
A PGD-BASED PRECONDITIONER FOR
SCALER ELLIPTIC PROBLEMS

Master's Thesis

Submitted by
Hasini Garikapati

 August 29 , 2014

Master's thesis at: Laboratori de Calcul Numeric (LaCan),
 Department of Applied Mathematics III (MA3),
 Universitat Politècnica de Catalunya, Barcelona

Supervisors: Dr. Marco Discacciati, Dr .Antonio Heurta
 (UPC, BarcelonaTech)

Examiner: Dr. Bernard Haasdonk
 Institute of Applied Analysis and Numerical Simulation,
 University of Stuttgart

I hereby certify that I have prepared this thesis independently, and that only those
sources, aids and advisors that are duly noted herein have been used and/or consulted.

 Barcelona, August 29

 Hasini Garikapati

Acknowledgements

I extend my gratitude to Dr. Antonio Heurta for providing me the opportunity to work
at LaCan and being my supervisor. I express profound sense of gratitude to Dr.
Marco Discacciati for being my supervisor. I thank him for providing me
indispensable assistance throughout the course of my thesis work. With his support,
the project was approached in a systematic manner which lead to better
understanding of the work. I thank him for his excellent guidance, clarity of vision,
and soothing presence in moments of panic. Also, I am highly indebted to Dr.
Bernard Haasdonk for being my examiner and also giving me his critical comments
at every stage of work.

Abstract

The Proper Generalized Decomposition Method (PGD) is a powerful model
reduction technique, based on separated representations. In particular, the solution is
sought as a finite sum of terms, each one involving the product of functions of each
coordinate. The solution is then calculated by means of a sequence of one
dimensional problems. Thus, the PGD is able to circumvent the curse of
dimensionality and makes possible the efficient solution of models defined in
multidimensional spaces.
The solution of large linear systems of the form Au = b where A = [aij] is an n x n
matrix and b is a right hand side vector, is central to many numerical simulations in
science and engineering and is often most time-consuming and expensive part of a
computation. Although direct methods are robust , they scale poorly with problem
size in terms of operation counts and memory requirements. While iterative methods
require fewer storage and often require fewer operations than direct methods
(especially when an approximate solution of relatively low accuracy is sought), they
do not have the reliability of direct methods. In some applications, iterative methods
often fail and preconditioning is necessary, though not always sufficient, to attain
convergence in a reasonable amount of time.
In the present thesis, scalar elliptic boundary value problems are considered. The
problem is discretized by employing Galerkin Finite Elements, which generate the
linear system of equations. The linear system is solved using an iterative method and
a suitable preconditioner is characterized to improve the convergence properties of
the method. In the present thesis, the PGD method is used to characterize the
preconditoner. The algebraic residual is computed, from which the residual finite
elements function is defined. For this, the PGD procedure is applied to compute the
solution of the ¨Preconditioning Problem¨. This PGD preconditioner is implemened
to various ranges of cases from a simple case (constant source term) to complex, such
as non constant source, non constant diffusion terms .

Nomenclature

 A Matrix

 b Vector

 Cn Preconditioner

 Nj Shape Functions

 N Number of enrichment steps

 w Weight Function

 K Diffusion Coefficient

X n(x) Basis function of x of the nth enrichment step

Y n(y) Basis function of y of the nth enrichment step

M x 1-Dimensional Mass Matrix in x direction

M y 1-Dimensional Mass Matrix in y direction

N max Maximum Basis functions used

F n(x) Normalized basis function of x of the nth enrichment step

Gn(y) Normalized basis function of y of the nth enrichment step

Greek Letters

Ω Domain

Ωe Elemental Domain

ϵ Tolerance used for iterative steps

ϵn Tolerance used for enrichment step

λ Coefficient of Normalization

α Coefficient defined in the ODE

β Coefficient defined in the ODE

γ Coefficient defined in the ODE

δ Coefficient defined in the ODE

Acronyms

FEM Finite Element Method

PGD Proper Generalized Decomposition

CG Conjugate Gradient

PC Preconditioner

PCG Preconditioned Conjugate Gradient

ODE Ordinary Differential Equation

PDE Partial Differential Equation

Subscripts & Superscripts

x Functions or coefficients that are dependent on x

y Functions or coefficients that are dependent on y

n Enrichment step

ij I th coordinate/node in x direction and jth coordinate/node
in y direction

p Represents the iterative step

max Maximum value

Table of Contents

1 INTRODUCTION ..1
1.1 MOTIVATION..1

1.2 CONTENTS OF THESIS..3

2 BASICS OF FINITE ELEMENT METHOD...4
2.1 GALERKIN FINITE ELEMENT METHOD...4

2.2 STRONG AND WEAK FORM OF THE PROBLEM..4

2.3 DISCRETIZATION OF THE PROBLEM..5

2.4 FINITE ELEMENT SYSTEM OF EQUATION..6

3 IMPLEMENTATION OF THE PGD..7
3.1 SEPARATED REPRESENTATION...7

3.1.1 Normalization of the function...10

3.2 ALTERNATE DIRECTION STRATEGY FOR CONSTANT SOURCE TERM.................................10
3.2.1 Results and Analysis...15

3.3 IMPLEMENTATION FOR THE NON-CONSTANT SOURCE TERM..17
3.3.1 Numerical Tests..21

3.4 IMPLEMENTATION FOR DIFFUSION TERM...28

3.5 CONVERGENCE CRITIREA ..30

4 THE PGD METHOD FOR PRECONDITIONING..32
4.1 PRECONDITIONING...32

4.2 PRECONDTIONED CONJUGATE GRADIENT METHOD..33

4.3 THE PGD AS PRECONDITIONER FOR PCG...34

4.4 THE BASIS FUNCTIONS OF THE PGD...38
4.4.1 Conclusions..42

5 NUMERICAL TESTS...43
5.1 TESTS AND RESULTS..43

5.1.1 With constant source term ...43
5.1.2 With non constant source term ...44
5.1.3 With Diffusion term ...45

5.2 CONVERGANCE BEHAVIOUR..45

6 CONCLUSIONS AND OUTLOOK ..48
6.1 CONCLUSIONS..48

6.2 OUTLOOK..49

 BIBLIOGRAPHY...50

LIST OF FIGURES

2.1 Normalized reference element...6

3.1 Solution when f=1..15
3.2 x & y basis functions at each enrichment step..16

3.3 Modes of the case 1..21
3.4 Computed solution of the case 1...22

3.5 Computed solution of the case 2...22
3.6 Modes of the case 2..24

3.7 First 9 modes of the case 3...26
3.8 Computed solution of the case 3...27

3.9 Computed solution of the case 4...27
3.10 Modes of the case 4..28

3.11 Decay of the coefficient and the residual...31

4.1 CG algorithm for a 2x2 Matrix..33

4.2 log(residual) vs number of iterations for grid points in x and y 20x20...................39
4.3 log(residual) vs number of iterations for grid points in x and y 40x40...................40

4.4 log(residual) vs number of iterations for grid points in x and y 80x80...................41

5.1 Convergence plot for Source Term f=1..46

5.2 Convergence plot for Source Term f=cos(2pix)sin(2piy)..46
5.3 Convergence plot for Source Term f=x2-y2..47

5.4 Convergence plot for Source Term f=2(2-x2-y2)..47

LIST OF TABLES

3.1 Parameters obtained at each enrichment step...17

4.1 Number of iterations taken for basis functions for 20x20.......................................39
4.2 Number of iterations taken for basis functions for 40x40.......................................40

4.3 Number of iterations taken for basis functions for 80x80.......................................41

5.1 Number of iterations taken for constant function..43

5.2 Number of iterations taken for Non-constant source function.................................44
5.3 Number of iterations taken for basis functions with Diffusion Term.....................45

Chapter 1

Introduction

This chapter describes the motivation of the thesis. The basic idea of the thesis
is presented. Further, it has the outline of the content of all the chapters of this
report.

1.1 Motivation

The need to solve large linear system of equations are generated in most of the
scientific problems where mathematical models are used. The systems are
generated from discretization of differential equations, optimization problems,
etc. The solution of large linear systems of the form Ax=b where A = [aij] is
a n x n matrix and b is a right hand side vector, is central to many numerical
simulations in science and engineering and is often most time-consuming and
expensive part of a computations.

