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Abstract

A stabilized Discontinuous Galerkin (DG) formulation has been proposed

for Convection Diffusion Reaction (CDR) equations using high order ap-

proximations. Let Ω be a bounded polygonal domain in Rd with boundary

∂Ω, the strong form of the CDR boundary value problem is the following:

Lu := −k∆u+ a · ∇u+ su = f inΩ,

u = 0 on ∂Ω

using Discontinuous Galerkin (DG) interpolation for the unknown u. Here

it is considered that the diffusion coefficient k > 0, the convection velocity

a ∈ Rd, and reaction coefficient s ≥ 0 are all constant.

Our objective is two-fold. Firstly, we derive the discontinuous Galerkin ap-

proximation from a hybrid form of the problem and, secondly, we motivate

the introduction of additional stabilization terms based on the variational

multiscale framework.

Let Th = {K} be a regular finite element partition of Ω. The hybrid formu-

lation from which we start consists of finding uh, its traces on the element

edges γh, and its fluxes on the element boundaries λh such that∑
K

BK (uh, vh)−
∑
K

〈λh, vh〉∂K =
∑
K

LK (vh),∑
K

〈κh, λh〉∂K = 0,∑
K

〈µh, γh − uh〉∂K = 0

for all test functions vh, κh, andµh in the appropriate finite element spaces.

BK and LK are the bilinear and linear form associated to the variational

formulation of the problem defined within each element. This hybrid formu-

lation would require compatibility conditions between these spaces, which



could be written in the form of inf-sup conditions. However, instead of inter-

polating the traces and the fluxes, they have been determined using Taylor

expansions to approximate the fluxes and then imposing continuity of the

unknown to compute the traces. The final result is a problem posed only

in terms of the unknown uh defined in the interior of the element domains.

The resulting discontinuous Galerkin formulation turns out to be very clas-

sical. Weak continuity of uh across elements is enforced through an interior

penalty method, which appears in a natural way, whereas terms that en-

sure adjoint consistency in the purely diffusive case arise naturally, without

the need to introduce them in an ad-hoc manner. The only aspect that

differs from classical approaches is the term that enforces continuity in the

direction of a when k → 0. The final method we propose is∑
K

BK (uh, vh) +
k

δ

∑
E

〈[[nuh]], [[nvh]]〉E +
δ

2

∑
E

〈[[n · ∇vh]], [[n · auh]]〉E

−
∑
E

〈[[nuh]], k {∇vh}〉E −
∑
E

〈[[nvh]], k {∇uh}〉E =
∑
K

LK (vh)

where [[·]] and {·} are the jump and the average operators defined on the

edges E, respectively, and δ is the so-called penalty parameter which is

proportional to the mesh size h whose interpretation have been provided.

The symbol 〈f, g〉ω has been used to denote the integral of fg in a region

ω.

Some simple numerical examples have been carried out using the developed

DG formulation in the case of convection-dominated CDR problem which

have been compared to the Continuous Galerkin (CG) results obtained for

the same problem. It has been shown that the results obtained using the

DG method are strongly dependent on the penalty parameter δ. Suppose

δ = αh, if α→ 0, the formulation will enforce strongly the continuity when

k is fixed. For critical values of penalty parameter when α → αc (with an

interpretation of αc = 0.5) excessive continuity in the direction of a will

be enforced when k → 0. This already anticipates that the same stability

problems as for the continuous Galerkin approximation may be encountered

in these limit situations.



To overcome them, a possibility is to use the same stabilization strategy for

discontinuous interpolations as for continuous ones. The proposed stabilized

formulation can be motivated from the variational multiscale concept. If uh

is split into a resolvable component, still denoted uh, and an unresolvable

one, and the latter is approximated in terms of the former (for example

using a Fourier argument), the introduction of the stabilizing term∑
K

〈τ (a · ∇vh + k∆vh − svh) ,a · ∇uh − k∆uh + suh − f〉K

can be motivated, where τ is the stabilization parameter that appears also in

classical stabilized finite element methods. From several numerical examples

the benefits of adding stabilization to the original discontinuous Galerkin

formulation have been shown. Without this term, the solution exhibits a

strong dependence on the parameter α that enforces weak continuity of the

unknown. Adding the stabilization term the solution is virtually insensitive

to this parameter. From the analytical point of view, these results are

explained by the dependence of the stability and convergence bounds on α,

which explode as continuity of the unknown is excessively enforced and no

additional stabilization is added.
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1

Introduction

1.1 Problem statement

In this work finite element approximation of the Convection-Diffusion-Reaction (CDR)

equation has been considered. Let Ω be a bounded polygonal domain in Rd, the strong

form of the CDR boundary value problem is the following:

Lu := −k∆u+ a · ∇u+ su = f inΩ,

u = 0 on ∂Ω
(1.1)

using Discontinuous Galerkin (DG) interpolation for the unknown u.

Here, the coefficient k > 0 is the (positive definite) and symmetric diffusion tensor,

a ∈ Rd the velocity field, and s ≥ 0 is the reaction coefficient, which are all considered

to be constant. Also, ∂Ω is the boundary on which Dirichlet boundary conditions are

imposed. In Chapter 4, an application-based combustion problem governed by tran-

sient nonlinear reaction-convection-diffusion equation has been introduced in which

more general boundaries including Neumann boundary conditions have been consid-

ered. Finally, it is assumed that the values of the coefficients a, k and s are such that

ensure wellposedness of 1.1.

