressure

The second example we present corresponds to the PressPoisson matrix taken from the

University of Florida sparse matrix collection collection available on the internet. It

comes from the discretization of the Poisson pressure of a back step flow using finite

elements. It size is n = 14, 822 and its lower part contains η = 715, 804 non zeros. Its

condition number is κ = 2.03665× 106, then it is regarded as not very ill-conditioned.

In figure 7.2 we show it original sparsity pattern together those corresponding to the

minimum degree and reverse Cuthill-McKee reordering. Figure 7.3 displays the decimal

logarithm of its ordered eigenvalues. Notice the sharpness in the left extreme of the

plot indicating that smallest eigenvalues are separated far away from the bulk of the

spectrum. From this we can conclude that taking the eigenvectors corresponding to the

smallest eigenvectors will be more efficient that taking those corresponding to the largest

ones, since after deflation the reduction of the condition number will be better.

Figures 7.4 shows the number of iterations performed in order to obtain the required

reduction in the norm of the residual using the original, minimum degree and reverse

Cuthill-McKee orderings for the unprecnditioned and preconditioned conjugate gradient
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Figure 7.2: Sparsity pattern of Pres Poisson with 14, 822 unknowns.

Figure 7.3: Logarithm of the spectrum for Pres Poisson with 14, 822 unknowns.
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iterations. Figure 7.5 shows their corresponding convergence curves. Note that, as ex-

pected the unpreconditioned and Jacobi preconditioned iterations are ordering invariant.

For this particular problem reverse Cuthill-McKee outperforms the original reordering

when the incomplete Choleski preconditioner were used.

Figure 7.4: Number of performed Conjugate Gradient iterations for solving the
Pres Poisson with 14, 822 unknowns for the three orderings and no preconditioning,

Jacobi and Incomplete Cholesky.

Figures 7.6 and 7.7 present the analogous information when, additionally to precondi-

tioning and reordering, spectral deflation hes been used employing m = 500 spectral

deflation vectors. Note that for the three preconditioning options employed the original

ordering always outperforms the other two reordering. Again the incomplete Cholesky

preconditioner fairly outperforms the Jacobi preconditioner and, as clearly expected, the

unpreconditioned iteration.

Finally, in figure 7.8 we present the convergence curves corresponding to the incomplete

Cholesky preconditioned iterations using 0, 20, 40, 60, 80, 100 and 120 deflation vectors.

Note that with the only exception when taking 100 deflation vectors, the number of

iterations is always reduced.

Figure 7.9 shows the overall elapsed time in the whole solution process with an apportion-

ment for each stage. The color key means Computing Preconditioner (CP), Computing
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Figure 7.5: Conjugate Gradient convergence curves for solving the Pres Poisson with
14, 822 unknowns for the three orderings and no preconditioning, Jacobi and Incomplete

Cholesky.

Deflator (CD) Iterative Solver (IS), Apply Preconditioner (AP) and Apply Deflation

(AD).

It is very important to notice that despite the elapsed time by the iterative solver reduces

as more deflation vectors are used the elapsed time for the overall computation increases

due to the cost of computing and applying the deflator. Notice also that even when

comparing only the times when deflation is used a minimum is attained in the middle

of the plot.

7.1.3 ISIS Poisson Pressure

The third example we present in concluding for symmetric matrices is a matrix that

comes from the discretization of the Poisson pressure equation in a driven cavity flow

using finite volumes with the ISIS software. In turns, this is a commercial software

created and maintained at École Central de Nantes. Then we pretend that the study

developed during the present work will be incorporated in such a package.
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Figure 7.6: Number of performed Conjugate Gradient iterations for solving the
Pres Poisson with 14, 822 unknowns for the three orderings and no preconditioning,

Jacobi and Incomplete Cholesky; together with spectral deflation, p = 500.

The matrix has dimension n = 6, 400. Its condition number is in the order κ = O (14)

which represents a challenging problem being considered ill-conditioned. It original

sparsity pattern is shown in figure 7.10 together the other two used reorderings.

Figure 7.11 shows the decimal logarithm of its ordered spectrum. Note that in this case

the observation made for the previous matrix in this regard is even more pronounced.

The leftmost part of the spectrum is even more segregated from the bulk of the spectrum

being almost flat in the opposite extreme.

Figure 7.12 shows the number of iterations performed when only preconditioning is

used for the three orderings. Note that for this matrix Jacobi preconditioning does

not represent a significant improvement respect the unpreconditioned iteration. This is

because the matrix at hand is far from being diagonal dominant.