When the discretization of the original problem is done using a method such as
Finite Elements, Finite Differences, Finite Volumes, etc., the matrix that is
generated from the system of equations is large and sparse. There are direct
methods such as Gaussian Elimination. However, when one wants to solve very
large systems of equations, the computational complexity increases the size of
the problem. Iterative methods for solving general, large sparse linear systems
have been gaining popularity in many areas of scientific computing. This is
because one can take advantage of “sparsity” to design iterative methods that
can be quite economical and faster than the direct solution methods.

In some applications, iterative methods often fail and preconditioning is
necessary, though not always sufficient, to attain convergence in a reasonable
number of iterations. The general idea underlying any preconditioning procedure
for an iterative solvers is to convert the following system Ax=b in such a way
that an equivalent system [5]

Â x̂= b̂ (1.1)

for which the iterative method converges faster. A standard approach is to use a

1

non singular matrix Cn and rewrite the system as

Cn
−1 Ax=Cn

−1b (1.2)

The preconditioned Cn needs to be chosen in such that Cn
−1 A=Â where Â

is better conditioned and ideally Â is the identity matrix. A iterative method
computes successive approximate of the solution { x0 , x1 ,... , xn } at respective
steps. In practice, the iterative process is stopped when ∥x n

−x∥<ϵ where
ϵ is a fixed tolerance and ∥.∥ is any convenient vector norm. However,

since the exact solution is obviously not available, it is necessary to introduce
suitable stopping criteria to monitor the convergence of the iteration according
to the problem (Discussed in section 3.3)

Iterative schemes of the form

xn+1
=xn

−Cn
−1
(Axn

−b)
(1.3)

are common where Cn denotes a suitable preconditioner which may change at
each iteration to enhance the convergence properties.

The Proper Generalized Decomposition (PGD) is is a powerful model reduction
technique, based on separated representations. The PGD builds on successive
enrichment strategy, a numerical approximation of the unknown fields in a
separated form involving a priori unknown function. The computational
complexity of PGD scales linearly with the dimension in space wherein the
model is defined, which is in contrast with the conventional methods wherein
the complexity is scaled exponentially. In particular, the solution is sought as a
finite sum of terms, each one involving the product of functions of each
coordinate. For instance, the material parameters and boundary conditions
appearing in a particular mathematical model can be regarded as
extra-coordinates of the problem in addition to the usual coordinates such as
space and time. The solution is then calculated by means of a sequence of one
dimensional problems. Thus, the PGD is able to circumvent the curse of
dimensionality and makes possible the efficient solution of models defined in
multidimensional spaces. [2]

In the present thesis, scaler elliptic boundary value problems are considered. The
problem is discretized by employing Galerkin Finite Elements, which generate
the linear system of equations. The linear system is then solved using an
iterative method and the preconditioner is characterized using the PGD method
in order to improve the convergence properties. The main idea behind the thesis
is – First , to study and implement the PGD method. Second, to use it to
characterize the preconditioner for the standard iterative methods to solve the
linear system of equations

2

1.2 Contents of Thesis

The present thesis involves implementation of the PGD-based preconditioner for
scaler elliptic problems. Chapter 2 presents the outline of the mathematical
equations of the finite element method that lead to the linear system of
equations. In the chapter 3, the idea and the implementation of the PGD, and the
convergence criteria that is considered for the PGD method are discussed. In the
chapter 4 , the way the PGD based preconditioner is coupled with the scaler
elliptic problems (with the diffusion term) is discussed. Chapter 5 presents the
results and analysis of the present technique to solve the linear system of
equations is described and compared with the convergence properties of the
finite element method and conjugate gradient method without preconditioner.
Finally, in the last chapter, a brief description of conclusions and scope for
future research works are discussed.

3

Chapter 2

Basics of Finite Element Method

In chapter 2, the basics of Finite Element Method that are used in the
implementation of the PGD method and later the two-dimensional FEM which
is used for solving the elliptic equations pertaining to the present thesis are
briefly described.

2.1 Galerkin Finite Element Method

The Finite Element Method (FEM) has emerged as one of the most powerful
Numerical methods to find approximate solutions to the boundary value
problems for the differential equations. Such a method uses a spatial
discretization and a weighted residual formulation to transform the governing
PDE (strong form) into an integral equation (weak form) that upon variational
treatment yields to the solution of a system of matrix equations. One of the most
successful in application of the Standard FEM formulation are based upon the
Galerkin formulation of the method of weighted residuals. The reason for this
success is that, when applied to problems governed by self-adjoint elliptic or
parabolic partial differential equations, the Galerkin finite element method leads
to symmetric stiffness matrices. [7]

The following are few of the compact notations used in the report

(u ,v)=∫
Ω

u.v dΩ

a (u , v)=∫
Ω

∇ u :∇ v dΩ

(2.1)

2.2 Strong and weak form of the Problem

To illustrate the strong and the weak problem, the following Poisson equation is
considered.

4

−Δu= f ∈Ω
(2.2)

For the sake of simplicity, only the Dirichlet conditions are considered

u=uD onΓ (2.3)

The strong form of a boundary value problem comprises of the differential
equation of the problem along with the boundary conditions. So in the present
case the PDE (2.2) along with boundary conditions (2.3) constitutes the strong
form.

The first step in a weighted residual formulation leading to the finite element
discretization of our model problem consists of formulating a weak (or
variational) form of the boundary value problem. This is achieved by
multiplying the governing equation (2.2) by the weighting function w and
integrating over the computational domain Ω [7]

−∫
Ω

wΔu dΩ=∫
Ω

wf dΩ (2.4)

Applying divergence theorem to the left hand side of the equation

−∫
Ω

wΔu dΩ=−∫
Ω

(∇ .(w ∇ u)−∇ w .∇ u)dΩ

=∫
Ω

∇w .∇ udΩ−∫
Γ

w (n.∇ u)d Γ
(2.5)

The test function w=0 on Γ D . It vanishes on the Dirichlet portion of the boundary
and taking into account the Neumann boundary condition the following is obtained
which is the weak form of the problem

∫
Ω

∇w .∇ u dΩ=∫
Ω

wf dΩ (2.6)

2.3 Discretization of the Problem

Now that the weak form of the problem is available, the next step is to discretize the
weak form by using the Galerkin Finite Element Method. A suitable mesh is used to
subdivide the computational domain Ω into element domain Ωe . In practice, for
every element shape functions are defined using a transformation from a reference
element.

5

In one-dimension, Piecewise Lagrange Polynomials are used. For instance, the piecewise
linear function in 1-D which are used in the present thesis

N j(x)={
x−x j−1

x j−x j−1

, if x j−1⩽x<x j

x j+1− x
x j+1− x j

, if x j⩽x< x j+1

0, otherwise

(2.7)

on the mesh x0<x1.<x N . And in two-dimensions, meshes generally consist of
triangles or quadrilaterals. In the present thesis the quadrilateral elements are used. The
following is the normalized reference element of the quadrilateral.

Fig 2.1 normalized reference element

The following are the element shape functions

N 1=
1
4
(1−ξ)(1−η)

N 2=
1
4
(1+ξ)(1−η)

N 3=
1
4
(1+ξ)(1+η)

N 4=
1
4
(1−ξ)(1+η)

(2.8)

2.4 Finite Element System of Equation

The assembly of the element contributions to the discrete weak form into the complete

6

system results in a matrix equation of the form

K̂ u= f̂ (2.9)

where K̂ , f̂ represent stiffness matrix , mass matrix and force vector respectively. The
components of these critical integrals are defined as follows. (for the 1- dimension system
which is used in the thesis)

1) Components of Stiffness Matrix are

K̂ ij=∫
0

L

(
dN i

dx
)(

dN j

dx
)dx (2.10)

2) Components of force Matrix are

f̂ i=∫
0

L

f (x)N i dx (2.11)

There is one more matrix used in the thesis that is encountered in Finite
Elements, is Mass Matrix. It is defined as follows

3) Components of Mass Matrix are

M̂ ij=∫
0

L

N i N j dx (2.12)

These matrix when assembled result in the system of equations which are solved
either by direct or iterative methods. In the present thesis, the focus is on solving
these system of equations which are generated after discretization of the scaler
elliptic problems, by using an iterative method of which the preconditioner is
characterized by the Proper Generalized Decomposition (PGD) method. This is
discussed in detail in the subsequent chapters.