1.2 State of the art

Convection-Diffusion-Reaction (CDR) equation models the transport and reaction of

particles inside a physical system. These types of problems occur in mathematical

modeling of wide range of applications such as heat and mass transfer, magneto-statics
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1. INTRODUCTION

and electro-statics, flow and transport in porous media problems related to petroleum

and ground water applications etc. In applications, typically the size of the diffusion

is much smaller than the size of the convective term i.e. the problem is convection-

dominated or in terms of mesh Peclet number when ((|a|h) /k) � 0. Despite the

apparent simplicity of the CDR equation, its numerical solution is still a challenge for

convection dominated problems. It is well-known that, in case of dominant convection,

conforming finite element methods perform poorly and usually globally polluted by

spurious oscillations causing a severe loss of accuracy and stability. In order to get

physically sound numerical approximations, stabilization strategies are required.

The word stabilization refers to all the extra terms added to the standard bilinear

formulation of CDR of its Galerkin discretization in such way that consistency is pre-

served and numerical stability is enhanced. Using some notations introduced in chapter

(2.1) and using the definitions provided in the same chapter for bilinear and linear forms

of the CDR problem, the stabilized formulation written based on the variational form

of the problem can be expressed as follows,

B (uh, vh) + S (uh, vh) = L (vh) (1.2)

where S (uh, vh) is the stabilization term.

Various techniques have been proposed for the stabilization of CDR equations.

Upwind techniques were introduced after the stabilization problem was identified as

lack of diffusion in discrete solution. The solution proposed by upwind techniques

consisted in adding numerical dissipation in the context of the finite difference method.

One of the major contributions to this development was made by Christie et al. (16),

who showed that using asymmetric test functions in a weighted residual finite element

formulation a stabilization in one-dimensional case can be achieved. They found out

the usual one-sided differences used for the convective term approximation in the finite

difference method by suitable selection of the test functions. Heinrich et al. in (17)

and Tababa in (18) developed two dimensional upwind finite element discretization

following which many other upwind finite element strategies were introduced. The

extra stabilization term introduced by upwind techniques to the original formulation is

inconsistent and too much of numerical diffusion is introduced in formulation implying

a loss of accuracy. Therefore the accuracy of the method is limited to first order

approximations. Another shortcoming in upwind methods according to Brooks et al.

2



1.2 State of the art

(13) is that non-consistent formulations can produce inaccurate or wrong solutions

in presence of significant source term or time derivative (in case of transient CDR

problem). Moreover, if the convection velocity a assumed to be skew directed in the

domain partition, an excessive artificial diffusion can be observed perpendicular to the

flow (crosswind diffusion).

Later on, a significant improvement was made by the method of Streamline Upwind

PetrovGalerkin (SUPG) developed by (11, 12, 13) which considerably eliminates many

difficulties that existed within the upwind method. Since the streamline diffusion added

to the standard formulation in SUPG is consistent, stability is obtained with higher

accuracy compared to upwind methods. In addition, SUPG introduces numerical dif-

fusion only along the streamlines and hence does not perform any spurious crosswind

diffusion. A generalization of SUPG was proposed for the Stokes problem in (15) which

showed the potential of extending the idea to various applications. The SUPG method

depends on a parameter called the stabilization parameter which is usually denoted by

τ . This parameter also appears in the method of Galerkin least squares (GLS) which

was introduced by Hughes et al. (14). They observed that the stabilization terms can

be obtained by minimizing the square of the equation residual. Also, Douglas-Wang

introduced their stabilization technique in (19) in the context of the Stokes problem

which similar to GLS and SUPG is dependent on τ .

These methods were related to the introduction of bubble functions in (20, 21, 22),

where it was shown that a choice of the bubble implies a choice of the stabilization

parameter. A bubble function is, by definition, a function whose support is contained

in a single element. For instance, in a two dimensional domain, increasing the order

of approximation from first order to second order could be interpreted as adding three

bubbles per element, that is, x2, y2, xy. The idea is based on the observation that

adding bubbles to the finite element space and cutting them out from the Galerkin

discretization is analogous to the addition of streamline diffusion to the standard for-

mulation for stabilization. In this case rather than looking for a suitable τ , the question

is how to define appropriate bubbles. The optimal bubble is given by the solution of a

local subproblem driven by the residual (23), and is therefore named residual free. In

1995, Hughes (24) showed that stabilized methods could be derived from a Variational

Multiscale (VMS) formulation. The key idea of the VMS method is based on a decom-

position of the solution of a system of equations into coarse scales (directly simulated)

3



1. INTRODUCTION

and fine scales (modeled or omitted in the numerical simulations). Then the effect of

the fine scales is included in the coarse-scales, ultimately generating a subgrid model

and/or stabilization term in the equations for the coarse scales. According to a com-

parison of different stabilization methods provided by R. Codina in (29), these methods

can be identified as algebraic subgrid scales with a stabilization term S (uh, vh) written

as follows,

S (uh, vh) = τ (R (uh) ,P (vh))Ω (1.3)

where τ is called the stabilization parameter. Also R (uh) is the residual of the problem

which using 1.1 can be written as,

R (uh) = L (uh)− f = −k∆uh + a · ∇uh + suh − f (1.4)

and P (vh) is an operator acting on the test functions which, according to (29), for

different methods is defined as follows,
P (vh) |SUPG = a · ∇vh
P (vh) |GLS = a · ∇vh − k∆vh + svh

P (vh) |VMS = a · ∇vh + k∆vh − svh
(1.5)

During the last decade, families of discontinuous Galerkin (DG) finite element meth-

ods have been proposed for the numerical solution of CDR problems. The increasing

interest in DG methods is due to many attractive features they offer, in particular,

their built-in stability, flexibility in implementation of unstructured meshes, allowing

for hp-adaptive refinement, and local conservation of quantities. However, there are

some shortcomings, namely, higher cost of DG methods in comparison with conforming

finite elements due to duplication of side/face nodes, and edge integration. Though the

problem with duplication of nodes for higher orders of interpolations is less important.

