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Abstract

The  Proper  Generalized  Decomposition  Method  (PGD)  is  a  powerful  model 
reduction technique,  based on separated representations.  In particular, the solution is 
sought as a finite sum of terms, each one involving the product of functions of each 
coordinate.  The  solution  is  then  calculated  by  means  of  a  sequence  of  one 
dimensional  problems.  Thus,  the PGD  is  able  to  circumvent  the  curse  of 
dimensionality  and  makes  possible  the  efficient  solution  of  models  defined  in 
multidimensional spaces. 
The solution of large linear systems of the form Au = b where A = [aij] is an n x n  
matrix and b is a right hand side vector, is central to many numerical simulations in 
science and engineering and is often most time-consuming and  expensive part of a 
computation. Although direct methods are robust , they scale poorly with problem 
size in terms of operation counts and memory requirements.  While iterative methods 
require  fewer  storage  and  often  require  fewer  operations  than  direct  methods 
(especially when an approximate solution of relatively low accuracy is sought), they 
do not have the reliability of direct methods. In some applications, iterative methods 
often fail  and preconditioning is necessary, though not always sufficient, to attain 
convergence in a reasonable amount of time.
In the present thesis,  scalar elliptic  boundary value problems are considered.  The 
problem is discretized by employing Galerkin Finite Elements, which  generate the 
linear system of equations. The linear system is solved using an iterative method and 
a suitable preconditioner  is characterized  to improve the convergence properties of 
the  method.  In  the  present  thesis,  the  PGD  method  is  used  to  characterize  the 
preconditoner.  The algebraic residual is computed, from which the residual finite 
elements function is defined. For this, the PGD procedure is applied to compute the 
solution of the ¨Preconditioning Problem¨.  This PGD preconditioner  is implemened 
to various ranges of cases from a simple case (constant source term) to complex, such 
as non constant source, non constant diffusion terms . 



Nomenclature

   A Matrix

   b Vector

   Cn Preconditioner

    Nj Shape Functions

    N Number of enrichment steps

    w Weight Function

     K Diffusion Coefficient

X n(x) Basis function of x of the nth enrichment step

Y n( y) Basis function of y of the nth enrichment step

M x 1-Dimensional Mass Matrix in x direction

M y 1-Dimensional Mass Matrix in y direction

N max Maximum Basis functions used

F n(x ) Normalized basis function of x of the nth enrichment step

Gn( y) Normalized basis function of y of the nth enrichment step

Greek Letters

Ω Domain

Ωe Elemental Domain

ϵ Tolerance used for iterative steps

ϵn Tolerance used for enrichment step



λ Coefficient of Normalization

α Coefficient defined in the ODE

β Coefficient defined in the ODE

γ Coefficient defined in the ODE

δ Coefficient defined in the ODE

Acronyms

FEM Finite Element Method

PGD Proper Generalized Decomposition

CG Conjugate Gradient

PC Preconditioner

PCG Preconditioned Conjugate Gradient

ODE Ordinary Differential Equation

PDE Partial Differential Equation

Subscripts & Superscripts

x Functions or coefficients that are dependent on x

y Functions or coefficients that are dependent on y

n Enrichment step

ij I th coordinate/node in x direction and jth  coordinate/node 
in y direction

p Represents the iterative step

max Maximum value
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Chapter 1

Introduction

This chapter describes the motivation of the thesis. The basic idea of the thesis  
is presented. Further, it has the outline of the content of all the chapters of this  
report.

1.1 Motivation

The need to solve large linear system of equations are generated in most of the 
scientific  problems  where  mathematical  models  are  used.  The  systems  are 
generated from discretization of differential equations, optimization problems, 
etc. The solution of large linear systems of the form Ax=b  where  A = [aij] is 
a  n  x n  matrix and  b  is a right hand side vector, is central to many numerical 
simulations in science and engineering and is often most time-consuming and 
expensive part of a computations.

When the discretization of the original problem is done using a method such as 
Finite  Elements,  Finite  Differences,  Finite  Volumes,  etc., the  matrix  that  is 
generated from the system of equations is  large and sparse.  There are  direct 
methods such as Gaussian Elimination. However, when one wants to solve very 
large systems of equations, the computational complexity increases the size of 
the problem.  Iterative methods for solving general, large sparse linear systems 
have  been gaining popularity  in  many areas  of scientific  computing.  This  is 
because one can take advantage of “sparsity” to design iterative methods that 
can be quite economical and faster than the direct solution methods. 

In  some  applications,  iterative  methods  often  fail  and  preconditioning  is 
necessary, though not always sufficient, to attain convergence in a reasonable 
number of iterations. The general idea underlying any preconditioning procedure 
for an iterative solvers is to convert the following system Ax=b in such a way 
that an equivalent system [5]

Â x̂= b̂ (1.1)

for which the iterative method converges faster. A standard approach is to use a 
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non singular matrix Cn  and rewrite the system as

Cn
−1 Ax=Cn

−1b (1.2)

The preconditioned Cn needs to be chosen in such that Cn
−1 A=Â where Â

is better conditioned and ideally Â  is the identity matrix. A iterative method 
computes successive approximate of the solution { x0 , x1 ,... , xn } at respective 
steps.  In  practice,  the  iterative  process  is  stopped  when  ∥x n

−x∥<ϵ where 
ϵ is  a fixed tolerance and  ∥.∥ is  any convenient vector norm. However, 

since the exact solution is obviously not available, it is necessary to introduce 
suitable stopping criteria to  monitor the convergence of the iteration according 
to the problem (Discussed in section 3.3)

Iterative schemes of the form

xn+1
=xn

−Cn
−1
(Axn

−b)
(1.3)

are common where  Cn denotes a suitable preconditioner which may change at 
each iteration to enhance the convergence properties. 

The Proper Generalized Decomposition (PGD) is  is a powerful model reduction 
technique,   based on separated representations. The PGD builds on successive 
enrichment  strategy,  a  numerical  approximation  of  the  unknown  fields  in  a 
separated  form  involving  a  priori  unknown  function.  The  computational 
complexity of  PGD scales  linearly with the dimension in  space wherein the 
model is defined, which is in contrast with the conventional methods wherein 
the complexity is scaled exponentially. In particular, the solution is sought as a 
finite  sum  of  terms,  each  one  involving  the  product  of  functions  of  each 
coordinate.  For  instance,  the  material  parameters  and  boundary  conditions 
appearing  in  a  particular  mathematical  model  can  be  regarded  as 
extra-coordinates of the problem in addition to the usual coordinates  such as 
space and time. The solution is then calculated by means of a sequence of one 
dimensional  problems.  Thus,  the PGD  is  able  to  circumvent  the  curse  of 
dimensionality and makes possible the efficient solution of models defined in 
multidimensional spaces. [2]

In the present thesis, scaler elliptic boundary value problems are considered. The 
problem is discretized by employing Galerkin Finite Elements, which  generate 
the  linear  system  of  equations.  The  linear  system  is  then  solved  using  an 
iterative method and the preconditioner is characterized using the PGD method 
in order to improve the convergence properties.  The main idea behind the thesis 
is  –  First  ,  to  study  and  implement  the  PGD method.  Second,  to  use  it  to 
characterize the preconditioner  for  the standard iterative methods to solve the 
linear system of equations  
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1.2 Contents of Thesis

The present thesis involves implementation of the PGD-based preconditioner for 
scaler  elliptic  problems.  Chapter  2  presents  the  outline  of  the  mathematical 
equations  of  the  finite  element  method  that  lead  to  the  linear  system  of 
equations. In the chapter 3, the idea and the implementation of the PGD, and the 
convergence criteria that is considered for the PGD method are discussed. In the 
chapter 4 ,  the way the PGD based preconditioner is coupled with the scaler 
elliptic problems (with the diffusion term) is discussed. Chapter 5 presents the 
results  and  analysis  of  the  present  technique  to  solve  the  linear  system  of 
equations  is  described and compared with  the  convergence  properties  of  the 
finite element method and conjugate gradient method without preconditioner. 
Finally,  in  the  last  chapter,  a  brief  description  of  conclusions  and scope for 
future research works are discussed. 
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Chapter 2

Basics of Finite Element Method

In  chapter  2,  the  basics  of  Finite  Element  Method  that  are  used  in  the  
implementation of the PGD method and later the two-dimensional FEM which  
is  used for solving the elliptic  equations pertaining to the present  thesis  are  
briefly described.