The incomplete Cholesky preconditioner performs satisfactorily but its application to

the original ordering clearly outperforms the corresponding to minimum degree. There is

not noticeable difference between the reverse Cuthill-Mckee and the original reordering

when this preconditioner is used.
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Figure 7.7: Conjugate Gradient convergence curves for solving the Pres Poisson with
14, 822 unknowns for the three orderings and no preconditioning, Jacobi and Incomplete

Cholesky; together with spectral deflation, p = 500.

Figure 7.8: Convergence curves for 0, 20, 40, 60, 80, 100 and 120 domain deflation
vectors using Incomplete Cholesky preconditioning.
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Figure 7.9: Elapsed time for 0, 20, 40, 60, 80, 100 and 120 domain deflation vectors
using Incomplete Cholesky preconditioning.

Figure 7.10: Sparsity pattern of ISIS Pressure Poisson system 6, 400 unknowns.
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Figure 7.11: Logarithm of the spectrum for ISIS Pressure Poisson system 6, 400
unknowns.

Figure 7.13 shows the corresponding convergence curves. It is very important to note

the flatness in the error curves even when a reduction in the residual norm curves is

observed. This is a typical pathology of ill-conditioned systems.

Figures 7.14 and 7.15 show the corresponding results when in addition to reordering

and preconditioning, deflation has been also applied. In this case we have used m = 640

spectral deflation vectors. In this case Jacobi preconditioning worse the performance

compared with the unpreconditioned iteration. Again incomplete Cholesky has proven

its effectiveness. Note the impressive reduction in the number of iterations. The number

of iterations goes from 264 for the unpreconditioned and undeflated version to only 8

when incomplete Cholesky and spectral deflation is used.

Although, notice that the flatness in the error norm curve is worst that for the undeflated

versions, indicating that annihilation of eigenvalues is causing an effect similar to make

singular the deflated matrix.

Finally, figure 7.16 shows the convergence curves corresponding to take different num-

bers of deflation vectors, all using incomplete Cholesky preconditioning. Note that the

number of iterations is always decresing with an stagnation when m = 50 is reached.
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Figure 7.12: Number of performed Conjugate Gradient iterations for solving the
ISIS Pressure Poisson system with 6, 400 unknowns for the three orderings and no

preconditioning, Jacobi and Incomplete Cholesky.

The flatness of the error norm curves is also explained with the same argument yet

mentioned.

Figure 7.17 shows the elapsed time apportionment stage by stage. Notice that in this

case the increasing of the time spent in computing the deflator fairly overcome any

saving in the iterative solving.

In concluding the results for the matrix at hand we wish to add that when domain

delfation has been used the reduction of the number of iterations is significantly inferior

as those obtained with spectral deflation. This effect increses the overall time even more

dramatically than in figure 7.17.

7.2 Unsymmetric Matrices

As stated in the previous section, our main interest when starting the present work

was focused in the Poisson pressure equation which is essentially symmetric. Although,

during developing the present work we became to be interested also in the solution of

unsymmetric linear systems. In fact the most intensive development for preconditionig

has been done for such unsymetric matrices.
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Figure 7.13: Conjugate Gradient convergence curves for solving the ISIS Pressure
Poisson system with 6, 400 unknowns for the three orderings and no preconditioning,

Jacobi and Incomplete Cholesky.

This interest have been motivated mainly by two reasons. The first one is the fact that

in the ISIS software also the solution of unsymmetric linear systems is required. The

second is due the situation of deflation methods for unsymmetric linear systems. As

far as we know, there is a lack in the study of such deflation techniques for unsymetric

matrices. It is only mentioned in a few of papers and we have not found numerical

results with short term recurrence methods.

The first difficulty we can easily observe in the application of deflation for unsymmetric

systems is the fact that, even if the matrix is real, its eigenvalues and eigenvectors can

be complex. Here a word must be said about one of our limitations. The algorithms for

eigenvalue computation we have currently available have been designed for symmetric

matrices. Then, instead of providing the eigenvectors of the coefficient matrix as the

deflation vectors we have computed those corresponding to the normalized system ATA.

Strictly speaking what we are computing are the left singular vectors of the singular

values decomposition of A.