7

Chapter 3

Implementation of the PGD

This chapter describes the idea and the implementation of the PGD method. In
the present thesis, the PGD method is implemented using alternate direction
strategy. The simplest two dimensional elliptic PDE, Poisson equation is
considered. First, the simplest case where the source term is constant is
developed. Then later, the method is extended to the non-constant source term
and with non-constant diffusion term. The results of all these cases are
demonstrated in this chapter. Further the convergence criteria which is used in
the method is illustrated.

3.1 Separated Representation

The PGD method implemented is based on separated representation of the
solution.[3]. The solution is taken as a sum of finite sum of terms, each one
involving the product of functions. For instance, the problem of D dimensions,
the solution u is written as the sum of N finite terms in the following way

u (x1,. ... xD)=∑
j=1

j=N

∏
k=1

k=D

T kj(xk) (3.1)

where Tkj is the jth basis function, which only depends on the kth coordinate.
[4]. In the present thesis only 2 Dimensional problems are considered. For
instance, consider the solution of the Poisson equation.

−Δu(x , y)= f (x , y) (3.2)

in the two dimensional rectangular domain Ω=Ωx×Ω y . The PGD
approximate solution is obtained in a separated form

8

u (x , y)=∑
i=1

N

X i (x). Y i (y)
(3.3)

where N is total number of enrichment steps. Each term of the expansion is
computed one at a time, enriching the PGD approximation until a suitable
convergence criterion

is reached. The separated form is progressively constructed. At each enrichment
step n (n⩾1), the first n-1 terms of the PGD approximation is already

computed which is in the form un−1(x , y)=∑
i=1

n−1

X i (x). Y i (y)

Now, the next term n, X n(x) . Y n(y) is computed which would further enrich
the PGD solution [2]

un
(x , y)=un−1

(x , y)+X n(x) .Y n(y)=∑
i=1

n

X i(x) .Y i(y)
(3.4)

The functions X n , Y n are obtained at the enrichment step n. To arrive at the
functions at each n enrichment step, a suitable iterative scheme is employed.
Thus, the index p is used to denote a particular iteration (3.5)

un , p
(x , y)=un−1

(x , y)+X n
p
(x) .Y n

p
(y) (3.5)

 Let the functions at each iteration be denoted by Rn
p
(x) , S n

p
(y) in place of

X n
p
(x) , Y n

p
(y) respectively. The iterations at each enrichment step proceed until

reaching a fixed point tolerance.(3.6)

∥Rn
p
(x) . S n

p
(y)−Rn

p−1 . Sn
p−1

(y)∥

∥Rn
p
(x). Sn

p
(y)∥

<ϵ
(3.6)

where ∥.∥ is the L2
−norm and ϵ is the tolerance. a The iterative

scheme stops at the point when the condition (3.6) is satisfied. At the end of
the iterative step, the last obtained value is assigned to enrichment step.

Rn
p
(x)→X n(x) ; S n

p
(y)→Y n(y)

As the solution is enriched the magnitude of the basis functions obtained is
either quite low or high. In order to avoid working with high or low order
numbers for the basis functions, the normalized form of the solution is obtained
at each step. This is done by introducing a coefficient λ The approximate
solution can be restored by multiplying the coefficient with the normalized
function. (3.9)

9

un
(x , y)=∑

i=1

n

λ i F i (x)G i(y) (3.7)

where F and G are the normalized functions of x and y respectively and λ i is

the coefficient at the corresponding step. Henceforth, Rn
p
(x) , S n

p
(y) and

F n(x) ,Gn(y) notations are used in derivation of the method for different
cases.

3.1.1 Normalization of the functions.

As discussed in the previous section, the functions Rn
p
(x) , S n

p
(y) represent

the functions obtained at the end of the iterative step, after which they are
normalized and for the further computations the normalized functions are used
which are represented by F n(x) ,Gn(y) .The way the functions are
normalized by following

F n(x)=
Rn

p
(x)

√(Rn
p
(x)M x Rn

P
(x)T)

Gn(y)=
S n

p
(y)

√(S n
p
(y)M y S n

P
(y)T)

(3.8)

where M x , M y represent one-dimensional mass matrices in x, y directions
respectively. However, in practice, one of the function is assumed to be
normalized function. for instance, S n

0
(y) at the beginning of the iterative

process is assumed to one in the present case or any other function whose norm
is one. in that way, the S n

p
(y) which is obtained at the end of the iterative

process is already a normalized function which is Gn(y) . While, the function

Rn
p
(y) is normalized by using (3.9). The coefficient λ is computed in the

following way

λn=√(Rn
p
(x)M x Rn

pT
) (3.9)

3.2 Alternate Direction Strategy for Constant Source Term

As discussed earlier (3.7), an iterative scheme is employed to get the refined

10

solution at each enrichment step. In the present thesis, the iterative scheme used
is Alternate Direction Strategy. Basically, here first Rn

p
(x) is computed from

S n
p−1

(y) , and then S n
p
(y) is computed from Rn

p
(x) . Thus, the functions

of x , y are computed alternately from one to another. For this, an initial
arbitrary guess S n

0
(y) is specified at the start of the each iterative process. The

non-linear iterations proceed until reaching a fixed point within a defined
tolerance (3.7).

First, the PGD is implemented for a constant source term f over the domain
Ω for the equation 3.2, in the Poisson equation in a two- dimensional

rectangular domain with homogeneous Dirichlet Boundary conditions for the
unknown field u(x,y) , which vanishes at the domain boundary Γ . With a test
function u* , the weighted residual is in the following way

∫
Ωx×Ωy

u* .(Δ u+ f)dx .dy (3.10)

As discussed above Rn
p
(x) is computed from S n

p−1
(y) . In this case the

PGD approximation is as follows (similar to (3.6)).

un , p(x , y)=∑
i=1

n−1

λi F i(x) .G i(y)+Rn
p(x) . S n

p−1(y) (3.11)

In the above, all the functions are unknown except Rn
p
(x) . The choice of the

weight function that is made (3.10) is

u*
(x , y)=Rn

*
(x) . S n

p−1
(y) ,

(3.12)

which is the Galerkin weighted residual formulation.

Now, substituting (3.12), (3.11) into the (3.10) , the following is obtained. For
simplification purpose , Rn

p
(x) is written as Rn

p , F i(x) is written as
F i , Rn

*
(x) as Rn

* and similarly for the y functions.

− ∫
Ωx×Ωy

Rn
* . S n

p−1 .(
d 2 Rn

p

dx2 . S n
p−1

+Rn
p d 2 S n

p−1

dy2)dx .dy

= ∫
Ωx×Ωy

Rn
* . Sn

p−1 .∑
i=1

n−1

λ i(
d 2 F i

dx2 .G i+F i

d 2G i

dy2)dx .dy+ ∫
Ωx×Ωy

Rn
* . S n

p−1. f dx . dy

(3.13)

11

Note that in the above equation , all the functions concerned with R, F are
solely functions of x. Similarly, all the functions concerned with S, G are solely
functions of y. Thus the above equation, the integral for each of the terms can be
split into Ωx and Ωy . All the terms that are dependent on x (and
independent of y) are collected under the integral x and similarly for integral y.
In the above equation all the terms which are functions of y are known. Thus, the
following one- dimensional integrals of y can be computed over the domain
Ωy

{
α

x
=∫

Ωy

(S n
p−1

(y))2 dy

β
x
=∫

Ωy

Sn
p−1

(y) .
d2 Sn

p−1
(y)

dy2 dy

γ i
x
=∫

Ωy

S n
p−1

(y) .λi Gi(y)dy

δi
x
=∫

Ωy

S n
p−1

(y) .λi

d 2G i(y)

dy2 dy

ξ
x
=∫

Ωy

S n
p−1

(y) . f dy

(3.14)

The above values are computed and substituted in the equation (3.13) which
becomes

−∫
Ωx

Rn
* . (αx.

d 2 Rn
p

dx2 +βx. Rn
p
)dx

=∫
Ωx

Rn
* .∑

i=1

n−1

(γi
x. d 2 F i

dx2 +δ i
x F i)dx + ∫

Ωx

Rn
* .ξx dx

(3.15)

The above is the weighted residual form of the one-dimensional problem
defined over the domain Ωx . The corresponding strong formulation (3.15) of
the above can be returned to the following

−(αx.

d2 Rn
p

dx2 +βx. Rn
p
)dx = ∑

i=1

n−1

(γi
x. d2 F i

dx2 +δ i
x F i)dx + ξ

x dx (3.16)

Thus, the two-dimensional Poisson equation is converted to a one-dimensional
ordinary differential equation. This can be solved using any suitable ODE
solving process. In the present thesis , ode45 is employed to solve the equation.
Thus, the ODE is solved for Rn

p
(x) . After solving for Rn

p from S n
p−1 ,

12

the next step of the iteration is to proceed to solve the S n
p
(y) from Rn

p
(x) .