2.1 Galerkin Finite Element Method

The  Finite Element Method (FEM) has emerged as one of the most powerful 
Numerical  methods  to  find  approximate  solutions  to  the  boundary  value 
problems  for  the  differential  equations.  Such  a  method  uses  a  spatial 
discretization and a weighted residual formulation to transform the governing 
PDE (strong form) into an integral equation (weak form) that upon variational 
treatment yields to the solution of a system of matrix equations. One of the most 
successful in application of the Standard FEM formulation are based upon the 
Galerkin formulation of the method of weighted residuals. The reason for this 
success is that, when applied to problems governed by self-adjoint elliptic or 
parabolic partial differential equations, the Galerkin finite element method leads 
to symmetric stiffness matrices. [7]

The following are few of the compact notations used in the report

(u ,v)=∫
Ω

u.v dΩ

a (u , v)=∫
Ω

∇ u :∇ v dΩ

(2.1)

2.2 Strong and weak form of the Problem

To illustrate the strong and the weak problem, the following Poisson equation  is 
considered.
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−Δu= f ∈Ω
(2.2)

For the sake of simplicity, only the Dirichlet conditions are considered

u=uD onΓ (2.3)

The  strong  form of  a  boundary  value  problem comprises  of  the  differential 
equation of the problem along with the boundary conditions. So in the present 
case the PDE (2.2) along with boundary conditions (2.3) constitutes the strong 
form.

The first step in a weighted residual formulation leading to the finite element 
discretization  of  our  model  problem  consists  of  formulating  a  weak  (or 
variational)  form  of  the  boundary  value  problem.  This  is  achieved  by 
multiplying  the  governing  equation  (2.2)  by  the  weighting  function  w  and 
integrating over the computational domain Ω  [7]

 

−∫
Ω

wΔu dΩ=∫
Ω

wf dΩ (2.4)

Applying divergence theorem to the left hand side of the equation 

−∫
Ω

wΔu dΩ=−∫
Ω

(∇ .(w ∇ u)−∇ w .∇ u)dΩ

=∫
Ω

∇w .∇ udΩ−∫
Γ

w (n.∇ u)d Γ
(2.5)

The test function w=0 on Γ D . It vanishes on the Dirichlet portion of the boundary 
and taking into account the Neumann boundary condition the following is obtained 
which is the weak form of the problem

∫
Ω

∇w .∇ u dΩ=∫
Ω

wf dΩ (2.6)

2.3 Discretization of the Problem

Now that the weak form of the problem is available, the next step is to discretize the 
weak form by using the Galerkin Finite Element Method. A suitable mesh is used to 
subdivide the computational domain  Ω into element domain  Ωe . In practice, for 
every element shape functions  are  defined  using  a  transformation  from  a  reference 
element.
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In one-dimension, Piecewise Lagrange Polynomials are used. For instance, the piecewise 
linear function in 1-D which are used in the present thesis

N j( x)={
x−x j−1

x j−x j−1

, if x j−1⩽x<x j

x j+1− x
x j+1− x j

, if x j⩽x< x j+1

0, otherwise

(2.7)

on the  mesh  x0<x1. ......<x N .  And in  two-dimensions,  meshes  generally  consist  of 
triangles or quadrilaterals.  In the present thesis the quadrilateral elements are used. The 
following is the normalized reference element of the quadrilateral.

Fig 2.1 normalized reference element

The following are the element shape functions

N 1=
1
4
(1−ξ)(1−η)

N 2=
1
4
(1+ξ)(1−η)

N 3=
1
4
(1+ξ)(1+η)

N 4=
1
4
(1−ξ)(1+η)

(2.8)

2.4 Finite Element System of Equation

The assembly of the element contributions to the discrete weak form into the complete 
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system results in a matrix equation of the form

K̂ u= f̂ (2.9)

where K̂ , f̂ represent stiffness matrix , mass matrix and force vector respectively. The 
components of these critical integrals are defined as follows. (for the 1- dimension system 
which is used in the thesis) 

1) Components of Stiffness Matrix are

K̂ ij=∫
0

L

(
dN i

dx
)(

dN j

dx
)dx (2.10)

2) Components of force Matrix are

f̂ i=∫
0

L

f ( x)N i dx (2.11)

There is one more matrix used in the thesis that is encountered in Finite 
Elements, is Mass Matrix. It is defined as follows

3) Components of Mass Matrix are

M̂ ij=∫
0

L

N i N j dx (2.12)

These matrix when assembled result in the system of equations which are solved 
either by direct or iterative methods. In the present thesis, the focus is on solving 
these system of equations which are generated after discretization of the scaler 
elliptic problems, by using an iterative method of which the preconditioner is 
characterized by the Proper Generalized Decomposition (PGD) method. This is 
discussed in detail in the subsequent chapters.
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Chapter 3

Implementation of the PGD

This chapter describes the idea and the implementation of the PGD method.  In  
the present thesis, the PGD method is  implemented using alternate direction  
strategy.  The  simplest  two  dimensional  elliptic  PDE,  Poisson  equation  is  
considered.  First,  the  simplest  case  where  the  source  term  is  constant  is  
developed. Then later,  the method is extended to the non-constant source term  
and  with  non-constant diffusion  term.  The  results  of  all  these  cases  are  
demonstrated in this chapter. Further the convergence criteria which is used in  
the method is illustrated. 

3.1   Separated Representation

The  PGD  method  implemented  is  based  on  separated  representation  of  the 
solution.[3]. The solution is taken as a sum of finite sum of terms, each one 
involving the product of functions. For instance, the problem of D dimensions, 
the solution u is written as the sum of N finite terms in the following way

u (x1,. ... xD)=∑
j=1

j=N

∏
k=1

k=D

T kj( xk ) (3.1)

where  Tkj   is the  jth basis function, which only depends on the  kth coordinate. 
[4].  In  the  present  thesis  only  2  Dimensional  problems  are  considered.  For 
instance, consider the solution of the Poisson equation.

−Δu( x , y)= f (x , y ) (3.2)

in  the  two  dimensional  rectangular  domain  Ω=Ωx×Ω y .  The  PGD 
approximate solution is obtained in a separated form
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u (x , y)=∑
i=1

N

X i (x ). Y i ( y)
(3.3)

where  N  is  total  number of enrichment steps.  Each term of the expansion is 
computed  one  at  a  time,  enriching  the  PGD  approximation  until  a  suitable 
convergence criterion

  

is reached. The separated form is progressively constructed. At each enrichment 
step  n  ( n⩾1 ),  the  first  n-1  terms  of  the  PGD  approximation  is  already 

computed which is in the form un−1( x , y)=∑
i=1

n−1

X i (x ). Y i ( y)

Now, the next term n, X n(x) . Y n( y) is computed which would further enrich 
the PGD solution [2]

un
(x , y )=un−1

(x , y )+X n( x) .Y n( y )=∑
i=1

n

X i(x ) .Y i( y )
(3.4)

The functions X n , Y n are obtained at the enrichment step n. To arrive at the 
functions at each  n  enrichment step, a suitable iterative scheme is employed. 
Thus, the index p is used to denote a particular iteration (3.5)

un , p
(x , y)=un−1

(x , y )+X n
p
(x ) .Y n

p
( y) (3.5)

 Let the functions at each iteration be denoted by Rn
p
(x ) , S n

p
( y)  in place of

X n
p
(x ) , Y n

p
( y ) respectively.  The  iterations  at  each  enrichment  step  proceed until 

reaching  a fixed point tolerance.(3.6)

∥Rn
p
(x ) . S n

p
( y )−Rn

p−1 . Sn
p−1

( y)∥

∥Rn
p
(x ). Sn

p
( y)∥

<ϵ
(3.6)

where  ∥.∥ is  the  L2
−norm and  ϵ is  the  tolerance.   a  The  iterative 

scheme stops  at the point when the condition (3.6) is satisfied. At the end of 
the iterative step, the  last obtained value is assigned to enrichment step. 