Although the DG methods are felt to have advantages of robustness over conventional

Galerkin methods for problems of hyperbolic type (3), yet their extension to elliptic

problems is far less obvious. There has been recent interest in applying DG to elliptic

problems for modeling of CDR problems (4, 5, 6). A unified framework have been

proposed and analyzed by Arnold et al. in (9) to deal with elliptic problems. Also, a

comparison of the performance of various schemes is analyzed in (25) from a practical

point of view. Among various alternatives proposed for the treatment of second order

derivatives are, the well-known Interior Penalty (IP) method proposed in (26), BR2

method in (1), and Local Discontinuous Galerkin (LDG) method proposed in (27).

4



1.3 Motivation of this work

1.3 Motivation of this work

One of the important characteristics of DG methods is their built-in stability through

a penalty term in their formulation. A unified analysis of the DG methods carried

out by Arnold et al. (9) show that the stabilization of DG methods via the inclusion

of a penalty term is crucial such that without it convergence is degraded or lost. DG

methods are felt to have good stability characteristics, however it has been observed that

the vaunted robustness of the DG methods have been partially overstated, especially

in the case of low order (linear case) approximations. In Hughes et al. (2), simple one-

dimensional examples of pure advection and pure diffusion were shown to give rise to

spurious oscillations which can demonstrate that stabilization of DG methods require

further considerations.

The aim of this study is to extend the use of stabilization techniques based on

scale-splitting to discontinuous Galerkin methods, where ad-hoc approaches are often

employed. Also the relationship between existing and new methods is to be elucidated.

To this end, Firstly, the discontinuous Galerkin approximation has been derived from

a hybrid form of the problem and, secondly, an additional stabilization terms has been

introduced based on the variational multiscale framework.

Let Th = {K} be a regular finite element partition of Ω. The hybrid formulation

from which we start consists of finding uh, its traces on the element edges γh, and its

fluxes on the element boundaries λh such that∑
K

BK (uh, vh)−
∑
K

〈λh, vh〉∂K =
∑
K

LK (vh), (1.6)∑
K

〈κh, λh〉∂K = 0, (1.7)∑
K

〈µh, γh − uh〉∂K = 0 (1.8)

for all test functions vh, κh, andµh in the appropriate finite element spaces. BK and

LK are the bilinear and linear form associated to the variational formulation of the

problem defined within each element. This hybrid formulation would require compat-

ibility conditions between these spaces, which could be written in the form of inf-sup

conditions. However, instead of interpolating the traces and the fluxes, they have been

determined using Taylor expansions to approximate the fluxes and then imposing conti-

nuity of the unknown to compute the traces. The final result is a problem posed only in

5



1. INTRODUCTION

terms of the unknown uh defined in the interior of the element domains. The resulting

discontinuous Galerkin formulation turns out to be very classical. Weak continuity of

uh across elements is enforced through an interior penalty method, which appears in a

natural way, whereas terms that ensure adjoint consistency in the purely diffusive case

arise naturally, without the need to introduce them in an ad-hoc manner. The only

aspect that differs from classical approaches is the term that enforces continuity in the

direction of a when k → 0. The final method we propose is∑
K

BK (uh, vh) +
k

δ

∑
E

〈[[nuh]], [[nvh]]〉E +
δ

2

∑
E

〈[[n · ∇vh]], [[n · auh]]〉E (1.9)

−
∑
E

〈[[nuh]], k {∇vh}〉E −
∑
E

〈[[nvh]], k {∇uh}〉E =
∑
K

LK (vh)

where [[·]] and {·} are the jump and the average operators defined on the edges E,

respectively, and δ is a parameter proportional to the mesh size h whose interpretation

have been provided. The symbol 〈f, g〉ω has been used to denote the integral of fg in

a region ω.

Suppose δ = αh, if α→ 0, the formulation will enforce strongly the continuity when

k is fixed. For critical values of penalty parameter when α→ αc (with an interpretation

of αc = 0.5) excessive continuity in the direction of a will be enforced when k → 0.

This already anticipates that the same stability problems as for the continuous Galerkin

approximation may be encountered in these limit situations.

To overcome them, a possibility is to use the same stabilization strategy for discon-

tinuous interpolations as for continuous ones. The proposed stabilized formulation can

be motivated from the variational multiscale concept. If uh is split into a resolvable

component, still denoted uh, and an unresolvable one, and the latter is approximated

in terms of the former (for example using a Fourier argument), the introduction of the

stabilizing term∑
K

〈τ (a · ∇vh + k∆vh − svh) ,a · ∇uh − k∆uh + suh − f〉K (1.10)

can be motivated, where τ is the stabilization parameter that appears also in classi-

cal stabilized finite element methods. From several numerical examples the benefits

of adding stabilization to the original discontinuous Galerkin formulation have been

shown. Without this term, the solution exhibits a strong dependence on the param-

eter α that enforces weak continuity of the unknown. Adding the stabilization term

6



1.3 Motivation of this work

the solution is virtually insensitive to this parameter. From the analytical point of

view, these results are explained by the dependence of the stability and convergence

bounds on α, which explode as continuity of the unknown is excessively enforced and

no additional stabilization is added.

7



1. INTRODUCTION

8



2

Variational Multiscale Methods

One of the early problems in Galerkin formulation of convection dominated CDR prob-

lems, is stability. Many stabilization techniques were developed starting with Upwind

schemes after understanding the problem as a lack of diffusion in numerical solution of

the problem. Other well-known techniques include Streamline Upwind Petrov-Galerkin

(SUPG), Galerkin Least Squares (GLS), and Residual free Bubbles. In 1995, Hughes

(24) showed that stabilized methods could be derived from a Variational Multiscale

(VMS) formulation. The key idea of the VMS method is based on a decomposition of

the solution of a system of equations into coarse scales (directly simulated) and fine

scales (modeled or omitted in the numerical simulations). The effect of the fine scales

on the coarse-scale dynamics is accounted for through local Greens function problems,

ultimately responsible for the generation of a subgrid model and/or stabilization term

in the equations for the coarse scales.