The same procedure is followed even for the next step , except for a slight
change in the PGD approximation described in the equation 3.11. Now, the PGD
approximation is the following

un , p(x , y)=∑
i=1

n−1

λi F i(x) .G i(y)+Rn
p(x) . S n

p(y) (3.17)

In the above approximate all the terms except S n
p
(y) is known. The choice of

the weight function in this case is made accordingly.

u*
(x , y)=Rn

p
(x) . S n

*
(y)

(3.18)

Now, again substituting (3.17) , (3.18) in (3.10), the following equation is
obtained.

− ∫
Ωx×Ωy

Rn
p . S n

* .(
d 2 Rn

p

dx2 . S n
p
+Rn

p d 2 S n
p

dy2)dx .dy

= ∫
Ωx×Ωy

Rn
p . S n

* .∑
i=1

n−1

λi(
d 2 F i

dx2 .Gi+F i

d2 Gi

dy2)dx .dy+ ∫
Ωx×Ωy

Rn
p. Sn

* . f dx .dy

(3.19)

Note that the functions are either solely dependent on x or solely dependent on y.
This makes the integral to be split separately into the Ωx and Ωy .And all
the functions of x are known and the integrals of them over Ωx can be
computed

{
α

y
=∫

Ωx

(Rn
p
(x))2 dx

β
y
=∫

Ωx

Rn
p
(x) .

d2 Rn
p
(x)

dx2 dx

γ i
y
=∫

Ωx

Rn
p
(x).λ i F i (x)dx

δi
y
=∫

Ωx

Rn
p
(x). λi

d 2 F i(x)

dx2 dx

ξ
y
=∫

Ωx

Rn
p
(x) . f dx

(3.20)

The above values are computed and substituted in the equation (3.19) which
becomes

13

−∫
Ωy

S n
* .(α y.

d 2 S n
p

dy2 +β y. S n
p
)dy

=∫
Ωy

S n
* .∑

i=1

n−1

(γi
y. d 2Gi

dy2 +δ i
y Gi)dy + ∫

Ωy

Sn
* .ξy dy

(3.21)

The above is the weighted residual form of the one-dimensional problem
defined over the domain Ωy . The corresponding strong formulation (3.21) of
the above can be returned to the following

−(α y.

d 2 S n
p

dy2 +βy. S n
p
)dy = ∑

i=1

n−1

(γi
y. d2 Gi

dy2 +δi
y Gi)dy + ξ

y dy
(3.22)

As it can be seen, once again a ordinary differential equation is obtained. Thus,
the two-dimensional Poisson equation is converted into two one-dimensional
ordinary differential equations thus making it computationally cheaper. And
also, this is the major advantage of the PGD method. It would convert any
dimensional problem into the corresponding number of one – dimensional
problems. This is the reason, for the with the PGD method the computational
cost increase linearly with the increase in the number of dimensions unlike the
conventional methods wherein increase in the number of dimensions increase
the computational cost exponentially.

The properties of the PGD are studied for the present case with the help of an
example. The Poisson equation is considered with the source term f which is set
to the value one ,with a two dimensional domain Ω=Ωx×Ω y = (-1,1) x (-1,1).
This case is tested with many different step sizes, tolerances, initial
approximations to study the method. The two tolerances that are defined in the
method are the following :

Iteration Tolerance : This is the tolerance that is defined for the iterative step.
The ϵ defined in the equation 3.7

Enrichment Tolerance : This is the tolerance that is defined for the enrichment
step. The criteria that is considered for this tolerance is computed by residual Re.

Re=√(∫
Ω

(Δu+ f)2)<ϵn (3.23)

If the above condition is satisfied the enrichment process itself stops and yields a
solution. The way the enrichment tolerance is implemented is explained in more
detail in the section 3.5 of this chapter.

14

3.2.1 Results and Analysis

The method is implemented for the simple case where the source term is
constant following the procedure defined. Many tests are performed by varying
the input parameters such as tolerances ,step size (mesh size) , initial
approximation to study the method. The tests of few cases are illustrated below.
Some of the plots that lead to the analysis are shown as and when required.

The solution obtained for the case where f =1 and for the following input
parameter

Iteration Tolerance ϵ=10−6

Enrichment Tolerance ϵn=10−3

Step size in the x hx=0.04
 Step size in the y h y=0.04

Note : Initial approximation is assumed to be one at all the nodal points for all
the cases

fig:3.1 Solution when f=1

15

 F1(x)

 G1(y)

 G1(y)

 F2(x)

 G2(y)

 F3(x)

 G3(y)

fig 3.2: x and y basis functions at each enrichment step

16

The final solution obtained in the PGD is method as discussed earlier is the sum
of the product of the x & y functions obtained at each enrichment steps. The
above are the x & y modes of the above case.

The following table shows the values obtained at each enrichment step

Enrichment
Step (i)

Number of
iterations
taken (p)

Iteration
tolerance
reached

Enrichment
tolerance
reached

Lamba λ i

1 5 5.845139e-09 - 3.293934e-01

2 7 2.115641e-07 8.975210e-03 2.956375e-03

3 11 4.106346e-07 5.150767e-04 1.696628e-04

Table 3.1 : Parameters obtained at each enrichment step

The following are some of the key points that can be noted from the tests

1. It can be observed that the enrichment tolerance decrease with each step ,
which means that the method is going to converge.

2. The number of iterations taken per each enrichment step increases. This
can be explained with the help of the plots. It can be seen from the plots that the
frequency of each mode for both x and y functions increase as the enrichment
step progresses.

3. The coefficient λ i decreases with the increase in the enrichment step.

3.3 Implementation for Non-constant Source Term

In the present section, the implementation of the PGD method is extended when
the source term f is a non-constant source term is discussed. [2],[4]

f (x , y)=∑
j=1

Κ

F j
x
(x). F j

y
(y) (3.24)

For instance, consider the function x2
− y2 , it can be written in the form of

f (x , y)=∑
j=1

2

F j
x (x). F j

y (y) where ,

17

 F 1
x
(x)= x2 , F 2

x
(x)=−1 , F 1

y
(y)=1 , F 2

y
(y)= y2

Thus, most of the functions can be written in this separated form. Even in this
case, the alternate direction strategy is used to solve for the functions at each
enrichment step. The Poisson equation with non constant source term f (written
as 3.24) in a two- dimensional rectangular domain with homogeneous Dirichlet
Boundary conditions for the unknown field u(x,y) , which vanishes at the
domain boundary Γ is considered. With a test function u* , the weighted
residual is in the following way

∫
Ωx×Ωy

u* .(Δ u+∑
j=1

Κ

F j
x(x) . F j

y(y))dx .dy
(3.25)

As discussed in the section 3.2, Rn
p
(x) is computed from S n

p−1
(y) . The

PGD approximation is as follows (similar to (3.6)).

un , p
(x , y)=∑

i=1

n−1

λi F i(x) .G i(y)+Rn
p
(x) . S n

p−1
(y) (3.26)

In the above, all the functions are unknown except Rn
p
(x) . The choice of the

weight function that is made is

u*
(x , y)=Rn

*
(x) . S n

p−1
(y) , (3.27)

which is the Galerkin weighted residual formulation.