Rn
p
(x )→X n( x) ; S n

p
( y )→Y n( y)

As the solution  is  enriched the  magnitude of  the  basis  functions obtained is 
either  quite  low or  high.  In  order  to  avoid  working with  high  or  low order 
numbers for the basis functions, the normalized form of the solution is obtained 
at  each  step.  This  is  done by introducing a  coefficient λ The  approximate 
solution  can  be  restored  by  multiplying  the  coefficient  with  the  normalized 
function. (3.9)
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un
(x , y )=∑

i=1

n

λ i F i (x )G i( y) (3.7)

where F and G are the normalized functions of x and y respectively and λ i is 

the  coefficient  at  the  corresponding  step.  Henceforth,  Rn
p
(x ) , S n

p
( y) and 

F n(x ) ,Gn( y ) notations  are  used  in  derivation  of  the  method  for  different 
cases.

3.1.1 Normalization of the functions.

As discussed in the previous section,  the functions  Rn
p
(x ) , S n

p
( y) represent 

the  functions  obtained  at  the  end  of  the  iterative  step,  after  which  they  are 
normalized and for the further computations the normalized functions are used 
which  are  represented  by  F n(x ) ,Gn( y ) .The  way  the  functions  are 
normalized by following

F n(x )=
Rn

p
( x)

√(Rn
p
(x )M x Rn

P
( x)T )

Gn( y)=
S n

p
( y)

√(S n
p
( y )M y S n

P
( y)T )

(3.8)

where  M x , M y represent one-dimensional mass matrices in   x, y  directions 
respectively.  However,  in  practice, one  of  the  function  is  assumed  to  be 
normalized  function.  for  instance,  S n

0
( y ) at  the  beginning  of  the  iterative 

process is assumed to one in the present case or any other function whose norm 
is one. in that way, the  S n

p
( y) which is obtained at the end of the iterative 

process is already a normalized function which is Gn( y) . While, the function 

Rn
p
( y) is normalized by using (3.9). The coefficient  λ is computed in the 

following way

λn=√(Rn
p
( x)M x Rn

pT
) (3.9)

3.2   Alternate Direction Strategy for Constant Source Term

As discussed earlier (3.7), an iterative scheme is employed to get the refined 
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solution at each enrichment step. In the present thesis, the iterative scheme used 
is Alternate Direction Strategy. Basically, here first  Rn

p
(x ) is computed from 

S n
p−1

( y) , and then S n
p
( y) is computed from Rn

p
(x ) . Thus, the functions 

of  x  ,  y   are  computed  alternately  from one  to  another.  For  this,  an  initial 
arbitrary guess S n

0
( y ) is specified at the start of the each iterative process. The 

non-linear  iterations  proceed  until  reaching  a  fixed  point  within  a  defined 
tolerance (3.7).

First,  the PGD is implemented for a constant source term  f  over the domain 
Ω for  the  equation  3.2,   in  the  Poisson  equation  in  a  two-  dimensional 

rectangular  domain with homogeneous Dirichlet  Boundary conditions for the 
unknown field  u(x,y) , which vanishes at the domain boundary Γ . With a test 
function u* ,  the weighted residual is in the following way

∫
Ωx×Ωy

u* .(Δ u+ f )dx .dy (3.10)

As discussed above  Rn
p
(x ) is computed from  S n

p−1
( y)  . In this case the 

PGD approximation is as follows (similar to (3.6)).

un , p(x , y)=∑
i=1

n−1

λi F i(x ) .G i( y )+Rn
p( x) . S n

p−1( y ) (3.11)

In the above, all the functions are unknown except Rn
p
(x ) . The choice of the 

weight function that is made (3.10) is 

u*
( x , y)=Rn

*
(x ) . S n

p−1
( y ) ,

(3.12)

which is the Galerkin weighted residual formulation.

Now, substituting (3.12), (3.11) into the (3.10) , the following is obtained. For 
simplification  purpose  ,  Rn

p
(x ) is  written  as  Rn

p ,  F i(x ) is  written  as 
F i , Rn

*
( x) as Rn

* and similarly for the y functions.

− ∫
Ωx×Ωy

Rn
* . S n

p−1 .(
d 2 Rn

p

dx2 . S n
p−1

+Rn
p d 2 S n

p−1

dy2 )dx .dy

= ∫
Ωx×Ωy

Rn
* . Sn

p−1 .∑
i=1

n−1

λ i(
d 2 F i

dx2 .G i+F i

d 2G i

dy2 )dx .dy+ ∫
Ωx×Ωy

Rn
* . S n

p−1. f dx . dy

(3.13)
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Note that in the above equation , all the functions concerned with   R,  F  are 
solely functions of x. Similarly,  all the functions concerned with S, G  are solely 
functions of y.  Thus the above equation, the integral for each of the terms can be 
split  into  Ωx and  Ωy .  All  the  terms  that  are  dependent  on  x  (and 
independent of y ) are collected under the integral x and similarly for integral y. 
In the above equation all the terms which are functions of y are known. Thus, the 
following one-  dimensional  integrals  of  y  can be computed over  the domain 
Ωy

{
α

x
=∫

Ωy

(S n
p−1

( y))2 dy

β
x
=∫

Ωy

Sn
p−1

( y) .
d2 Sn

p−1
( y)

dy2 dy

γ i
x
=∫

Ωy

S n
p−1

( y ) .λi Gi( y)dy

δi
x
=∫

Ωy

S n
p−1

( y ) .λi

d 2G i( y)

dy2 dy

ξ
x
=∫

Ωy

S n
p−1

( y) . f dy

(3.14)

The above values are computed and substituted in the equation (3.13) which 
becomes

−∫
Ωx

Rn
* . (αx.

d 2 Rn
p

dx2 +βx. Rn
p
)dx

=∫
Ωx

Rn
* .∑

i=1

n−1

(γi
x. d 2 F i

dx2 +δ i
x F i)dx + ∫

Ωx

Rn
* .ξx dx

(3.15)

The  above  is  the  weighted  residual  form  of  the  one-dimensional  problem 
defined over the domain Ωx . The corresponding strong formulation (3.15) of 
the above can be returned to the following

−(αx.

d2 Rn
p

dx2 +βx. Rn
p
)dx = ∑

i=1

n−1

(γi
x. d2 F i

dx2 +δ i
x F i)dx + ξ

x dx (3.16)

Thus, the two-dimensional Poisson equation is converted to a one-dimensional 
ordinary  differential  equation.  This  can  be  solved  using  any  suitable  ODE 
solving process. In the present thesis , ode45 is employed to solve the equation. 
Thus, the ODE is solved for  Rn

p
(x ) . After solving for  Rn

p from S n
p−1 , 
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the next step of the iteration is to proceed to solve the S n
p
( y) from Rn

p
(x ) .

The same procedure is  followed even for  the next  step ,  except  for a  slight 
change in the PGD approximation described in the equation 3.11. Now, the PGD 
approximation is the following

un , p(x , y)=∑
i=1

n−1

λi F i(x ) .G i( y )+Rn
p( x) . S n

p( y) (3.17)

In the above approximate all the terms except S n
p
( y) is known. The choice of 

the weight function in this case is made accordingly.

u*
( x , y)=Rn

p
( x) . S n

*
( y )

(3.18)

Now,  again  substituting  (3.17)  ,  (3.18)  in  (3.10),  the  following  equation  is 
obtained.