This chapter is divided into three parts: firstly the variational formulation of the

CDR equations have been derived, in the second part scale splitting and subgrid scales

modeling has been described within the context of VMS, and in the last part stabilized

formulation of the CDR equations have been obtained considering continuous finite

element approximation.

9



2. VARIATIONAL MULTISCALE METHODS

2.1 Variational formulation of the convection-diffusion-

reaction equation

The strong form of CDR equation was expressed in 1.1. In order to obtain the vari-

ational formulation of the problem first let us introduce some functional settings con-

sidering a domain Ω ∈ Rd.

Letting A to be a domain of Rd, the space of continuous function C0 (A) is the set of

all real valued functions which are continuous in A. if A is not a compact subset of Rd,
then C0 (A) is the set of all real valued functions which are continuous and bounded in

A. Cm (A) is the subspace of C0 (A) that have all the partial derivatives up to order

m and these derivatives also belong to C0 (A). The Lebesgue spaces L∞ (Ω) is the set

of all real valued functions defined almost everywhere in Ω and therein bounded. The

Lp (Ω) is the space of p -integrable functions (1 ≤ p <∞) in a domain Ω, and when

p = 2 the L2 (Ω) inner product is denoted by (·, ·)L2(Ω). The Hilbert space denoted

by Hm (Ω) is the space of all the functions ψ ∈ L2 (Ω) with all the weak derivatives

of order ≤ m that belong to L2 (Ω). The space H1
0 (Ω) consists of functions H1 (Ω)

vanishing on the boundary ∂Ω. The topological dual of H1
0 (Ω) is denoted by H−1 (Ω)

and the duality pairing is denoted by 〈·, ·〉.

With these preliminaries, the variational formulation of (1.1) reads as follows,

find u ∈ V := H1
0 (Ω) such that

B (u, v) = L (v) ∀v ∈ V (2.1)

where B (·, ·), and L (·) are the bilinear, and linear forms associated with the operator

L respectively, that is,

B (u, v) := k (∇u,∇v)Ω + (a · ∇u, v)Ω + s (u, v)Ω (2.2)

or based on an index notation for bilinear form,

B (u, v) := (∂iv, k∂iu)Ω + (v, ai∂iu)Ω + (v, su)Ω (2.3)

and

L (v) := 〈f, v〉Ω (2.4)

10



2.1 Variational formulation of the convection-diffusion-reaction equation

It is assumed that the CDR problems that have been studied in this thesis are

coercive i.e. ensuring the well-posedness of the continuous problem.

Lemma 2.1 (coercivity) for all u ∈ H1
0 , there exists a constant M ∈ R and M > 0

such that,

B (u, u) ≥M‖u‖2L2

which holds for our problem if the following conditions are assumed,
u prescribed on inflows

s− 1
2∇ · a ≥ 0

k > 0

(2.5)

proof. From definition of the bilinear form at 2.2 it follows that

B (u, u) = k‖∇u‖2L2 +

∫
Ω

a · ∇uu dΩ + s‖u‖2L2 u = 0 on ∂Ω (2.6)

Using the divergence theorem, the second term of 2.6 yields as follows (based on

index notation), ∫
Ω

ai∂i
u2

2
dΩ =

∫
Ω

∂i

(
ai
u2

2

)
dΩ−

∫
Ω

∂iai
u2

2
dΩ

=

∫
∂Ω

aini
u2

2
dΓ−

∫
Ω

∂iai
u2

2
dΩ (2.7)

Following this and using Poincaré-Friedrich inequality it can be concluded that,

B (u, u) ≥
(
Ck‖u‖2L2

)
+

∫
∂Ω

a · nu
2

2
dΓ +

∫
Ω

(
s− ∇ · a

2

)
u2dΩ (2.8)

To hold coercivity these terms need to be positive. Hence, the following conditions

must hold,

− From the first term, k > 0.

− From the second term, a ·n ≥ 0. Figure 2.1 can demonstrate that this holds for the

outflow boundaries, therefore u needs to be prescribed on the inflows.

− From the third term, s− 1
2∇ · a ≥ 0. �

11



2. VARIATIONAL MULTISCALE METHODS

Figure 2.1: A control volume - representing inflow and outflow boundaries

Let Th = {K} be a finite element partition of the domain Ω into elements K, of size

h > 0, which is assumed to be shape regular (i.e., the elements meet a minimum angle

condition, uniformly with respect to h). In the continuous finite element approximation

of the problem, Th is a set of elements K which are assumed to cover Ω exactly, and

are either disjoint or share a complete edge. The elements K ∈ Th are either triangles

or quadrilaterals. Based on this partition, the space V have been approximated by a

finite dimensional space Vh, such that

Vh =
{
v ∈ V : v |K ◦F−1

K ∈ Qp

(
K̂
)
, 1 ≤ p ≤ ∞

}
where Qp

(
K̂
)

denotes the set of all polynomials on K̂ of degree p, and F is an affine

mapping from the reference element K̂ to the physical element K, and

v(x) = F ◦ v̂(s) and v̂(s) = v(x) ◦ F−1 (2.9)

which have been represented in figure 2.2.