Now, substituting (3.26), (3.27) into the (3.28) , the following is obtained. For
simplification purpose , Rn

p
(x) is written as Rn

p , F i(x) is written as
F i , Rn

*
(x) as Rn

* and similarly for the y functions.

− ∫
Ωx×Ωy

Rn
* . Sn

p−1 .(
d 2 Rn

p

dx2 . S n
p−1

+Rn
p d 2 S n

p−1

dy2)dx . dy

= ∫
Ωx×Ωy

Rn
* . Sn

p−1 .∑
i=1

n−1

λ i(
d 2 F i

dx2 .G i+F i

d 2 Gi

dy2)dx . dy

+ ∫
Ωx×Ωy

Rn
* . S n

p−1∑
j=1

Κ

F j
x
(x) . F j

y
(y)dx . dy

(3.28)

Just like in the case of constant source term (section 3.2), each term of the
integral can be split separately under Ωx and Ωy .Then the above equation
becomes

18

−∫
Ωx

Rn
* .(αx.

d 2 Rn
p

dx2 +βx. Rn
p
)dx

=∫
Ωx

Rn
* .∑

i=1

n−1

(γi
x. d 2 F i

dx2 +δ i
x F i)dx + ∫

Ωx

Rn
* .(∑

j=1

Κ

ξ j
x . F j

x
(x))dx

(3.29)

where the coefficients are the following

{
α

x
=∫

Ωy

(S n
p−1

(y))2 dy

β
x
=∫

Ωy

Sn
p−1

(y) .
d2 Sn

p−1
(y)

dy2 dy

γ i
x
=∫

Ωy

S n
p−1

(y) .λi Gi(y)dy

δi
x
=∫

Ωy

S n
p−1

(y) .λi

d 2G i(y)

dy2 dy

ξ j
x
=∫

Ωy

S n
p−1

(y) . F j
y dy

(3.30)

It can be seen that the coefficients are all functions of y which are all known.
Thus, it can be solved either using ODE technique (like in the section 3.2) or by
the finite element method which is explained in the section to obtain the

Rn
p
(x) .

The same procedure is followed even for the next step , except for a slight
change in the PGD approximation described in the equation 3.27. Now, the PGD
approximation is the following

un , p(x , y)=∑
i=1

n−1

λi F i(x) .G i(y)+Rn
p(x) . S n

p(y) (3.31)

In the above approximate all the terms except S n
p
(y) is known. The choice of

the weight function in this case is made accordingly.

u*
(x , y)=Rn

p
(x) . S n

*
(y)

(3.32)

Now , again substituting (3.17) , (3.18) in (3.10), the following equation is
obtained.

19

− ∫
Ωx×Ωy

Rn
p . S n

* .(
d 2 Rn

p

dx2 . S n
p
+Rn

p d2 Sn
p

dy2)dx .dy

= ∫
Ωx×Ωy

Rn
p . S n

* .∑
i=1

n−1

λi(
d 2 F i

dx2 .Gi+F i

d2 Gi

dy2)dx .dy

+ ∫
Ωx×Ωy

Rn
p . S n

* .∑
j=1

Κ

F j
x
(x) . F j

y
(y)dx .dy

(3.33)

Note that the functions are either solely dependent on x or solely dependent on y.
This makes the integral to be split separately into the Ωx and Ωy And all
the functions of x are known and the integrals of them over Ωx can be
computed

{
α

y
=∫

Ωx

(Rn
p
(x))2 dx

β
y
=∫

Ωx

Rn
p
(x) .

d2 Rn
p
(x)

dx2 dx

γ i
y
=∫

Ωx

Rn
p
(x).λ i F i (x)dx

δi
y
=∫

Ωx

Rn
p
(x). λi

d 2 F i(x)

dx2 dx

ξ j
y
=∫

Ωx

Rn
p
(x) . F j

x
(x)dx

(3.34)

The above values are computed and substituted in the equation (3.19) after
which it becomes

−∫
Ωy

S n
* . (α y.

d 2 Sn
p

dy2 +βy. S n
p
)dy

=∫
Ωy

S n
* .∑

i=1

n−1

(γi
y. d 2Gi

dy2 +δ i
y Gi)dy + ∫

Ωy

Sn
* .(∑

j=1

Κ

ξ j
y. F j

y
(y))dy

(3.35)

Thus, the two-dimensional Poisson equation is reduced to two one-dimensional
equations which can be solved by using finite element methods.

20

3.3.1 Numerical Results

The numerical results of the few of the cases are discussed.

Case 1 :The first test case is defined in the domain Ω = (-1,1) x (-1,1), with
the source term f (x , y)=cos(2 π x)sin(2π y) . The solution took 2 iterations
to reach the enrichment tolerance of 10−6 . The solution consists of two
functions in the x-coordinate and other two functions in the y-coordinate. The
modes which are the normalized functions along with the solution are
represented in the following figures. The λ values obtained are
λ1=1.14×10−2 ;λ2=9.74×10−16 .

fig 3.3: Modes of the case 1(F1(x), G1(x),F2(x),G2(y))

21

The following is the corresponding computed solution.

fig 3.4: Computed solution of the case 1

Case 2 :The second test case is defined in the domain Ω = (-1,1) x (-1,1),
with the source term f (x , y)=x 2

− y2 . The solution takes 10 iterations to
converge to the tolerance of 10−5 . The modes which are the normalized
functions along with the solution are represented in the following figures.

 fig 3.5: Computed solution of the case 2

22

The corresponding plots of the basis functions at each enrichment step are:

23

 fig 3.6: Modes of the case 2

24

Case 3 :The third test case is defined in the domain Ω = (-1,1) x (-1,1), with
the source term f (x , y)=2x2

+ x+ y 2
−0.2y+3xy . The solution takes 39

iterations to converge to the enrichment tolerance of 10−5 .The first 9
normalized functions along with the computed solution are presented in the
following figures

25

fig 3.7: First 9 Modes of the case 3

26

 fig 3.8: Computed solution of the case3

Case 4 :The fourth test case is defined in the domain Ω = (-1,1) x (-1,1), with
the source term f (x , y)=2(2−x2

− y2
) . The solution takes 3 iterations to

converge to the tolerance of 10−5 . The normalized functions along with the
computed solution are presented in the following figures

 fig 3.9: Computed solution of the case 4

27

fig:3.10 Modes of case 4

3.4 Implementation for Diffusion Term

Now, the PGD method is further extended to the equation 3.2 with a diffusion
coefficient k. The equation would then look like the following

−∇ .(k ∇ u)= f (x , y) (3.36)

in the two dimensional rectangular domain Ω=Ωx×Ω y . The PGD
approximate solution is obtained in the same separated form as previous

un
(x , y)=∑

i=1

n

λ i F i (x)G i(y)

28

For the sake of simplicity, like in the case of non-constant source term, the
diffusion term is written in the following separated way

k=k x (x) . k y (y) (3.37)

The idea here is to split the integrals of the domain into x & y like in the
previous cases. The Poisson equation with non constant source term f (written as
3.24) and with a diffusion coefficient in a two- dimensional rectangular domain
with homogeneous Dirichlet Boundary conditions for the unknown field u(x,y) ,
which vanishes at the domain boundary Γ is considered. With a test function

u* , the weighted residual is in the following way

∫
Ωx×Ωy

u* .(∇ .(k ∇ u)+∑
j=1

Κ

F j
x
(x) . F j

y
(y))dx .dy

(3.38)

As discussed in the section 3.2, Rn
p
(x) is computed from S n

p−1
(y) . The

PGD approximation is as follows (similar to (3.6)).

un , p
(x , y)=∑

i=1

n−1

λi F i(x) .G i(y)+Rn
p
(x) . S n

p−1
(y) (3.39)

In the above, all the functions are unknown except Rn
p
(x) . The choice of the

weight function that is made is

u*
(x , y)=Rn

*
(x) . S n

p−1
(y) ,

(3.40)

which is the Galerkin weighted residual formulation. Now, substituting (3.40),
(3.39) into the (3.38) , the following is obtained. Note that k x (x) is written as

k x and k y (y) as k y for the sake of simplicity.