− ∫
Ωx×Ωy

Rn
p . S n

* .(
d 2 Rn

p

dx2 . S n
p
+Rn

p d 2 S n
p

dy2 )dx .dy

= ∫
Ωx×Ωy

Rn
p . S n

* .∑
i=1

n−1

λi(
d 2 F i

dx2 .Gi+F i

d2 Gi

dy2 )dx .dy+ ∫
Ωx×Ωy

Rn
p. Sn

* . f dx .dy

(3.19)

Note that the functions are either solely dependent on x or solely dependent on y.  
This makes the integral to be split separately into the Ωx and Ωy .And all 
the  functions  of  x  are  known  and  the  integrals  of  them  over  Ωx can  be 
computed

{
α

y
=∫

Ωx

(Rn
p
( x))2 dx

β
y
=∫

Ωx

Rn
p
( x) .

d2 Rn
p
(x )

dx2 dx

γ i
y
=∫

Ωx

Rn
p
(x ).λ i F i (x )dx

δi
y
=∫

Ωx

Rn
p
(x ). λi

d 2 F i(x )

dx2 dx

ξ
y
=∫

Ωx

Rn
p
( x) . f dx

(3.20)

The above values are computed and substituted in the equation (3.19) which 
becomes

13 



−∫
Ωy

S n
* .(α y.

d 2 S n
p

dy2 +β y. S n
p
)dy

=∫
Ωy

S n
* .∑

i=1

n−1

(γi
y. d 2Gi

dy2 +δ i
y Gi)dy + ∫

Ωy

Sn
* .ξy dy

(3.21)

The  above  is  the  weighted  residual  form  of  the  one-dimensional  problem 
defined over the domain Ωy . The corresponding strong formulation (3.21) of 
the above can be returned to the following

−(α y.

d 2 S n
p

dy2 +βy. S n
p
)dy = ∑

i=1

n−1

(γi
y. d2 Gi

dy2 +δi
y Gi)dy + ξ

y dy
(3.22)

As it can be seen, once again a ordinary differential equation is obtained. Thus, 
the  two-dimensional  Poisson equation  is  converted into  two one-dimensional 
ordinary differential  equations  thus  making  it  computationally  cheaper.  And 
also,  this  is  the  major  advantage  of  the  PGD method.  It  would  convert  any 
dimensional  problem  into  the  corresponding  number  of  one  –  dimensional 
problems. This is the reason, for the with the PGD method the computational 
cost increase linearly with the increase in the number of dimensions unlike the 
conventional methods wherein increase in the number of dimensions increase 
the computational cost exponentially.

The properties of the PGD are studied for the present case with the help of an 
example. The  Poisson equation is considered with the source term f which is set 
to the value one ,with a two dimensional domain Ω=Ωx×Ω y = (-1,1) x (-1,1). 
This  case  is  tested  with  many  different  step  sizes,  tolerances,  initial 
approximations to study the method. The two tolerances that are defined in the 
method are the following :

Iteration Tolerance  : This is the tolerance that is defined for the iterative step. 
The ϵ defined in the equation 3.7

Enrichment Tolerance : This is the tolerance that is defined for the enrichment 
step. The criteria that is considered for this tolerance is computed by residual Re.

Re=√(∫
Ω

(Δu+ f )2)<ϵn (3.23)

If the above condition is satisfied the enrichment process itself stops and yields a 
solution. The way the enrichment tolerance is implemented is explained in more 
detail in the section 3.5 of this chapter.
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3.2.1 Results and Analysis

The  method  is  implemented  for  the  simple  case  where  the  source  term  is 
constant following the procedure defined. Many tests are performed by varying 
the  input  parameters  such  as  tolerances  ,step  size  (mesh  size)  ,  initial 
approximation to study the method. The tests of few cases are illustrated below. 
Some of the plots that lead to the analysis are shown as and when required.

The  solution obtained for the case where  f =1 and  for  the following input 
parameter

Iteration Tolerance      ϵ=10−6

Enrichment Tolerance   ϵn=10−3

Step size in the x  hx=0.04
            Step size in the y  h y=0.04

Note : Initial approximation is assumed to  be one at all the nodal points for all 
the cases

fig:3.1 Solution when f=1
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                                      F1(x)                                              

                        G1(y) 
                                                           
                                 G1(y)                           

                                  
                                            F2(x)

                         G2(y)                      

                                                                                    
                                                 F3(x)

                           
                                  G3(y)                      

fig 3.2: x and y basis functions at each enrichment step
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The final solution obtained in the PGD is method as discussed earlier is the sum 
of the product of the  x & y functions obtained at each enrichment steps. The 
above  are the  x & y modes of the above case.

The following table shows the values obtained at each enrichment step

Enrichment 
Step (i)

Number of 
iterations 
taken (p)

Iteration 
tolerance 
reached

Enrichment 
tolerance 
reached

Lamba λ i

1 5 5.845139e-09 -  3.293934e-01

2 7 2.115641e-07 8.975210e-03 2.956375e-03

3 11 4.106346e-07  5.150767e-04  1.696628e-04

Table 3.1 : Parameters obtained at each enrichment step

The following are some of the key points that can be noted from the tests

1. It can be observed that the enrichment tolerance decrease with each step , 
which means that the method is going to converge.

2. The number of iterations taken per each enrichment step increases. This 
can be explained with the help of the plots. It can be seen from the plots that the 
frequency of each mode for both x and y functions increase as the enrichment 
step progresses.

3. The coefficient λ i decreases with the increase in the enrichment step.

3.3      Implementation for Non-constant Source Term

In the present section, the implementation of the PGD method is extended when 
the source term f  is a non-constant source term is discussed. [2],[4]

f (x , y )=∑
j=1

Κ

F j
x
(x ). F j

y
( y) (3.24)

For instance, consider the function  x2
− y2 , it can be written in the form of 

f (x , y )=∑
j=1

2

F j
x (x ). F j

y ( y)  where , 
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  F 1
x
( x)= x2 , F 2

x
(x )=−1 , F 1

y
( y)=1 , F 2

y
( y)= y2

Thus, most of the functions can be written in this separated form. Even in this 
case, the alternate direction strategy is used to solve for the functions at each 
enrichment step. The Poisson equation with non constant source term f (written 
as 3.24) in a two- dimensional rectangular domain with homogeneous Dirichlet 
Boundary  conditions  for  the  unknown  field  u(x,y)  ,  which  vanishes  at  the 
domain boundary  Γ is considered. With a test function  u* ,  the weighted 
residual is in the following way

∫
Ωx×Ωy

u* .(Δ u+∑
j=1

Κ

F j
x( x) . F j

y( y))dx .dy
(3.25)

As discussed in the section 3.2,  Rn
p
(x ) is computed from  S n

p−1
( y) .  The 

PGD approximation is as follows (similar to (3.6)).

un , p
(x , y)=∑

i=1

n−1

λi F i(x ) .G i( y )+Rn
p
( x) . S n

p−1
( y ) (3.26)

In the above, all the functions are unknown except Rn
p
(x ) . The choice of the 

weight function that is made is 

u*
( x , y)=Rn

*
(x ) . S n

p−1
( y ) , (3.27)

which is the Galerkin weighted residual formulation.

Now, substituting (3.26), (3.27) into the (3.28) , the following is obtained. For 
simplification  purpose  ,  Rn

p
(x ) is  written  as  Rn

p ,  F i(x ) is  written  as 
F i , Rn

*
( x) as Rn

* and similarly for the y functions.

− ∫
Ωx×Ωy

Rn
* . Sn

p−1 .(
d 2 Rn

p

dx2 . S n
p−1

+Rn
p d 2 S n

p−1

dy2 )dx . dy

= ∫
Ωx×Ωy

Rn
* . Sn

p−1 .∑
i=1

n−1

λ i(
d 2 F i

dx2 .G i+F i

d 2 Gi

dy2 )dx . dy

+ ∫
Ωx×Ωy

Rn
* . S n

p−1∑
j=1

Κ

F j
x
( x) . F j

y
( y )dx . dy

(3.28)

Just  like  in  the  case of  constant  source term (section  3.2),  each  term of  the 
integral can be split separately under Ωx and Ωy .Then the above equation 
becomes 
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−∫
Ωx

Rn
* .(αx.

d 2 Rn
p

dx2 +βx. Rn
p
)dx

=∫
Ωx

Rn
* .∑

i=1

n−1

(γi
x. d 2 F i

dx2 +δ i
x F i)dx + ∫

Ωx

Rn
* .(∑

j=1

Κ

ξ j
x . F j

x
( x))dx

(3.29)

where the coefficients are the following 

{
α

x
=∫

Ωy

(S n
p−1

( y))2 dy

β
x
=∫

Ωy

Sn
p−1

( y) .
d2 Sn

p−1
( y)

dy2 dy

γ i
x
=∫

Ωy

S n
p−1

( y ) .λi Gi( y)dy

δi
x
=∫

Ωy

S n
p−1

( y ) .λi

d 2G i( y)

dy2 dy

ξ j
x
=∫

Ωy

S n
p−1

( y ) . F j
y dy

(3.30)

It can be seen that the coefficients are all functions of  y  which are all known. 
Thus, it can be solved either using ODE technique (like in the section 3.2) or by 
the  finite  element  method  which  is  explained  in  the  section  to  obtain  the 

Rn
p
(x ) .