Another point to be clarified before passing the specific examples is that for unsymmetric

systems we have test, in addition to the two reaorderings used for symmetric matrices,
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Figure 7.14: Number of performed Conjugate Gradient iterations for solving the
ISIS Pressure Poisson system with 6, 400 unknowns for the three orderings and no
preconditioning, Jacobi and Incomplete Cholesky; together with spectral deflation, p =

640.

other four strategies. We list them as follows together their acronyms used for identifying

them:

1. RCM.- Reverse Cuthill-McKee.

2. MID.- Minimum Degree.

3. MCO.- Multi Color.

4. OWD.- One Way Dissection.

5. NED.- Nested Dissection.

6. RQT.- Rooted Quotient Three.

Althoght when the matrix is not structurally symmetric, we apply the reordering to the

sparsity of the symmetric matrix A + AT .
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Figure 7.15: Conjugate Gradient convergence curves for solving the ISIS Pressure
Poisson system with 6, 400 unknowns for the three orderings and no preconditioning,

Jacobi and Incomplete Cholesky; together with spectral deflation, p = 640.

Figure 7.16: Convergence curves for 0, 10, 20, 30, 40, 50 and 60 spectral deflation vec-
tors using Incomplete Cholesky preconditioning.
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Figure 7.17: Elapsed time for 0, 10, 20, 30, 40, 50 and 60 spectral deflation vectors
using Incomplete Cholesky preconditioning.

7.2.1 Two Dimensional Convection-Diffusion

The first of the unsymmetric matrices is a slight modification of the first presented in

the previous section for symmetric matrices. A little of convection has been added to

the Laplacian in order to broke the symmetry of the problem, we have taken ε = 0.01.

The best Krylov subspace method among those used in the present work has been the

BiConjugate Gradient Stabilized, being the faster and the one that has performed the

less number of iterations.

First we shall analyze the results obtained with the ILUTP preconditioner which has

been the most efficient among those based in incomplete factorizations.

Figure 7.18 shows the sparsity patterns such incomplete factorization with the six dif-

ferent reordering used. Figure 7.19 shows the spectrum in the complex plane of the

preconditioned systems with the six different orderings. Note that, even that in general

the spectrum are clustered around one, some of them, particularly RQT, spreed it in an

parallel line to the complex axis. The best clustered ones correspond tho the original

reordering and RCM.
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Figure 7.18: Sparsity patterns of ILUTP (2µ, 0.05;n, 0.05) preconditioner for the six
reorderings computed.

Figure 7.20 shows the convergence curves when of the preconditioned systems together

the unpreconditioned one for reference. Note the important reduction in the number of

the iterations. From this we also see that the drop tolerance τ has no influence if low

fill in is allowed.

In figure 7.21 we have compared the overall times for this preconditioner together the

iterative solver. Note that the effectiveness of this preconditioner is at the high cost of

being very time consuming for its computation. For this reason we consider feasible use

this preconditioner only when other preconditioners fail or when it is possible to reuse

it.

The last figures concerned with a preconditioner of the incomplete factorization family

7.22 and 7.23 corresponds when the mean performance case of the previously compared

preconditioners is endowed with spectral deflation. Note that no important gains have

been obtained in the reduction of the number of iterations. Moreover the flattening

effect in the error curve is quite significant.

Figure 7.24 shows the sparsity patterns such approximate inverse with the six different

reordering used. Figure 7.25 shows the spectrum in the complex plane of the precondi-

tioned systems with the six different orderings. Note that, as expected AIMR is invariant
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Figure 7.19: Spectrum of ILUTP (2µ, 0.05;n, 0.05) preconditioned systems for the
Natural ordering and the six different reorderings.

Figure 7.20: Convergence curves for ILUTP (p, τ ;n, 0.05) preconditioners, together
unpreconditioned system in black, with Natural ordering.
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Figure 7.21: Time comparison for ILUTP (p, τ ;n, 0.05) preconditioners, together un-
preconditioned system at zero, with Natural ordering.

Figure 7.22: Convergence curves for undeflated and unpreconditioned systems, in
dashed and solid black lines respectively, together with ILUT (2µ, 0.05) preconditioned

and spectral deflated systems with Natural ordering.
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Figure 7.23: Time comparison for undeflated and unpreconditioned system (-1), and
ILUT (2µ, 0.05) preconditioned and spectral deflated systems with Natural ordering.

to reordering.

Figure 7.26 shows the convergence curves when of the preconditioned systems together

the unpreconditioned one for reference. Note the important reduction in the number of

the iterations. For this preconditioner the effect observed with the previous precondi-

tioner when the drop tolerance τ has no influence if low fill in is allowed is even more

drastic than the previous case.