∫
Ω x

(
dRn

*

dx
dRn

p

dx
k xα

x
+Rn

* Rn
p k xβ

x
)dx

=−∫
Ωx

∑
i=1

n−1

λi(
dRn*

dx

dF i

dx
k x γi

x
+Rn

* F i k xδx) . dx+∫
Ω x

Rn
*∑

j=1

Κ

ξ j
x F j(x) . dx

(3.41)

Like in the previous sections, the integral is split into corresponding x , y
domains. In the above equation the constants are given by

29

{
α x=∫

Ωy

k y (y)(S n
p−1(y))2 dy

βx=∫
Ωy

k y (y)
d 2 S n

p−1
(y)

dy2 dy

γ i
x
=∫

Ωy

k y (y)S n
p−1

(y) .λi G i(y)dy

δi
x
=∫

Ωy

k y (y) .
dS n

p−1
(y)

dy
.λi

d G i(y)
dy

dy

ξ j
x
=∫

Ωy

S n
p−1

(y). F j
y dy

(3.42)

The equation 3.41 is solved using 1-D finite elements. (Discussed in chapter 2)
The following are computed using the finite elements. The numerical tests that
are done using the diffusion term are discussed in chapter 5

3.5 Convergence Criteria

The convergence criteria for the enrichment step is already discussed in the

section 3.2 , which is the Re=√(∫
Ω

(Δu+ f)2)<ϵn (3.23). But computation of

the residual (Re) at each step is computationally expensive. So, in order to
decrease the computational cost the following criteria is implemented.[2]

λn+1

max(λ1,. ..λn)
<ϵn (3.43)

It is checked that the order of the tolerance obtained by calculation of the
residual and above equation (3.43) are the same. From the numerical tests
presented (in this section 3.2.1 & 3.3.1), it can be observed that the way value of
coefficient λn is decayed as the steps are progressed. Also it is observed that
the magnitude of the λ and the enrichment tolerance (table 3.1) are the same
after each enrichment step . Thus, in implementation the (3.43) is used as
convergence criteria as it is computationally much cheaper than to compute the
residual at each step . The following are the plots which show the decay of the
coefficient λ over the iterations with the value of the residual calculated as
per (3.23)

30

 case 3 case 2

 fig 3.11 Decay of the coefficient and residual

Since the decay shows the same behavior and the order of the magnitude of the
residual (3.23) and the criteria shown in (3.43) is the same, the latter is used in
the implementation as it is computationally much economical.

31

Chapter 4

 The PGD method for preconditioning

This chapter describes the idea and the implementation of the based
preconditioner for the scaler elliptic problems. In the present thesis, scaler
elliptic boundary value problems are considered. The problem is discretized by
employing Galerkin Finite Elements, which generate the linear system of
equations. The linear system is solved using an iterative method and a suitable
preconditioner is employed to improve the convergence properties of the
method. The PGD method is used to characterize the preconditioner. The
algebraic residual is computed, from which the residual finite elements function
is defined. For this, the PGD procedure is applied to compute the solution of the
¨Preconditioning Problem¨.

4.1 Preconditioning

The basic problem with many iterative schemes compared to the direct solvers is
the lack of robustness. While some of the iterative methods which are well
founded in the theory suffer from slow convergence. Both the convergence
properties and the robustness can be improved by using the preconditioning.
Preconditioning is a procedure of an application of a transformation, called the
preconditioner, that conditions a given problem into a form that is more suitable
for numerical solution. Further, the preconditioned problem is solved using a
iterative scheme. [5]. Let the preconditioner be Cn, .The preconditioned Cn needs
to be chosen in such that

Cn
−1 Ax=Cn

−1 b (4.1)

 In general a good preconditioner satisfies the following three conditions.

1. The computation of Cn is fast and computationally cheap.
2. Let the preconditioned residual be zn, then the computation of Cn zn be
easy and computationally as effective as possible
3. The spectrum of Cn

−1 A is much better clustered. This would lead to a

32

faster convergence.

Note that, Cn is associated to a symmetric, continuous and coercive problem if
the original problem (here A) itself is a symmetric continuous and coercive.
Thus, it can be used in the framework of much more effective iterative methods
such as preconditioned Conjugate Gradient (PCG) method.

4.2 Preconditioned Conjugate Gradient Method

The Conjugate Gradient (CG) method works for works very well on matrices
that are well-conditioned. However, in real applications, most matrices are
ill-conditioned, reducing the efficiency of the method. So, the Preconditioned
Conjugate Gradient (PCG) is method which can be used for ill-conditioned
matrices also effectively. The PCG method is one of the most effective tools for
solving the large sparse symmetric positive- definite systems.

The PCG algorithm, applied to the system Ax = b, starts with an initial guess of
the solution x0 , with an initial residual r0 , and with an initial search direction
that is equal to the initial residual: p0 = r0 . The idea behind the CG method is
that the residual rk = b − Axk is orthogonal to the Krylov subspace generated by
b, and therefore each residual is perpendicular to all the previous residuals. The
residual rn is computed at each step n. The solution of the next step is found
using a search direction that is only a linear combination of the previous search
directions and the current residual. One of the main property that distinguishes
CG algorithm from the other iterative methods is that the solution is reached in
at most n steps for the system Ax = b where A is an n x n symmetric positive
definite matrix. For, instance the following is the CG algorithm for a 2 x 2
matrix.

Fig: 4.1 CG algorithm for a 2 x 2 matrix

33

As discussed in section 4.1, preconditioning an important technique used to
develop an efficient CG method solver and help for the faster convergence of the
method.

The following shows the algorithm of the PCG

ALGORITHM 4.1

1. Compute r0 = b -Ax0 , z0 = C0
-1 r0 , and p0 = z0

2. For j = 0, 1............until the convergence Do
3. α̂ j=(r j , z j)/(Ap j , p j)

4. x j+1=x j+α̂ j p j

5. r j+1=r j−α̂ j A p j

6. z j+1=C j
−1 r j+1

7. β̂ j=(r j+1 , z j+1)/(r j , z j)

8. p j+1=z j+1+β̂ j p j

9. EndDo

Note that pj is the conjugate gradient directions , rj is the residual at each step, zj is the
preconditioned residual.[6]

4.3 The PGD as preconditioner for PCG

In this section, the way the PGD method is applied to compute the
preconditioner for the PCG is explained. Consider the following elliptic
boundary value problem

−Δu= f inΩ
u=0 on∂Ω

(4.1)

where Ω is an open bounded domain, Ω⊂ℝ
2 . The weak form of the problem

is given by u∈V such that

a (u , v)=l (v) ∀V (4.2)

where V=H 0
1
(Ω) , a(u , v)=∫

Ω

∇ u.∇ v dΩ is a continuous and coercive

bilinear form on V×V , and l (v)=∫
Ω

fv dΩ is a linear continuous

functional on V .

34

The weak problem (4.3) is well-posed. The weak form of the problem is
approximated to a discrete form using Galerkin Finite Elements, where

uh∈V h such that

a (uh , vh)=l (v h) ∀ vh∈V h (4.4)

where V h⊂V is a suitable finite dimensional space. The basis functions for
the space V h is introduced, {N i(x , y) }i=1,2,.... , N h

.In this case, a piecewise

polynomial functions defined on a quadrilateral mesh is defined. Now the
continuous problems produces a linear system of equations.

Au = b (4.5)

The above linear system is solved using an iterative method. A suitable
preconditioner is characterized to improve the convergence properties. In order
to explain the implementation for the sake of simplicity, preconditioned
Richardson method is used (in place of which PCG is employed later). The u0 ,
the initial value is approximated. For the n+1 th step the un+1 is computed in the
following way

un+1
=un

−Cn
−1
(Aun

−b) (4.6)

where Cn
 denotes a suitable preconditioner which changes at the each iteration to

improve the convergence properties. As explained in the section 4.1, the
preconditioner Cn

 the is best if is in a such a way that Cn
−1 A=I so that the

preconditioned residual zn that is computed at each step is as cheap as possible

Cn zn
=Aun

−b (4.7)

Now, in the present thesis, this preconditioner Cn is characterized using the PGD
method. The following are the steps involved.