The same procedure is  followed even for  the next  step ,  except  for a  slight 
change in the PGD approximation described in the equation 3.27. Now, the PGD 
approximation is the following

un , p(x , y)=∑
i=1

n−1

λi F i(x ) .G i( y )+Rn
p( x) . S n

p( y) (3.31)

In the above approximate all the terms except S n
p
( y) is known. The choice of 

the weight function in this case is made accordingly.

u*
( x , y)=Rn

p
( x) . S n

*
( y )

(3.32)

Now ,  again  substituting  (3.17)  ,  (3.18)  in  (3.10),  the  following equation  is 
obtained.
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− ∫
Ωx×Ωy

Rn
p . S n

* .(
d 2 Rn

p

dx2 . S n
p
+Rn

p d2 Sn
p

dy2 )dx .dy

= ∫
Ωx×Ωy

Rn
p . S n

* .∑
i=1

n−1

λi(
d 2 F i

dx2 .Gi+F i

d2 Gi

dy2 )dx .dy

+ ∫
Ωx×Ωy

Rn
p . S n

* .∑
j=1

Κ

F j
x
( x) . F j

y
( y)dx .dy

(3.33)

Note that the functions are either solely dependent on x or solely dependent on y.  
This makes the integral to be split separately into the  Ωx and Ωy And all 
the  functions  of  x  are  known  and  the  integrals  of  them  over  Ωx can  be 
computed

{
α

y
=∫

Ωx

(Rn
p
( x))2 dx

β
y
=∫

Ωx

Rn
p
( x) .

d2 Rn
p
(x )

dx2 dx

γ i
y
=∫

Ωx

Rn
p
(x ).λ i F i (x )dx

δi
y
=∫

Ωx

Rn
p
(x ). λi

d 2 F i(x )

dx2 dx

ξ j
y
=∫

Ωx

Rn
p
(x ) . F j

x
(x)dx

(3.34)

The  above  values  are  computed  and  substituted  in  the  equation  (3.19)  after 
which it becomes

−∫
Ωy

S n
* . (α y.

d 2 Sn
p

dy2 +βy. S n
p
)dy

=∫
Ωy

S n
* .∑

i=1

n−1

(γi
y. d 2Gi

dy2 +δ i
y Gi)dy + ∫

Ωy

Sn
* .(∑

j=1

Κ

ξ j
y. F j

y
( y ))dy

(3.35)

Thus, the two-dimensional Poisson equation is reduced to two one-dimensional 
equations which can be solved by using finite element methods.
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3.3.1 Numerical Results

The numerical results of the few of the cases are discussed.

Case 1 :The first test case is defined in the domain Ω = (-1,1) x (-1,1), with 
the source term f (x , y )=cos(2 π x)sin(2π y ) . The solution took 2 iterations 
to  reach  the  enrichment  tolerance  of  10−6 .  The  solution  consists  of  two 
functions in the x-coordinate and other two functions in the y-coordinate. The 
modes  which  are  the  normalized  functions  along  with  the  solution  are 
represented  in  the  following  figures.  The  λ values  obtained  are 
λ1=1.14×10−2 ;λ2=9.74×10−16 .

fig 3.3: Modes of the case 1( F1(x), G1(x),F2(x),G2(y))
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The following is the corresponding computed solution. 

fig 3.4: Computed solution of the case 1

Case 2  :The second test case is defined in the domain  Ω = (-1,1) x (-1,1), 
with the source term  f (x , y )=x 2

− y2 .  The solution takes 10 iterations to 
converge  to  the  tolerance  of  10−5 .  The  modes  which  are  the  normalized 
functions along with the solution are represented in the following figures. 
 
 

          

  fig 3.5: Computed solution of the case 2
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The corresponding plots of the basis functions at each enrichment step are:
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  fig 3.6: Modes of the case 2
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Case 3 :The third test case is defined in the domain Ω = (-1,1) x (-1,1), with 
the  source  term  f (x , y )=2x2

+ x+ y 2
−0.2y+3xy .  The  solution  takes  39 

iterations  to  converge  to  the  enrichment  tolerance  of  10−5 .The  first  9 
normalized  functions  along with  the  computed  solution  are  presented in  the 
following figures
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fig 3.7: First 9 Modes of the case 3
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   fig 3.8: Computed solution of the case3

Case 4 :The fourth test case is defined in the domain Ω = (-1,1) x (-1,1), with 
the source term  f (x , y )=2(2−x2

− y2
) .  The solution takes  3 iterations to 

converge to the tolerance of  10−5 . The normalized functions along with the 
computed solution are presented in the following figures

     

   fig 3.9: Computed solution of the case 4  
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fig:3.10 Modes of case 4

3.4  Implementation for Diffusion Term

Now, the PGD method is further extended to the equation 3.2 with a diffusion 
coefficient k. The equation would then look like the following

−∇ .(k ∇ u)= f (x , y ) (3.36)

in  the  two  dimensional  rectangular  domain  Ω=Ωx×Ω y .  The  PGD 
approximate  solution  is  obtained  in  the  same separated  form  as  previous

un
(x , y )=∑

i=1

n

λ i F i (x )G i( y)
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For the  sake of  simplicity,  like  in  the  case of  non-constant  source term,  the 
diffusion term is written in the following separated way

k=k x ( x) . k y ( y)  (3.37)

The idea here is  to  split  the integrals  of the domain into  x & y   like in  the 
previous cases. The Poisson equation with non constant source term f (written as 
3.24) and with a diffusion coefficient in a two- dimensional rectangular domain 
with homogeneous Dirichlet Boundary conditions for the unknown field u(x,y) , 
which vanishes at the domain boundary Γ is considered. With a test function

u* , the weighted residual is in the following way

∫
Ωx×Ωy

u* .(∇ .(k ∇ u)+∑
j=1

Κ

F j
x
( x) . F j

y
( y))dx .dy

(3.38)

As discussed  in the section 3.2,  Rn
p
(x ) is computed from  S n

p−1
( y) .  The 

PGD approximation is as follows (similar to (3.6)).

un , p
(x , y)=∑

i=1

n−1

λi F i(x ) .G i( y )+Rn
p
( x) . S n

p−1
( y ) (3.39)

In the above, all the functions are unknown except Rn
p
(x ) . The choice of the 

weight function that is made is 

u*
( x , y)=Rn

*
(x ) . S n

p−1
( y ) ,

(3.40)

which is the Galerkin weighted residual formulation.  Now, substituting (3.40), 
(3.39) into the (3.38) , the following is obtained. Note that k x (x) is written as 

k x and k y ( y ) as k y for the sake of simplicity.
 