From the comparison of the overall times for this preconditioner together the iterative

solver shown in figure 7.27 we see that the time required to compute this preconditioner

dominates far away the overall process.

The last figures concerned with preconditioner of the approximate inverse family 7.22

and 7.23 corresponds when a the mean performance case of the previously compared

preconditioners is endowed with spectral deflation. In thsi case slight gains have been

obtained in the reduction of the number of iterations. The flattening effect in the error

curve is still present. But what is more important, the overall time is still dominated

by the computation of the preconditioner.

In closing the results for the matrix at hand we present in 7.30 the estimative if the

condition number of the preconditioned by ILU(p) and deflated systems as functions
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Figure 7.24: Sparsity patterns of AIMR(2µ, 0.05) preconditioner for the six reorder-
ings computed.

Figure 7.25: Spectrum of AIMR(2µ, 0.05) preconditioned systems for the Natural
ordering and the six different reorderings.
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Figure 7.26: Convergence curves for AIMR(p, τ) preconditioners, together unpre-
conditioned system in black, with Natural ordering.

Figure 7.27: Time comparison for AIMR(p, τ) preconditioners, together unprecon-
ditioned system at zero, with Natural ordering.
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Figure 7.28: Convergence curves for undeflated and unpreconditioned systems, in
dashed and solid black lines respectively, together with AIMR(2µ, 0.05) preconditioned

and spectral deflated systems with Natural ordering.

Figure 7.29: Time comparison for undeflated and unpreconditioned system (-1), and
AIMR(2µ, 0.05) preconditioned and spectral deflated systems with Natural ordering.
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Figure 7.30: Condition numbers of preconditioned and deflated systems using ILU(p)
preconditioners and spectral deflation with Natural ordering.

of the fill in level p and the number of deflation vectors m. Figure 7.31 presents the

analogous results when SPAI preconditioning has been used. For both, spectral deflation

vectors were used.

7.2.2 LNS511 Matrix Market

The second unsymmetric example has been also taken from the University of Florida

Sparse Matrix Collection. It corresponds to a linear systems arising from the discretiza-

tion of the Navier-Stokes of the cavity flow problem using mixed finite elements. Since

velocity and pressure are included in the unknown vector this matrix has saddle point

structure.

In this case we have observed extremely erratic and irregular convergence behavior

when BiCGStab has been used. Here we present the results corresponding to the QMR

method, which was the most well behaved.

In difference of the previous case, this time the best preconditioner from the incomplete

factorization family has been the ILUDP preconditioner.



Chapter 7. Applications 113

Figure 7.31: Condition numbers of preconditioned and deflated systems using
SPAI(p) preconditioners and spectral deflation with Natural ordering.

Figure 7.32 shows the sparsity patterns of such incomplete factorization with the six

different reordering used.

Figure 7.33 shows the convergence curves when of the preconditioned systems together

the unpreconditioned one for reference. Here it is important to mention that the mini-

mum degree ordering is the same as the original one. Then all different reordering worse

the convergence in this situation. More important to take into account is the fact that

the unpreconditioned iteration did not succeed in reduce the residual norm until the

required accuracy.

In figure 7.36 we have compared the overall times for this preconditioner together the

iterative solver. For this case the situation is completely different to the previous cases.

Even more, the column corresponding to the unpreconditined iteration is not strictly

speaking comparable with the corresponding to the preconditioned iterations that have

succeed because the former one did not. Then gains in the overall time can be ob-

tained when the system to solve is really ill-conditioned so that using preconditioning is

mandatory for convergence.

The last figures concerned with a preconditioner of the incomplete factorization family

7.37 and 7.38 corresponds when the mean performance case of the previously compared
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Figure 7.32: Sparsity patterns of ILUDP (0.5, 0.05;n, 0.05) preconditioner for the six
reorderings computed.

preconditioners is endowed with spectral deflation. Note that in this case, deflated

iterations are in al cases very much worse that undeflated ones.

We shall omit to show any result concerned with the family of approximate inverses. In

fact, the only method that succeed in the computation has been SPAI but for all cases

the preconditioned iterations have been worse that the unpreconditioned ones. Any

improvement with deflation was obtained.

7.2.3 ISIS Fully Coupled System

This last example concerning unsymmetric matrices corresponds to a matrix obtained

from the discretization of the Navier-Stokes equations in a driven cavity flow using finite

volumes with the ISIS software. But this time a fully coupled scheme is used in order

to solve for the velocity and pressure at once.