Accordingly, the continuous Galerkin discrete problem yields, obtaining uh ∈ Vh

such that

B (uh, vh) = L (vh) ∀v ∈ V0,h (2.10)

2.2 Scale splitting and modeling of the subgrid scales

The multiscale concept originally proposed by Hughes (24) is adopted and extended to

new applications. In 1998 it was shown by Hughes et al. (10) that stabilized methods

could be derived from a variational multiscale formulation. The underlying idea of

12



2.2 Scale splitting and modeling of the subgrid scales

Figure 2.2: affine mapping - from reference element v̂ (s) to physical element v (x)

the VMS is based on a decomposition of the unknown u into resolvable part uh and a

subgrid scale part û which cannot be captured by the finite element mesh, i.e.

u = uh + û (2.11)

which induces a decomposition of the space V as a direct sum with an appropriate

projection operator as

V = Vh ⊕ V̂ (2.12)

where ⊕ is a direct sum symbol, and the space V̂ is called the space of subgrid scales

or subscales. The continuous problem is equivalent to finding uh ∈ Vh and û ∈ V̂ such

that

B (uh, vh) +B (û, vh) = L (vh) ∀vh ∈ Vh (2.13)

B (uh, v̂) +B (û, v̂) = L (v̂) ∀v̂ ∈ V̂ (2.14)

The first equation is in the space of coarse scale Vh and consists of two terms:

the first one is the Galerkin contribution and the second one takes into account the

influence of the subgrid scale on the coarse scale solution uh. The second one is an

equation for the subgrid scale contribution whose effect is to be included into the first

equation.

Let us simplify the notation by using the following definitions,

Ωh = ∪
K∈Qh

K Γh = ∪
K∈Qh

∂K

and

(·, ·)h =
∑
K∈Qh

(·, ·)K , (·, ·)∂h =
∑
K∈Qh

〈·, ·〉∂K , and ‖·‖2h =
∑
K∈Qh

‖·‖2K

13



2. VARIATIONAL MULTISCALE METHODS

Now using the bilinear form 2.3, some integration by parts is taken within first

equation in 2.13 consisting the following terms,

(∂ivh, k∂iû)h := − (û, ∂i (k∂ivh))h + (û, ni (k∂ivh))∂h (2.15)

and

(vh, ai∂iû)h := (vh, ∂i (aiû))h − (vh, û∂iai)h

:= − (û, ai∂ivh)h + (û, ainivh)∂h − (û, vh∂iai)h

:= − (û, ∂i (aivh))h + (û, ainivh)∂h (2.16)

In a similar way, the following integration by parts are considered for second equa-

tion 2.13,

(∂iuh, k∂iv̂)h = − (∂i (k∂iuh) , v̂)h + ((kni) ∂iuh, v̂)∂h (2.17)

and

(∂iû, k∂iv̂)h = − (∂i (k∂iû) , v̂)h + ((kni) ∂iû, v̂)∂h (2.18)

After defining these integrations by parts, now the equations in 2.13 can be written

as follows,

B (uh, vh) + (û,L∗vh) + (û, ni (k∂ivh))∂h + (û, ainivh)∂h = L (vh) ∀vh ∈ Vh

(Lû, v̂)h + ((kni) ∂iû, v̂)∂h + ((kni) ∂iuh, v̂)∂h = ((f − Luh) , v̂)h ∀v̂ ∈ V̂

where L∗ is the adjoint of the operator L given by

L∗ (v) = −∂i (k∂iv)− ∂i (aiv) + sv (2.19)

Since these equations are for the exact problem i.e. u = uh + û, the normal fluxes

of the exact solution are continuous across the interior boundaries that is,

((kni) ∂iu, v̂)∂h = ((kni) ∂iû, v̂)∂h + ((kni) ∂iuh, v̂)∂h = 0 (2.20)

therefore the boundary terms vanish from the second equation.

Then, the second equation is equivalent to, find û ∈ V̂ such that

Lû = R := f − Luh + v̂⊥ inΩh (2.21)

û = uske onΓh

14



2.2 Scale splitting and modeling of the subgrid scales

where uske is a function that is defined on the element boundaries and v̂⊥ is any function

in V̂ ⊥ that is the L2
(
Ωh
)

orthogonal complement of V̂ . The function uske must be such

that the normal fluxes of exact solution u are continuous across the element boundaries.

The function v̂⊥ is responsible to guarantee that û ∈ V̂ , or in other words it ensures

that Lû − [f − Luh] belongs to V̂ ⊥. It is noticed that Ωh consists the union of the

elements of the domain. Therefore any choice of uske results in n (number of elements)

uncoupled equations. As in (28) the space of V̂ can be taken as bubble functions, that

is vanishing on the element boundaries which means uske = 0. The choice of uske = 0

vanishes the boundary terms from the first equation of the subgrid scales formulation.

From the same equation 2.21 it is observed that

û|K= L−1R (2.22)

The basic idea is to approximate this equation with appropriate boundary conditions

by

û|K= τKR inK ∈ Qh (2.23)

where τK is approximated as the inverse of the differential operator L on each element

K. Now we need to impose the condition û ∈ V̂ which can be expressed as(
û, ψ̂⊥

)
= 0 ∀ψ̂⊥ ∈ V̂ ⊥ (2.24)

Considering an inner product weighted by τ as,

(·, ·)τ = (τK ·, ·) (2.25)

and considering a projection P̂⊥τ onto V̂ ⊥ associated to the previously defined product

(·, ·)τ , (
û, ψ̂⊥

)
=
(
f − Luh, ψ̂

⊥
)
τ

+
(
v̂⊥, ψ̂⊥

)
τ

∀ψ̂⊥ ∈ V̂ ⊥ (2.26)

which implies that

v̂⊥ = −P̂⊥τ (f − Luh) (2.27)

Therefore, the expression for û yields

û = τK P̂τ (f − Luh) (2.28)

where P̂τ = I − P̂⊥τ is the projection onto V̂ the space subscales, considering I as

the identity matrix in Vh. According to (28), a typical choice of the subscales space

15



2. VARIATIONAL MULTISCALE METHODS

is P̂τ = I which is called Algebraic SubGrid-Scale (ASGS) formulation and simply is

achieved by taking v̂⊥ = 0 to obtain

û|K = τK (f − Luh) (2.29)

that has been followed by this study.