∫
Ω x

(
dRn

*

dx
dRn

p

dx
k xα

x
+Rn

* Rn
p k xβ

x
)dx

=−∫
Ωx

∑
i=1

n−1

λi(
dRn*

dx

dF i

dx
k x γi

x
+Rn

* F i k xδx ) . dx+∫
Ω x

Rn
*∑

j=1

Κ

ξ j
x F j( x) . dx

(3.41)

Like  in  the  previous  sections,  the  integral  is  split  into  corresponding  x  ,  y  
domains. In the above equation the constants are given by 
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{
α x=∫

Ωy

k y ( y)(S n
p−1( y ))2 dy

βx=∫
Ωy

k y ( y )
d 2 S n

p−1
( y )

dy2 dy

γ i
x
=∫

Ωy

k y ( y)S n
p−1

( y) .λi G i( y)dy

δi
x
=∫

Ωy

k y ( y) .
dS n

p−1
( y)

dy
.λi

d G i( y )
dy

dy

ξ j
x
=∫

Ωy

S n
p−1

( y ). F j
y dy

(3.42)

The equation 3.41 is solved using 1-D finite elements. (Discussed in chapter 2) 
The following are computed using the finite elements. The numerical tests that 
are done using the diffusion term are discussed in chapter 5

3.5 Convergence Criteria

The convergence  criteria  for  the  enrichment  step  is  already discussed  in  the 

section 3.2 , which is the Re=√(∫
Ω

(Δu+ f )2)<ϵn  (3.23). But computation of 

the  residual  (Re)  at  each  step  is  computationally  expensive.  So,  in  order  to 
decrease the computational cost the following criteria is implemented.[2]

λn+1

max(λ1,. ..λn)
<ϵn (3.43)

It  is  checked  that  the  order  of  the  tolerance  obtained  by  calculation  of  the 
residual  and above  equation  (3.43)  are  the  same.   From the  numerical  tests 
presented (in this section 3.2.1 & 3.3.1), it can be observed that the way value of 
coefficient λn  is decayed as the steps are progressed. Also it is observed that 
the magnitude of the λ and the enrichment tolerance (table 3.1) are the same 
after  each  enrichment  step  .  Thus,  in  implementation  the  (3.43)  is  used  as 
convergence criteria as it is computationally much cheaper than to compute the 
residual at each step . The following are the plots which show the decay of the 
coefficient  λ over the iterations with the value of the residual calculated as 
per (3.23)
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                               case 3              case 2

          fig 3.11 Decay of the coefficient and residual

Since the decay shows the same behavior and the order of the magnitude of the 
residual (3.23) and the criteria shown in (3.43) is the same, the latter is used in 
the implementation as it is computationally much economical.
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Chapter 4

 The PGD method for preconditioning 

This  chapter  describes  the  idea  and  the  implementation  of  the  based 
preconditioner  for  the  scaler  elliptic  problems.  In  the  present  thesis,  scaler  
elliptic boundary value problems are considered. The problem is discretized by  
employing  Galerkin  Finite  Elements,  which  generate  the  linear  system  of  
equations. The linear system is solved using an iterative method and a suitable  
preconditioner  is  employed  to  improve  the  convergence  properties  of  the  
method.  The  PGD  method  is  used  to  characterize  the  preconditioner.   The  
algebraic residual is computed, from which the residual finite elements function  
is defined. For this, the PGD procedure is applied to compute the solution of the  
¨Preconditioning Problem¨. 

4.1 Preconditioning

The basic problem with many iterative schemes compared to the direct solvers is 
the  lack  of  robustness.  While  some of  the  iterative  methods  which  are  well 
founded  in  the  theory  suffer  from slow convergence. Both  the  convergence 
properties and the robustness can be improved  by using the preconditioning. 
Preconditioning is a procedure of an application of a transformation, called the 
preconditioner, that conditions a given problem into a form that is more suitable 
for numerical solution.  Further, the preconditioned problem is solved using a 
iterative scheme. [5]. Let the preconditioner be  Cn, .The preconditioned Cn needs 
to be chosen in such that

Cn
−1 Ax=Cn

−1 b (4.1)

 In general a good preconditioner satisfies the following three conditions.

1. The computation of  Cn is fast and computationally cheap.
2. Let the preconditioned residual be  zn,  then the computation of  Cn  zn  be 
easy and computationally as effective as possible
3. The spectrum of Cn

−1 A is much better clustered. This would lead to a 
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faster convergence.

Note  that,  Cn  is associated to a symmetric, continuous and coercive problem if 
the original problem (here A) itself is a symmetric  continuous and coercive. 
Thus, it can be used in the framework of much more effective iterative methods 
such as preconditioned Conjugate Gradient (PCG) method.

4.2 Preconditioned Conjugate Gradient Method

The Conjugate Gradient (CG) method works for works very well on matrices 
that  are  well-conditioned. However,  in  real  applications,  most  matrices  are 
ill-conditioned, reducing the efficiency of the method.  So, the Preconditioned 
Conjugate  Gradient  (PCG)  is  method  which  can  be  used  for  ill-conditioned 
matrices also effectively. The PCG method is one of the most effective tools for 
solving the large sparse symmetric positive- definite systems.

The PCG algorithm, applied to the system Ax = b, starts with an initial guess of 
the solution x0 , with an initial residual  r0 , and with an initial search direction 
that is equal to the initial residual: p0 = r0 .  The idea behind the CG method is 
that the residual rk = b − Axk is orthogonal to the Krylov subspace generated by 
b, and therefore each residual is perpendicular to all the previous residuals. The 
residual  rn is computed at each step  n.  The solution of the next step is found 
using a search direction that is only a linear combination of the previous search 
directions and the current residual.  One of the main property that distinguishes 
CG algorithm from the other iterative methods is that the solution is reached in 
at most n steps for the  system Ax = b where A is an n x n symmetric positive 
definite  matrix.  For,  instance the following is  the CG algorithm for a  2  x 2 
matrix. 

Fig: 4.1 CG algorithm for a 2 x 2 matrix
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As discussed  in  section  4.1,  preconditioning an  important  technique  used  to 
develop an efficient CG method solver and help for the faster convergence of the 
method. 

The following shows the algorithm of the PCG 

ALGORITHM 4.1

1. Compute  r0 = b -Ax0 , z0 = C0
-1  r0 , and  p0 = z0

2. For j = 0, 1............until the convergence Do
3.      α̂ j=(r j , z j)/(Ap j , p j)

4.      x j+1=x j+α̂ j p j

5.      r j+1=r j−α̂ j A p j     

6.      z j+1=C j
−1 r j+1

7.      β̂ j=(r j+1 , z j+1)/(r j , z j)

8.      p j+1=z j+1+β̂ j p j

9. EndDo

Note that  pj  is the conjugate gradient directions , rj  is the residual at each step,  zj  is the 
preconditioned residual.[6]

4.3  The PGD as preconditioner for PCG

In  this  section,  the  way  the  PGD  method  is  applied  to  compute  the 
preconditioner  for  the  PCG  is  explained.  Consider  the  following  elliptic 
boundary value problem

−Δu= f inΩ
u=0 on∂Ω

(4.1)

where Ω is an open bounded domain, Ω⊂ℝ
2 . The weak form of the  problem 

is given by u∈V such that

a (u , v)=l (v ) ∀V (4.2)

where  V=H 0
1
(Ω) , a(u , v)=∫

Ω

∇ u.∇ v dΩ is  a  continuous  and  coercive 

bilinear  form   on  V×V ,  and   l (v )=∫
Ω

fv dΩ is  a  linear  continuous 

functional on V  . 
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The weak problem (4.3) is well-posed. The weak form of the problem is
approximated  to  a  discrete  form  using  Galerkin  Finite  Elements,  where 

uh∈V h such that

a (uh , vh)=l (v h) ∀ vh∈V h (4.4)

where  V h⊂V is a suitable finite dimensional space. The basis functions for 
the  space V h is  introduced,  {N i( x , y) }i=1,2,.... , N h

.In  this  case,  a  piecewise 

polynomial  functions  defined  on  a  quadrilateral  mesh  is  defined.  Now  the 
continuous problems produces a linear system of equations.

Au = b (4.5)

The  above  linear  system  is  solved  using  an  iterative  method.  A  suitable 
preconditioner is characterized to improve the convergence properties. In order 
to  explain  the  implementation  for  the  sake  of  simplicity,  preconditioned 
Richardson method is used (in place of which PCG is employed later). The u0 , 
the initial value is approximated. For the n+1 th  step the un+1 is computed in the 
following way

un+1
=un

−Cn
−1
(Aun

−b) (4.6)

where Cn
 denotes a suitable preconditioner which changes at the each iteration to 

improve  the  convergence  properties.  As  explained  in  the  section  4.1,  the 
preconditioner Cn

 the is best  if  is in a such a way that Cn
−1 A=I so that the 

preconditioned residual zn  that is computed at each step is as cheap as possible

Cn zn
=Aun

−b (4.7)

Now, in the present thesis, this preconditioner Cn is characterized using the PGD 
method. The following are the steps involved.