The iterative solver having the best performance for this matrix we have been, in gen-

eral terms, the BiCGStab. Although smoother and strictly decreasing converge curves

have been observed more frequently with the QMR of QMRBiCGStab methods, these

methods are in general more time consuming.
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Figure 7.33: Convergence curves for unpreconditioned and preconditioned Natural
ordering systems, dashed black and solid black respectively, and the six different re-

orderings using ILUDP (0.5, 0.05;n, 0.05) preconditioning.

Due to the size of the matrix at hand, the times required for the computation of the

preconditioners belonging to the class of approximate inverses have been completely

prohibitive. For this reason we have avoided its computation and only those of the

classical iterative methods and incomplete factorizations have been tested.

The best of such incomplete factorization preconditioners has been the ILUD one. It is

quite amazing that for this matrix this preconditioner outperforms, sometimes faily, its

pivoted version. This situation has been seldom observed.

In figure 7.39 we show the sparsity patterns of a mean performance ILUD factorization.

Due to the size and characteristics of the matrix it has been not possible to perform any

computation with the whole spectrum of the matrix. Instead of information directly

derived from such computations we present in the middle of figure 7.40 an estimative

of the stability of the computed incomplete factorization. Together in this figures also

appears the density of the preconditioner and the time spent in their computation.

Note that in this case incomplete factorizations when based in a numerical dropping

tolerance are denser that the factorization corresponding to the original ordering, having

the exactly opposite effect for which they were developed.
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Figure 7.34: Time comparison for unpreconditioned and preconditioned Natural
ordering systems, (-1) and (0) respectively, and the six different reorderings using

ILUDP (0.5, 0.05;n, 0.05) preconditioning.

Figure 7.35: Convergence curves for ILUDP (α, τ ;n, 0.05) preconditioners, together
unpreconditioned system in black, with Natural ordering.
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Figure 7.36: Time comparison for ILUDP (α, τ ;n, 0.05) preconditioners, together
unpreconditioned system at zero, with Natural ordering.

Figure 7.37: Convergence curves for undeflated and unpreconditioned systems, in
dashed and solid black lines respectively, together with ILUDP (0.5, 0.05;n, 0.05) pre-

conditioned and spectral deflated systems with Natural ordering.



Chapter 7. Applications 118

Figure 7.38: Time comparison for undeflated and unpreconditioned system (-1), and
ILUDP (0.5, 0.05;n, 0.05) preconditioned and spectral deflated systems with Natural

ordering.

Figure 7.41 we show the sparsity patterns of all the ILUD factorizations we have com-

puted with the natural ordering. It is important to mention that the fill in occurs mainly

in the lower block. this can be substantial as we can observe in the first part of figure

7.40, the density goes from 2 to 12. Note that also the stability and time spent have the

same pattern. All this significative differences depend more strongly on the numerical

dropping τ .

Figure 7.43 shows the convergence curves when using a mean performance ILUD factor-

ization. Note that only a slight difference can be observed depending in the reordering

used, being the best one the natural reordering. Figure 7.44, which shows the overall

elapsed time for the solution of the linear systems, we can finishes to confirm that the

reorderings we have used are not convenient for this matrix.

Figures 7.45 and 7.46 the convergence curves and elapsed times, respectively, for all the

ILUD factorizations. Note that, as in the previous matrix, when the conditioning of the

matrix really represents a problem investing time in a hight quality preconditioner could

reduce the overall solution time.

We finish the observations for this matrix with the comment that, as with the previous

matrix, deflation in this case get worse results that the undeflated iteration.
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Figure 7.39: Sparsity patterns of ILUD(0.5, 0.05) preconditioner for the six reorder-
ings computed.

Figure 7.40: Comparison of density, stability estimative and elapsed time for com-
puting ILUD(0.5, 0.05) preconditioner for the Natural ordering, marked as zero, and

the six reorderings computed.
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Figure 7.41: Sparsity patterns of ILUD(α, τ) preconditioners for Natural ordering.

Figure 7.42: Comparison of density, stability estimative and elapsed time for com-
puting ILUD(α, τ) preconditioners for Natural ordering.
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Figure 7.43: Convergence curves for unpreconditioned and preconditioned Natural
ordering systems, dashed black and solid black respectively, and the six different re-

orderings using ILUD(0.5, 0.05) preconditioning.
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Figure 7.44: Time comparison for unpreconditioned and preconditioned Natural
ordering systems, (-1) and (0) respectively, and the six different reorderings using

ILUD(0.5, 0.05) preconditioning.