Neglecting the boundary terms, the final stabilized problem yields: find uh ∈ Vh

such that

Bτ (uh, vh) = Lτ (vh) vh ∈ Vh (2.30)

where Bτ (uh, vh) and Lτ (vh) are the stabilized forms, written as

Bτ (uh, vh) = B (uh, vh)− (L∗vh, τLuh)h (2.31)

Lτ (vh) = L (vh)− (L∗vh, τf)h (2.32)

2.3 Stabilized continuous finite element approximation

Having established the Variational form of CDR equation and the subgrid scales formu-

lation by splitting the scales, in this chapter the stabilized finite element approximation

of the CDR equation has been motivated. To this end, the subscale problem need to

be solved and its effect be included in the coarse scale equation to derive a stabilized

solution. In order to derive the approximate solution of the subscale equation, first the

fine scale equation is transformed into the reference domain. This was first developed

in (10) which indicates the dependence of the subgrid scale on the element size. To

this end, the subscale equation has been transformed to the reference domain on each

element K. Letting v̂⊥ = 0, we can write 2.21 as

Lû = r := f − Luh (2.33)

or using the discussions in previous section and from equation 2.29,

û = τKr (2.34)

The isoparametric transformation is based on a mapping x = F (ξ) from the physical

element K (x) to the reference element K̂ (ξ). Letting the following notation for the

Jacobian of the corresponding transformation

J−tlm =
∂ξl
∂xm

(2.35)
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2.3 Stabilized continuous finite element approximation

Transformed representation of the equation (2.34) yields

r = J−til
∂

∂ξl

(
kJ−tim

∂

∂ξm
û

)
+ aiJ

−t
il

∂

∂ξl
û+ sû in K̂ (2.36)

Henceforth, the coefficients of CDR problem has been defined with the following nota-

tions

kr = J−til kJ
−t
im (2.37)

and

ari = aiJ
−t
il (2.38)

and eventually the residual r in the reference domain can be written as follows,

r =
∂

∂ξi

(
kr

∂

∂ξi
û

)
+ ari

∂

∂ξi
û+ sû in K̂ (2.39)

Fourier analysis of the subscale problem was developed by R. Codina at (28), which

has been followed in the current discussion. According to this study, the resulting

problem can be identified based on the Fourier representation of the Green function

of the subscale equation. Following the same study, after making an approximation

regarding the Green function the stabilization parameter is derived as follows,

τ =
((
kr
∣∣λ2

0

∣∣+ s
)2

+ (ar · λ0)2
)−1/2

(2.40)

for some λ0, which (as it will be seen in next section) is a crucial parameter in deter-

mining an appropriate expression for τ . Eventually, after some more steps the following

form of τ has been proposed in (28),

τ =
[
(c1k

r + s)2 + (c2 |ar|)2
]−1/2

(2.41)

Here according to (28), c1 and c2 are some constants independent of h for which equation

2.34 holds. As in the same paper, c1 is independent of the CDR problem coefficients

k, a,and s, whereas c2 only depends on the direction of the convection velocity a but

not its magnitude. Moreover, the constant c1 can be identified with |λ0|2 and c2 with

|λ0| |cosα|, where α is the angle between a and λ0. Since λ0 depends on the residual r

in equation 2.33, consequently the constants c1 and c2 will also depend on that. Hence,

ascertaining the value of λ0 seems to be a key issue in formulating stabilized finite

element using VMS.
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2. VARIATIONAL MULTISCALE METHODS

2.3.1 Calculation of the stabilization parameter

Having derived the functional form of the stabilization parameters, in this part the

demand is to establish a value for λ0 which from now on will be denoted without its

superscript for simplicity.

A 1D case. Firstly, a one dimensional case has been considered. The CDR coefficients

appearing in the stabilization parameter has been replaced by their values in a reference

domain defined within [−1, 1], with a length defined by hnat = 2, and it is considered

that for any order of approximation the elements are such that the mapping from

reference element K (ξ) to physical element K (x) is linear, that is, for an element in

domain x with ex ∈ [a, b] and a length h, a linear mapping defined as follows

ξ =
hnat
h
x− hnat

2

a+ b

h
(2.42)

transforms the element eξ from reference domain ξ (eξ ∈ [−1, 1]) to the physical domain

x. Hence, the Jacobian of the transformation is constant and we have

J−tij =
hnat
h

(2.43)

Hence, the stabilization parameter holds

τ =

[(
kh2

natλ
2

h2

)2

+

(
hnatλa

h

)2
]−1/2

(2.44)

According to (29), an optimal choice for λ (in one dimensional case) that guarantees

exact nodal values would be

λ =
2

hnat
(2.45)

and the final expression for the stabilization parameter in one dimensional case yields

τ =

[(
4k

h2

)2

+

(
2a

h

)2
]−1/2

(2.46)

It is observed that the final expression for the stabilization parameter does not

depend on the reference domain. According to R. Codina et al. (31), obtaining exact

nodal values in the case of quadratic elements is not feasible and they have offered the

following value as an optimal choice,

λ =
4

hnat
(2.47)
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2.3 Stabilized continuous finite element approximation

A General 2D case. Considering a case with constant convection velocity and as-

suming that the problem is such that one direction of the reference domain coincides

with the streamlines, the problem can be regarded as one dimensional in this direction

and a pure diffusion problem in the orthogonal directions. As in (30), this implies that

the diffusion needed to define the Peclet number is the one along the streamlines, what

suggest to take λ = ar

‖ar‖ , using this and from 2.40 we have

τ =

[(
aria

r
j

‖ar‖2
kr + s

)2

+ ‖ar‖2
]−1/2

(2.48)