1.  COMPUTATION OF THE FINITE ELEMENTS RESIDUAL

As discussed earlier,  say  the  approximate  solution  is   un  ,   of  the  algebraic 
solution u is available at the step n. (where n⩾1 ). The algebraic residual is 
given by

r n=Aun−b (rn∈ℝN h) (4.8)

The above step can be expressed in the variational terms as follows
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∫
Ω

rh
n vh dΩ=a (uh

n , vh)−l (v h) ∀ vh∈V h

(4.9)

where r h
n
∈V h is the residual finite elements function. Indeed, the components 

of the vector r h
n are defined as

r i
n
=∫

Ω

r h
n N i(x , y )dΩ ∀ i=1,2,..... , N h (4.10)

The idea here is to write the residual at each node of the finite element mesh that 
is defined in 4.4. In this way the residual at all the elements is obtained. 

Let M be the finite elements mass matrix, which is defined as follows at a nodal 
coordinate ( i, j )

M ij=∫
Ω

N i( x , y)N j( x , y)dΩ i , j=1,2,.... N h (4.11)

Then, the vector r̂ n is computed as the solution of the linear system (where M 
is the corresponding mass matrix)

M r̂n
=r n (4.12)

This contains the nodal values of the residual finite elements function  r h
n in 

the nodes of the finite element grid and it can be written as 

r h
n
(x , y )=∑

i=1

N h

r̂i
n N i(x , y ) (4.13)

If  ℚr elements are used, on the generic element  Ωe of the computational 
mesh, then it can be written as

r h
n
(x , y )Ωe

=∑
i=1

ne

r̂i
n N i

loc
( x)N i

loc
( y ) (4.14)

2. PROJECTION OF THE RESIDUAL ON THE PGD MESH

In the first step, the residual is obtained at each nodal point of the mesh. Now 
even the PGD method has a mesh defined. Note that the domain Ω is same 
for the both. The residual of the finite element mesh has to be projected onto the 
PGD mesh by using appropriate extrapolation technique. Note that in the present 
implementation the mesh used for the FEM and PGD is the same. So there is no 
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need for this step.

3. PRECONDITIONING

            
After  r h

n is obtained, which is the residual at each of the points in the PGD 
mesh.  Note,  in  the  present  case  it  comes from the  step 1.  Now the  PGD is 
procedure is applied as described in the chapter 3 to compute the solution of the 
following “preconditioned problem”.

−Δ z PGD , m
n

=rh
n inΩ

z PGD , m
n

=0 on∂Ω
(4.15)

In the weak form :

∫
Ω

∇ z PGD , m
n .∇ vPGD dΩ=∫

Ω

r h
n v PGD dΩ ∀ v PGD∈V PGD (4.16)

where n denotes the number of basis functions (or the enrichment steps) that can 
be fixed a-priori and that can vary at each iteration n of the Richardson method 
(4.6). V PGD is the space which is

V PGD=span {F x
1
(x )F y

1
( y) ,.... , F x

m
(x)F y

m
( y )} (4.17)

where  F x
i
( x) and  F y

i
( y) ( i=1,. .. , m) are the PGD basis  functions  that 

are computed using the procedure illustrated in the chapter 3. The number of 
basis  functions  that  are  needed  to  be  computed  has  to  be  decided.  This  is 
discussed in the next section

4. PROJECTION OF PRECONDITIONED RESIDUAL ON THE FE SPACE

The function z PGD , m
n belongs to V PGD and it is defined in Ω .It represents 

the  preconditioned  residual  function  in  the  space  V PGD .  To  obtain  the 

preconditioned residual in the finite element space  V h ,  function  z PGD , m
n

needs  to  be  reflected  back  using  appropriate  interpolation  function.  More 
precisely, this can be defined as follows

zh
n
∈V h zh

n
= I h z PGD , m

n (4.18)

where Ih is the interpolation operator such that 

zh
n
( x i)=z PGD , m

n
(x i) ∀ x i node of the finite element mesh (4.19)

Finally ,  zn
∈ℝ

N h be the vector of the nodal values of  zh
n .  Note,  in the 
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present case since the mesh of the PGD and  the  FEM is the same this step  is 
skipped as in this case zh

n
=z PGD , m

n .

5.  UPDATING THE SOLUTION

The final step involves updating the solution with the preconditioned residual 
obtained. This is computed in the following way

un+1
=un

−zn (4.20)

Computing  the  preconditioned  residual  or,  equivalently,  applying  the 
preconditioner   Cn in (4.7) corresponds to the step 3 of the procedure described 
above. To highlight the dependence on the PGD procedure and on the number of 
basis functions that one should compute, this is written as Cn ,m . In the next 
section the number of basis functions that need to be considered is discussed.

4.4 The Basis Functions of the PGD

The  solution from the PGD method is in the form (3.9)  ∑
i=1

n

λi F i(x )G i( y)

where n is the number of basis functions or the enrichment steps. The tolerance 
that  can  be  reached  depends  upon  the  number  of  basis  functions  that  are 
considered.  Also  the  PGD error  is  a  function  of  number  of  grid  points  for 
different number of basis functions. Numerical tests are conducted to reach the 
optimal number of basis functions. [2]  .  The tests are performed with different 
number of grid points and by varying the number of basis functions. This is done 
to optimize and get an idea of the behavior with different basis functions. There 
is need to optimize because as the number of basis functions are increased the 
computational cost increase, while on the other hand if the basis functions are 
too less the tolerance that can be reached is limited. To strike a balance between 
them and to come to a conclusion regarding the effect of tolerance reached the 
following tests are performed.The tests illustrated below, for different   number 
of grid points (say it is N x ) and the number of grid points in they direction 

N y ,  each with different set of base functions.  The flags in the table denote 
the following
0  PCG  converged  to  the  desired  tolerance  TOL (tolerance)  within  MAXIT 
(maximum number of )iterations
1 PCG iterated MAXIT times but did not converge.
2 preconditioner M was ill-conditioned.
3 PCG stagnated (two consecutive iterates were the same).
 4 one of the scalar quantities calculated during PCG became too small or too 
large to continue computing.
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Note  in  the  present  case  the  desired  tolerance  is  taken  as  10−8 and  the 
maximum number of iterations is 250.

For  the  source  function  f (x , y )=2x2
+ x+ y 2

−0.2y+3xy following  are  the 
plots for different grid values.

For N x = N y = 20

fig 4.2 log(residual) vs number of iterations for grid points in x and y 20x20

Number of basis 
functions (Nmax)

Number of iteration 
taken

Flag

5 250 1

10 70 0

12 43 0

Table 4.1 Number of iterations taken for the basis functions for 20x20

It can be seen from the plot and the table that if the  number of basis functions is 
limited  to  5,  the  method  doesn't  converge.  After  reaching  the  tolerance  of 
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10−4 the residual doesn't decrease even with the increase in the number of 
iterations. It can be concluded that the contribution from the basis functions is 
limited with the number of basis functions.

An  another  case  is  considered  where  the  source  term  is 
f (x , y )=2(2−x2

− y2
)

For N x = N y = 40 the following is the plot with different number of basis 
functions

fig 4.3 log(residual) vs number of iterations for grid points in x and y 40x40

Number of basis 
functions (Nmax)

Number of 
iteration taken

Flag

5 85 0

10 17 0

12 17 0

             Table 4.2 Number of iterations taken for the basis functions for grid points 40x40

It can be seen in the plot that for the maximum basis functions 10 and 12 the 
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convergence  shows  the  same  behavior  (the  plots  coincide),  whereas  when 
N max  is 5, the convergence flattens and thus takes more number of iterations, 

although the  desired tolerance is reached.
For  the  same  source  term and  increasing  the  number  of  grid  points  to  80, 
following is the plot obtained between residual vector and number of iterations.

 

          fig 4.4 log(residual) vs number of iterations for grid points in x and y 80x80

Number of basis 
functions (Nmax)

Number of 
iteration taken

Flag

5 250 1

10 31 0

12 31 0

Table 4.3 Number of iterations taken for the basis functions for grid points 80x80

Just like the previous plot, the convergence behavior for N max equals 10 and 
12 is the same. But it can be seen that for N max equal to 5, the convergence is 
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not reached even after reaching the maximum number of iterations. It can be 
also noted that the n number of iterations taken to reach the convergence has 
increased when there is an increase in the grid points.