1. COMPUTATION OF THE FINITE ELEMENTS RESIDUAL

As discussed earlier, say the approximate solution is un , of the algebraic
solution u is available at the step n. (where n⩾1). The algebraic residual is
given by

r n=Aun−b (rn∈ℝN h) (4.8)

The above step can be expressed in the variational terms as follows

35

∫
Ω

rh
n vh dΩ=a (uh

n , vh)−l (v h) ∀ vh∈V h

(4.9)

where r h
n
∈V h is the residual finite elements function. Indeed, the components

of the vector r h
n are defined as

r i
n
=∫

Ω

r h
n N i(x , y)dΩ ∀ i=1,2,..... , N h (4.10)

The idea here is to write the residual at each node of the finite element mesh that
is defined in 4.4. In this way the residual at all the elements is obtained.

Let M be the finite elements mass matrix, which is defined as follows at a nodal
coordinate (i, j)

M ij=∫
Ω

N i(x , y)N j(x , y)dΩ i , j=1,2,.... N h (4.11)

Then, the vector r̂ n is computed as the solution of the linear system (where M
is the corresponding mass matrix)

M r̂n
=r n (4.12)

This contains the nodal values of the residual finite elements function r h
n in

the nodes of the finite element grid and it can be written as

r h
n
(x , y)=∑

i=1

N h

r̂i
n N i(x , y) (4.13)

If ℚr elements are used, on the generic element Ωe of the computational
mesh, then it can be written as

r h
n
(x , y)Ωe

=∑
i=1

ne

r̂i
n N i

loc
(x)N i

loc
(y) (4.14)

2. PROJECTION OF THE RESIDUAL ON THE PGD MESH

In the first step, the residual is obtained at each nodal point of the mesh. Now
even the PGD method has a mesh defined. Note that the domain Ω is same
for the both. The residual of the finite element mesh has to be projected onto the
PGD mesh by using appropriate extrapolation technique. Note that in the present
implementation the mesh used for the FEM and PGD is the same. So there is no

36

need for this step.

3. PRECONDITIONING

After r h

n is obtained, which is the residual at each of the points in the PGD
mesh. Note, in the present case it comes from the step 1. Now the PGD is
procedure is applied as described in the chapter 3 to compute the solution of the
following “preconditioned problem”.

−Δ z PGD , m
n

=rh
n inΩ

z PGD , m
n

=0 on∂Ω
(4.15)

In the weak form :

∫
Ω

∇ z PGD , m
n .∇ vPGD dΩ=∫

Ω

r h
n v PGD dΩ ∀ v PGD∈V PGD (4.16)

where n denotes the number of basis functions (or the enrichment steps) that can
be fixed a-priori and that can vary at each iteration n of the Richardson method
(4.6). V PGD is the space which is

V PGD=span {F x
1
(x)F y

1
(y) ,.... , F x

m
(x)F y

m
(y)} (4.17)

where F x
i
(x) and F y

i
(y) (i=1,. .. , m) are the PGD basis functions that

are computed using the procedure illustrated in the chapter 3. The number of
basis functions that are needed to be computed has to be decided. This is
discussed in the next section

4. PROJECTION OF PRECONDITIONED RESIDUAL ON THE FE SPACE

The function z PGD , m
n belongs to V PGD and it is defined in Ω .It represents

the preconditioned residual function in the space V PGD . To obtain the

preconditioned residual in the finite element space V h , function z PGD , m
n

needs to be reflected back using appropriate interpolation function. More
precisely, this can be defined as follows

zh
n
∈V h zh

n
= I h z PGD , m

n (4.18)

where Ih is the interpolation operator such that

zh
n
(x i)=z PGD , m

n
(x i) ∀ x i node of the finite element mesh (4.19)

Finally , zn
∈ℝ

N h be the vector of the nodal values of zh
n . Note, in the

37

present case since the mesh of the PGD and the FEM is the same this step is
skipped as in this case zh

n
=z PGD , m

n .

5. UPDATING THE SOLUTION

The final step involves updating the solution with the preconditioned residual
obtained. This is computed in the following way

un+1
=un

−zn (4.20)

Computing the preconditioned residual or, equivalently, applying the
preconditioner Cn in (4.7) corresponds to the step 3 of the procedure described
above. To highlight the dependence on the PGD procedure and on the number of
basis functions that one should compute, this is written as Cn ,m . In the next
section the number of basis functions that need to be considered is discussed.

4.4 The Basis Functions of the PGD

The solution from the PGD method is in the form (3.9) ∑
i=1

n

λi F i(x)G i(y)

where n is the number of basis functions or the enrichment steps. The tolerance
that can be reached depends upon the number of basis functions that are
considered. Also the PGD error is a function of number of grid points for
different number of basis functions. Numerical tests are conducted to reach the
optimal number of basis functions. [2] . The tests are performed with different
number of grid points and by varying the number of basis functions. This is done
to optimize and get an idea of the behavior with different basis functions. There
is need to optimize because as the number of basis functions are increased the
computational cost increase, while on the other hand if the basis functions are
too less the tolerance that can be reached is limited. To strike a balance between
them and to come to a conclusion regarding the effect of tolerance reached the
following tests are performed.The tests illustrated below, for different number
of grid points (say it is N x) and the number of grid points in they direction

N y , each with different set of base functions. The flags in the table denote
the following
0 PCG converged to the desired tolerance TOL (tolerance) within MAXIT
(maximum number of)iterations
1 PCG iterated MAXIT times but did not converge.
2 preconditioner M was ill-conditioned.
3 PCG stagnated (two consecutive iterates were the same).
 4 one of the scalar quantities calculated during PCG became too small or too
large to continue computing.

38

Note in the present case the desired tolerance is taken as 10−8 and the
maximum number of iterations is 250.

For the source function f (x , y)=2x2
+ x+ y 2

−0.2y+3xy following are the
plots for different grid values.

For N x = N y = 20

fig 4.2 log(residual) vs number of iterations for grid points in x and y 20x20

Number of basis
functions (Nmax)

Number of iteration
taken

Flag

5 250 1

10 70 0

12 43 0

Table 4.1 Number of iterations taken for the basis functions for 20x20

It can be seen from the plot and the table that if the number of basis functions is
limited to 5, the method doesn't converge. After reaching the tolerance of

39

10−4 the residual doesn't decrease even with the increase in the number of
iterations. It can be concluded that the contribution from the basis functions is
limited with the number of basis functions.

An another case is considered where the source term is
f (x , y)=2(2−x2

− y2
)

For N x = N y = 40 the following is the plot with different number of basis
functions

fig 4.3 log(residual) vs number of iterations for grid points in x and y 40x40

Number of basis
functions (Nmax)

Number of
iteration taken

Flag

5 85 0

10 17 0

12 17 0

 Table 4.2 Number of iterations taken for the basis functions for grid points 40x40

It can be seen in the plot that for the maximum basis functions 10 and 12 the

40

convergence shows the same behavior (the plots coincide), whereas when
N max is 5, the convergence flattens and thus takes more number of iterations,

although the desired tolerance is reached.
For the same source term and increasing the number of grid points to 80,
following is the plot obtained between residual vector and number of iterations.

 fig 4.4 log(residual) vs number of iterations for grid points in x and y 80x80

Number of basis
functions (Nmax)

Number of
iteration taken

Flag

5 250 1

10 31 0

12 31 0

Table 4.3 Number of iterations taken for the basis functions for grid points 80x80

Just like the previous plot, the convergence behavior for N max equals 10 and
12 is the same. But it can be seen that for N max equal to 5, the convergence is

41

not reached even after reaching the maximum number of iterations. It can be
also noted that the n number of iterations taken to reach the convergence has
increased when there is an increase in the grid points.

4.4.1 Conclusions

The following conclusions can be drawn from the tests conducted with varying
the number of basis functions or enrichment steps in the PGD and the grid points
used.

1. The number of iterations taken increase with the increase in number of the
grid points. This is expected as the number of grid points are increased the
computations and iterations required has to be increased for the same tolerance.

2. There is a limitation on the tolerance reached for a fixed number of basis
functions. For a lower tolerances, the number of basis functions that need to be
used should be increased. This can be explained with the behavior of the PGD
method. In the PGD method, the higher the mode, the frequency of the plot is
increased. (Section 3.3.1 illustrated in all the cases). Thus, for smaller errors the
number of modes or the basis functions that should be considered ought to be
increased.