Now, considering a constant convection velocity a = (a1, a2) in a two dimensional

CDR problem with reference element side lengths of h1, and h2 in streamline direction

and perpendicular one respectively we have,

ar = aiJil =

(
2a1

h1
,
2a2

h2

)t
(2.49)

Hence, from 2.48 the expression for τ gives

τ =

[(
4k

h2
k

)2

+

(
2‖a‖
ha

)2
]−1/2

(2.50)

where

h2
k =

1

4
‖ar‖2

(
a2

1

h4
1

+
a2

2

h4
2

)−1

(2.51)

=

[
a2

1

h2
1

+
a2

2

h2
2

](
a2

1

h4
1

+
a2

2

h4
2

)−1

(2.52)

and

ha = 2
‖a‖
‖ar‖

(2.53)

are the length scales which are dependent on the velocity direction. It is noticed that

this formula is valid for first order approximations, and in order to extend it to higher

order approximations the effect of polynomial degree p must be included which can be

better explained through the following case.
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2. VARIATIONAL MULTISCALE METHODS

2D case with one dimensional convection velocity. For a one dimensional convec-

tion velocity of the form a = (a, 0)t, including the effect of polynomial approximations

and using 2.50 the expression for τ gives, using

τ =


 4k(

h1
p

)2


2

+

 2a(
h1
p

)
2

−1/2

≈

 4k(
h1
p

)2 +
2a(
h1
p

)

−1

(2.54)

where h1
p is the distance between each two nodes. This expression implies that refine-

ment of the mesh only in the direction of a makes sense, and any refinement in the

direction orthogonal to a will not affect the solution. Roughly speaking, refining the

mesh in this case is like adding diffusion (looking into 4k(
h1
p

)2 factor). Furthermore since

the refinement behaves like adding diffusion in only one direction, the added diffusion

is anisotropic. In some references such as in (36) for quadratic elements, and also in

(35), the effect of the polynomial approximations has been included in the diffusion

term of the stabilization parameter, that is,

τ ≈

 4k(
h1
p2

)2 +
2a(
h1
p

)

−1

(2.55)

where the term 4k(
h1
p

)2 in 2.54 has been replaced by 4k(
h1
p2

)2 by increasing the total power

of polynomial approximation from p2 to p4 in diffusion term. In our calculations we

have implemented 2.55.
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3

Discontinuous Galerkin

approximation

The discontinuous Galerkin (DG) finite element methods are popularly emerging for

the numerical solution to partial differential equations. The first DG method was intro-

duced in 1973 by Reed and Hill (32) for solving hyperbolic equations of the steady-state

neutron transport. since then, there has been an active development of DG methods

for hyperbolic and nearly hyperbolic problems. Several schemes have been proposed for

the discretization of the viscous terms. Among the various alternatives some of them

include, the method proposed by Bassi and Rebay (1) for the compressible Navier-

Stokes equations, or Local Discontinuous Galerkin (LDG) method introduced by Cock-

burn and Shu (27) for Convection-Diffusion problems, and a Compact Discontinuous

Galerkin (CDG) method introduced by Peraire and Persson in (33). Also, the Interior

Penalty (IP) methods originally introduced by Douglas and Dupont in (26) in 1970,

were developed for discretization of elliptic and parabolic equations using discontinuous

finite elements. The development of the IP methods was independent from the devel-

opment of DG methods for hyperbolic equations. A unified analysis of the various DG

methods dealing with elliptic problems was proposed by Arnold et al. can be found in

(9). DG methods offer several advantages such as, in design of higher order approxima-

tions due to the fact that elements of varying order of accuracy can be selected for the

same mesh which allows for hp-adaptive refinement, built-in stability, rather easy im-

plementation on unstructured meshes with hanging nodes, being locally conservative,

locality of the method where the discontinuities occur only on element edges/faces, and
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3. DISCONTINUOUS GALERKIN APPROXIMATION

being more efficient for parallelization. Despite the attractive features of DG methods,

there are also some shortcomings that limit their practical utility. Foremost among is

the size of DG linear system as a result of node duplication on edges/faces and obvi-

ously increasing the costs. The attractive features of DG methods, have already suited

them for variety of applications such as in aeroacoustic, turbomachinery, gas dynam-

ics, turbulent flows, electro-magnetism, semiconductor device simulation, and Granular

materials among many other applications that for more information can be referred to

(7).

3.1 Hybrid form of the problem

In this section, Discontinuous Galerkin approximation has been derived from a hy-

brid form of the problem. The strong form of CDR equation including the Neumann

boundary conditions have been shown in the following,

Lu := −k∆u+ a · ∇u+ su = f inΩ,

u = 0 onΓD,

T (u) := k∂nu = q onΓN .

(3.1)

where Ω ⊂ Rd is a bounded domain with boundary ∂Ω := Γ = ΓD ∪ ΓN , considering

ΓD and ΓN as the Dirichlet and Neumann boundaries respectively.

Then the variational form of 3.1 yields, find u ∈ V := H1
0 (Ω) such that

B (u, v) = L (v) ∀v ∈ V (3.2)

where

B (u, v) := k (∇u,∇v)Ω + (a · ∇u, v)Ω + s (u, v)Ω (3.3)

and

L (v) := 〈f, v〉Ω + 〈q, v〉∂ΩN
(3.4)

Now let us rewrite the bilinear form 3.2 as,

B (u, v) = (L (u) , v)Ω + 〈T (u) , v〉∂Ω (3.5)
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3.1 Hybrid form of the problem

then by taking use of the following operators

L∗ := −k∆v −∇ · (av) + sv, (3.6)

T∗ := k∂nv + n · av (3.7)

and taking integral by parts we have that,

B (u, v) =

= − (ku,∇v) + 〈ku,∇v · n〉∂Ω − (u,a · ∇v) (3.8)

+ 〈u, va · n〉∂Ω − (u, v∇ · a) + s (u, v)

= − (u, k∇v −∇ · (av) + sv) + 〈u, k∇v · n+ va · n〉∂Ω

= (u,L∗ (v)) + 〈u,T∗ (v)〉∂Ω (3.9)

Let Th = {K} be a finite element partition of the domain Ω into elements K, of size

h > 0, which is assumed to be shape regular (i.e., the elements meet a minimum angle

condition, uniformly with respect to h). In the DG finite element approximation of the

problem, Th is a set of non-conforming elements K with disjoint interior boundaries that

may possess hanging nodes. The elements K ∈ Th are either triangular or quadrilateral.