Figure 7.45: Convergence curves for ILUD(α, τ) preconditioners, together unprecon-
ditioned system in black, with Natural ordering.
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Figure 7.46: Time comparison for ILUD(α, τ) preconditioners, together unprecondi-
tioned system at zero, with Natural ordering.



Chapter 8

Conclusions

This thesis deals with the solution of linear systems where the coefficient matrix is

presumed to be large and sparse. Particularly those arising in the simulation of fluid dy-

namics were here addressed. The objectives pursued in this work, introduced at chapter

1, have been fulfilled satisfactorily. A considerable variety of techniques for the solution

of such linear systems have been developed in the context of the Krylov subspace, which

has been used for the elucidating numerical tests described in the previous chapter.

8.1 Results Discussion

Throughout this work we have reviewed a large amount of references in order to obtain

the some insight of the state of the art in the solution of large and sparse linear systems,

a topic which is of scientific interests itself and that additionally have a wide applicability

range in several branches of engineering and science. Also we have presented here the

main ideas and developments in such a task.

The literature review also has been done in order to obtain suitable examples for vali-

dation our yet mentioned implementations. As result, an reliable and robust code has

been developed.

In this code several well known Krylov subspace methods have been implemented for

the two kinds of problems addressed in this work, namely symmetric and unsymetric

matrices, in both the matrix at hand is large and sparse. For the acceleration of such

iterative methods, several wide used preconditioning techniques have been discussed and

implemented in order to analyze their effect while they are used in conjunction with

several iterative methods. Also reordering algorithms have been implemented and we

have tested its effect when used together preconditioning. Additionally the more novel

124
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technique currently known as deflation have been discussed and implemented achieving

a considerable reduction in the number of iterations for some important cases.

Standard problems are extensively used as benchmark problems to test and validate new

proposed strategies and their implementations. In this work, some well known of such

problems from the University of Florida Sparse Matrix Collection have been used. In

such a task we have demonstrated the good performance of the formulations reviewed

implemented in this work.

8.2 Applications and Limitations

In practice, the techniques we have discussed and implemented can be applied to a wide

variety of linear systems. The applications are very important not only for practical

reasons, but also for gaining experience and defining further development needs. The

application of these techniques for linear systems arising from different areas should be

straightforward. Although, while focusing our attention to a particular one, we claim

even more significant gains can be obtained by enriching the techniques to linear systems

with special characteristics.

The main limitations of the present work are those related when the coefficient matrix

is unsymmetric, which is the common case if we take a slight review of the state of the

art on this subject. The limitations were mainly observed in problems in which we have

an important lack of diagonal dominance, with linear systems written for two or more

different physical quantities, matrices having its spectrum on both sides of the complex

axis and when saddle point systems were treated as a whole. Additionally, our code has

a lack of robustness in the numerical treatment of the unsymmetric eigenvalues problem.

8.3 Further Developments

Further developments of this work are listed in sequel. They could include:

• Parallel computing. This further development is considered due the fact that,

although deflation technique effectively reduces the number of iterations a Krylow

subspace method needs to converge, the overall computational time is usually

higher when a sequential computation is used. This is particularly applicable for

deflation techniques for which we have observed high speed up and applications

times. Although by reviewing its implementation in chapter 6 we can see that its
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parallelization is quite intuitive. Almost the same can be say about at least three

preconditioners of the approximate inverse framework.

• Segregation and block strategies. The developments and code implementation in

this work have been made not taking into account if the linear system contains

two or more different physical quantities. Exploiting block structures in general

have demonstrated to increase the performance in some situations.

• High performance computing. This is maybe the first subsequent activity in contin-

uing the present work. It seems almost mandatory to translate the current code to

a high performance programming language like Fortran. As we have stated, this

trend does not represent a high difficulty since it has been considered from the

beginning of the present work.

• Weighted reorderings. All of the reordering strategies implemented and used in

the tests are based solely in the sparsity structure of the coefficient matrix, or its

symmetric part, and do not take into account individual entries contained in the

matrix. Techniques taking into account such information have demonstrated to be

more effective that the former ones. Also non symmetric permutations could be

explored when the coefficient matrix is unsymmetric.
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[12] Benzi M. and Tůma M. 1998. A sparse approximate inverse preconditioner for

nonsymmetric linear systems. SIAM Journal on Scientific Computing, Volume 19,

Issue 3, pages 968-994.

127



Chapter 8. Conclusions 128
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