4.4.1 Conclusions

The following conclusions can be drawn from the tests conducted with varying 
the number of basis functions or enrichment steps in the PGD and the grid points 
used.

1.    The number of iterations taken increase with the increase in number of the 
grid  points.  This  is  expected  as  the number of  grid points  are  increased the 
computations and iterations required has to be increased for the same tolerance.

2. There is a limitation on the tolerance reached for a fixed number of basis 
functions. For a lower tolerances, the number of basis functions that need to be 
used should be increased. This can be explained with the behavior of the PGD 
method. In the PGD method, the higher the mode, the frequency of the plot is 
increased. (Section 3.3.1 illustrated in all the cases). Thus, for smaller errors the 
number of  modes or the basis functions that should be considered ought to be 
increased.

3. If the number of basis functions that are considered are too low, for certain 
accuracy the tolerance is reached at a very slow pace. It can be seen in the above 
cases when N max is taken as 5.

4. As the number of basis functions are increased the convergence is faster and 
faster.  Like for instance when N max is 5 and 10, the difference in convergence 
rate is substantial.

5. In order to draw a balance between the computational cost and efficiency the 
maximum number of basis functions that need to taken should be restricted. In 
the present case,  for instance,  the difference between the case when  N max

equals 10 and 12 is not much for the tolerance of 10−8 . And therefore in all 
the computations in later chapter the N max is restricted to 10.
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Chapter 5

Numerical Tests

In this  chapter  the  tests  and results  of  the various  test  cases  are presented.  
Further, the convergence plots are presented with and without preconditioner  
for comparison

5.1 Tests and Results

The numerical  tests  for  various  cases  using  the  PCG method with  the  PGD 
preconditioner  algorithm that  is  developed in the  thesis  are  carried  out.  The 
results  for  different  cases  are  compared  with  the  PCG  method  without  the 
preconditioner, PCG method with the PGD preconditioner and the PGD method 
(latter two are developed as part of the thesis). All the tests are conducted for the 
a tolerance of 10−8 and for different mesh sizes 

5.1.1 With Constant Source Term

The following is the case where the source term is constant

Case 1: f =1

Method Number of iteration taken for  different mesh sizes

20x20 40x40 80x80

PCG without 
preconditioner

25 52 105

PCG with the  PGD 
preconditioner

22 31 43

          Table 5.1 Number of iterations taken for constant source term
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5.1.2 With Non -Constant Source Term

The following are the cases when source term is non-constant Source Term

                             
Source Term Method Number of iterations Taken

20x20 40x40 80x80

f (x , y )=cos(2 π x)sin(2π y )

PCG without 
preconditioner

10 20 40

PCG with  the 
PGD 

preconditioner

10 13 13

   

f (x , y )=x 2
− y2

PCG without 
preconditioner

17 36 72

PCG with  the 
PGD 

preconditioner

16 20 31

  

f (x , y )=2x2
+ x+ y 2

−0.2y+3xy

PCG without 
preconditioner

43 43 176

PCG with  the 
PGD 

preconditioner

42 42 150

  

f (x , y )=2(2−x2
− y2

)

PCG without 
preconditioner

23 23 92

PCG with  the 
PGD 

preconditioner

17 17 23

        
                   Table 5.2 Number of iterations taken for Non constant source term
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5.1.3 With Diffusion Term

The following are the cases when source term is kept constant  (in the present 
case f = 1)  and diffusion term is varied.

Diffusion Term Method Number of iterations Taken

20x20 40x40 80x80

K =0.01

PCG without 
preconditioner

25 52 105

PCG with  the  PGD 
preconditioner

22 23 43

 

K =0.001

PCG without 
preconditioner

25 52 105

PCG with  the  PGD 
preconditioner

22 23 43

   Table 5.3 Number of iterations taken with Diffusion term

 

5.2 Convergence Behavior

The  following  are  the  convergence  plots  of  for  various  cases.  The  semi 
logarithmic  plots  are  between  the  residual  vector  and  number  of  iterations. 
Basically  the  comparison  here  is  made  between  PCG  with  and  without  the 
preconditioner.  These  plots  give  an  idea  about  the  way  the  convergence  is 
obtained.  Depending  upon the  way  the  convergence  is  obtained  in  the  with 
respect to the number of iterations the behavior of the method can be concluded.

The same cases that are taken in the section 3 & section 4 are considered here.
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       Fig 5.1 Convergence plot for Source Term f=1

                       Fig 5.2 Convergence Plot for Source Term f=cos(2pix)sin(2piy)
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                         Fig 5.3 Convergence plot Source Term f=x2-y2

        Fig 5.4 Convergence plot Source Term f=2(2-x2-y2)

The conclusions from the tables and plots are discussed in the next chapter.
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Chapter 6

Conclusions and Outlook

In this chapter ,the conclusions from the numerical tests and the outlook of the  
work is are presented.

6.1  Conclusions

The prime objective of the current work is to study and the implementation of 
the PGD method and further use it to determine the preconditioner to solve the 
system  of  equations  that  are  generated  from  Finite  Element  Method. 
Particularly, the method is applied for scaler elliptic problems. In this regard, all 
the concerned coding is done in  MATLAB and the results are cross checked by 
using Finite Element Method (Direct method to solve the equations).

Initially, the PGD method is implemented. In the chapter 3, the effect of varying 
parameters such as enrichment tolerance, iterative tolerance, mesh size, initial 
value (value that is assumed at the start of the enrichment process) are presented. 
In the 4th  chapter, the effect of change in the number of basis functions on the 
tolerances reached, convergence rate pertaining to that are studied. Finally, for 
the PGD conditioner the following conclusions can be made from the Numerical 
tests.

It can be seen from all the tables that the number of iterations taken when the 
PGD  preconditioner  is  used  in  comparison  with  the  method  when  the 
preconditioner  is  not  used  are  much  lesser.  In  addition,  in  all  the  cases  the 
convergence plot of the method when the PGD preconditioner is used is  much 
steeper than the one without the preconditioner. The idea of the thesis is to take 
the advantages of both the methods. It is known, that the Finite Element method 
being one of the robust method and it can be used for any kind of problem. On 
the other hand, the PGD method is very fast, but  the limitation of it being not 
applicable to few problems. For instance, with a source term or a diffusion term 
where  they  cannot  be  written  in  a  separated  form,  the  PGD  is  difficult  to 
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implement. 

As the grid  points  are  increased the  number  of  iterations  taken by the PCG 
without preconditioner is much greater than with the PGD preconditioner. Thus, 
for a finer and greater accuracy the latter is better. 

In case of the diffusion term, the method is robust even with the change in the 
coefficient.

On  a  general  note,  it  can  be  inferred  that  coupling  the  FEM and  the  PGD 
methods give  results in lesser number of computations than the conventional 
methods .

6.2 Outlook

In this section few of the possibilities of future work in this line of research are 
outlined

1. It is observed that, as the mesh size is increased ,the number of iterations 
that are taken are increased. In the present implementation, the mesh size for the 
Finite elements and the PGD are taken the same. As discussed earlier (section 
4.3) the steps involving the projection of the Finite Element residual on to 
the PGD mesh and after  computing the preconditioned residual,  projecting 
back  them on  to  the  Finite  Element  mesh  are  eliminated  (3rd and  5th steps 
discussed in the implementation in the section 4.3). By using a coarser mesh for 
the PGD and including these projection stages the computational cost can be 
further  decreased  and  also  the  convergence  can  be  faster.  (  multi  grid 
implementation) 

2. The second possibility would be development of other method instead of 
Alternate Direction Strategy (section 3.2) for iterations. For instance , Newton 
method can be used which is faster and takes less iterations. This is discussed in 
the paper [2].

3. The presented method can be tested with other existing preconditioning 
techniques.

4. The  method  can  be  tested  for  cases  where  in  the   source  term  and 
diffusion terms are discontinuous
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