3. If the number of basis functions that are considered are too low, for certain
accuracy the tolerance is reached at a very slow pace. It can be seen in the above
cases when N max is taken as 5.

4. As the number of basis functions are increased the convergence is faster and
faster. Like for instance when N max is 5 and 10, the difference in convergence
rate is substantial.

5. In order to draw a balance between the computational cost and efficiency the
maximum number of basis functions that need to taken should be restricted. In
the present case, for instance, the difference between the case when N max

equals 10 and 12 is not much for the tolerance of 10−8 . And therefore in all
the computations in later chapter the N max is restricted to 10.

42

Chapter 5

Numerical Tests

In this chapter the tests and results of the various test cases are presented.
Further, the convergence plots are presented with and without preconditioner
for comparison

5.1 Tests and Results

The numerical tests for various cases using the PCG method with the PGD
preconditioner algorithm that is developed in the thesis are carried out. The
results for different cases are compared with the PCG method without the
preconditioner, PCG method with the PGD preconditioner and the PGD method
(latter two are developed as part of the thesis). All the tests are conducted for the
a tolerance of 10−8 and for different mesh sizes

5.1.1 With Constant Source Term

The following is the case where the source term is constant

Case 1: f =1

Method Number of iteration taken for different mesh sizes

20x20 40x40 80x80

PCG without
preconditioner

25 52 105

PCG with the PGD
preconditioner

22 31 43

 Table 5.1 Number of iterations taken for constant source term

43

5.1.2 With Non -Constant Source Term

The following are the cases when source term is non-constant Source Term

Source Term Method Number of iterations Taken

20x20 40x40 80x80

f (x , y)=cos(2 π x)sin(2π y)

PCG without
preconditioner

10 20 40

PCG with the
PGD

preconditioner

10 13 13

f (x , y)=x 2
− y2

PCG without
preconditioner

17 36 72

PCG with the
PGD

preconditioner

16 20 31

f (x , y)=2x2
+ x+ y 2

−0.2y+3xy

PCG without
preconditioner

43 43 176

PCG with the
PGD

preconditioner

42 42 150

f (x , y)=2(2−x2
− y2

)

PCG without
preconditioner

23 23 92

PCG with the
PGD

preconditioner

17 17 23

 Table 5.2 Number of iterations taken for Non constant source term

44

5.1.3 With Diffusion Term

The following are the cases when source term is kept constant (in the present
case f = 1) and diffusion term is varied.

Diffusion Term Method Number of iterations Taken

20x20 40x40 80x80

K =0.01

PCG without
preconditioner

25 52 105

PCG with the PGD
preconditioner

22 23 43

K =0.001

PCG without
preconditioner

25 52 105

PCG with the PGD
preconditioner

22 23 43

 Table 5.3 Number of iterations taken with Diffusion term

5.2 Convergence Behavior

The following are the convergence plots of for various cases. The semi
logarithmic plots are between the residual vector and number of iterations.
Basically the comparison here is made between PCG with and without the
preconditioner. These plots give an idea about the way the convergence is
obtained. Depending upon the way the convergence is obtained in the with
respect to the number of iterations the behavior of the method can be concluded.

The same cases that are taken in the section 3 & section 4 are considered here.

45

 Fig 5.1 Convergence plot for Source Term f=1

 Fig 5.2 Convergence Plot for Source Term f=cos(2pix)sin(2piy)

46

 Fig 5.3 Convergence plot Source Term f=x2-y2

 Fig 5.4 Convergence plot Source Term f=2(2-x2-y2)

The conclusions from the tables and plots are discussed in the next chapter.

47

Chapter 6

Conclusions and Outlook

In this chapter ,the conclusions from the numerical tests and the outlook of the
work is are presented.

6.1 Conclusions

The prime objective of the current work is to study and the implementation of
the PGD method and further use it to determine the preconditioner to solve the
system of equations that are generated from Finite Element Method.
Particularly, the method is applied for scaler elliptic problems. In this regard, all
the concerned coding is done in MATLAB and the results are cross checked by
using Finite Element Method (Direct method to solve the equations).

Initially, the PGD method is implemented. In the chapter 3, the effect of varying
parameters such as enrichment tolerance, iterative tolerance, mesh size, initial
value (value that is assumed at the start of the enrichment process) are presented.
In the 4th chapter, the effect of change in the number of basis functions on the
tolerances reached, convergence rate pertaining to that are studied. Finally, for
the PGD conditioner the following conclusions can be made from the Numerical
tests.

It can be seen from all the tables that the number of iterations taken when the
PGD preconditioner is used in comparison with the method when the
preconditioner is not used are much lesser. In addition, in all the cases the
convergence plot of the method when the PGD preconditioner is used is much
steeper than the one without the preconditioner. The idea of the thesis is to take
the advantages of both the methods. It is known, that the Finite Element method
being one of the robust method and it can be used for any kind of problem. On
the other hand, the PGD method is very fast, but the limitation of it being not
applicable to few problems. For instance, with a source term or a diffusion term
where they cannot be written in a separated form, the PGD is difficult to

48

implement.

As the grid points are increased the number of iterations taken by the PCG
without preconditioner is much greater than with the PGD preconditioner. Thus,
for a finer and greater accuracy the latter is better.

In case of the diffusion term, the method is robust even with the change in the
coefficient.

On a general note, it can be inferred that coupling the FEM and the PGD
methods give results in lesser number of computations than the conventional
methods .

6.2 Outlook

In this section few of the possibilities of future work in this line of research are
outlined

1. It is observed that, as the mesh size is increased ,the number of iterations
that are taken are increased. In the present implementation, the mesh size for the
Finite elements and the PGD are taken the same. As discussed earlier (section
4.3) the steps involving the projection of the Finite Element residual on to
the PGD mesh and after computing the preconditioned residual, projecting
back them on to the Finite Element mesh are eliminated (3rd and 5th steps
discussed in the implementation in the section 4.3). By using a coarser mesh for
the PGD and including these projection stages the computational cost can be
further decreased and also the convergence can be faster. (multi grid
implementation)

2. The second possibility would be development of other method instead of
Alternate Direction Strategy (section 3.2) for iterations. For instance , Newton
method can be used which is faster and takes less iterations. This is discussed in
the paper [2].

3. The presented method can be tested with other existing preconditioning
techniques.

4. The method can be tested for cases where in the source term and
diffusion terms are discontinuous

49

Bibliography

[1] Zienkiewicz , O. C. , 1987. The Finite Element Method: Basic
Formulation and Linear Problems (6th ed.) .Oxford, UK : Butterworth-
Heinemann.

[2] Chinesta, Francisco, Keunings, Roland, Leygue, Adrien. ,2014 .The
Proper Generalized Decomposition for Advanced Numerical Simulations.
SpringerBriefs in Applied Sciences and Technology

[3] D. Gonzalez, A. Ammar, F. Chinesta, E. Cueto, Recent advances in the
use of separated representations. Int. J. Numer. Meth. Eng. 81/5, 637–659
(2010)

[4] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings. A new family of
solvers for some classes of multidimensional partial differential equations
encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian
Fluid Mech., 139:153–176, 2006.

[5] Axelsson, Owe (1996). Iterative Solution Methods. Cambridge
University Press. p. 6722.

[6] Saad, Y (1996). Iterative Methods for Sparse Linear Systems, WPS .

[7] Jean Donea, Antonio Huerta, .(2003) Finite Element Methods for Flow
Problems, John Wiley & Sons

[8] Fabien Poulhaon , Francisco Chinesta & Adrien Leygue (2012) A first
step toward a PGD-based time parallelisation strategy, European Journal of
Computational Mechanics/ Revue Européenne de Mécanique Numérique,
21:3-6, 300-311

[9] D. Ryckelynck, F. Chinesta, E. Cueto, A. Ammar (2006) On the a priori
Model Reduction: Overview and Recent Developments, Arch. Comput. Meth.
Engng. Vol. 13, 1, 91-128 (2006)

[10] Amine Ammar , Etienne Pruliere , Julien Férec , Francisco Chinesta &
Elias Cueto (2009) Coupling finite elements and reduced approximation bases,
European Journal of Computational Mechanics/Revue Européenne de

Mécanique Numérique, 18:5-6, 445-463

50

http://www.springer.com/series/8884