It has been considered that the elements cover Ω exactly or Ω is a polyhedron. For a

generic element K in Th, we denote hK as the diameter of K and nK as its outward

unit normal. Let Eh be the set of elemental edges consisting with, Eih the set of all

internal edges, and E∂Ω
h the set of boundary edges, following

Eh = Eih ∪ E∂Ω
h . (3.10)

For an interior edge F of the mesh, let us assume that there are K− (F ) and K+ (F )

in Th sharing this edge such that F = K− (F ) ∩K+ (F ) then we define,

K− (F ) = {K (F ) ∈ Th|a · nK > 0} (3.11)

and

K+ (F ) = {K (F ) ∈ Th|a · nK ≤ 0} (3.12)

which can be checked through a sample case shown in figure 3.1. In order to formulate

a DG discretization, it is needed to define jumps [[·]] and averages {·} on Eh. Let

us consider two elements K− and K+ sharing the edge, and n− and n+ being their
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3. DISCONTINUOUS GALERKIN APPROXIMATION

Figure 3.1: Discontinuous Elements - Schematic view of normals and elements sharing

an edge

outward normals as shown in figure 3.1. Accordingly, for a given scalar field φ over an

edge/face e ∈ Eih we define,

[[nφ]] := φ−n− + φ+n+,

{nφ} :=
1

2

(
φ−n− + φ+n+

)
.

It is noticed that in DG discretization of the problem, the finite element space will

not lie on H1 (Ω) (as in the continuous case) because it will consist of discontinuous

elements, but rather it will be in the piecewise Sobolev space, denoted by H1
ps (K) and

defined as

H1
ps (K) =

{
v ∈ L2 (Ω)

∣∣v|K ∈ H1 (K)∀K ∈ Th
}

(3.13)

Following this, the broken space V has been defined as V := H1
ps (K), which particularly

denotes the spaces of functions whose restriction to each element K belongs to the

Sobolev space H1 (K). Furthermore, the finite element subspaces Vh ⊂ V have been

defined as follows

Vh =
{
v ∈ V : v |K ◦F−1

K ∈ Qp

(
K̂
)
, 1 ≤ p ≤ ∞

}
where Qp

(
K̂
)

denotes the set of all polynomials on K̂ of degree p, and F is an affine

mapping from the reference element K̂ to the physical element K.

The idea is to use a three-field hybrid formulation, taking as unknowns, the main

field in the interior elements uh, and its fluxes λh and traces γh on the element bound-

aries. Also a closed form expression have been proposed for the fluxes and traces based
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3.1 Hybrid form of the problem

on, finite difference expressions to compute the fluxes in terms of the element unknown

and its traces, and imposition of flux continuity for computing the traces.

The abstract variational problem within each element would be, find uh ∈ Vh such

that

B (uh, vh) = L (vh) ∀vh ∈ Vh (3.14)

In order to formulate the hybrid problem it is required to weakly impose the boundary

conditions. To this end, the boundary conditions over the sharing face can be considered

as {
u1 = γ

u2 = γ
∀γ ∈ E (3.15)

and

λ1 = λ2 or k1n1 · ∇u1 = k2n2 · ∇u2 ∀λ ∈ z (3.16)

where E, and z are the spaces which have been defined as follows,

z =
{
µ :
⋃
K → R

∣∣v|K ∈ QPf (∂K) , K ∈ Qh

}
,

E =
{
κ :
⋃
e→ R

∣∣
e
∈ QPe (e) , e ∈ Eh, and κ|e = 0 if e ⊂ γD

}
Using equation 3.2, if we write the bilinear form for each element then we have, find

uh ∈ Vh such that

B (uh, vh)− 〈λ, vh〉∂K = L (vh) ∀vh ∈ Vh and ∀λ ∈ z (3.17)

Henceforth, weakly imposing the boundary conditions on each element we can write

〈µ, uh − γ〉∂K = 0 ∀µ ∈ z, (3.18)

〈κ, λ〉∂K = 0 ∀κ ∈ E (3.19)

let us consider two neighbor elements K1, and K2 from partition Th of domain Ω

(figure 3.1). It is noticed that over the sharing face, the conditions u1 = u2 and λ1 = λ2

must hold for the solution and the fluxes respectively.
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3. DISCONTINUOUS GALERKIN APPROXIMATION

Then the hybrid formulation for these elements reads as follows, find ui ∈ Vhi,

λi ∈ zi (i = 1, 2), and γ ∈ E such that

B1 (u1, v1)− 〈λ1, v1〉∂K = L1 (v1) ∀v1 ∈ Vh1 (3.20)

B2 (u2, v2)− 〈λ2, v2〉∂K = L2 (v2) ∀v2 ∈ Vh2 (3.21)

〈µ1, u1 − γ〉∂K = 0 ∀µ1 ∈ z1, (3.22)

〈µ2, u2 − γ〉∂K = 0 ∀µ2 ∈ z2, (3.23)

〈κ, λ1 + λ2〉∂K = 0 ∀κ ∈ E (3.24)

Introducing the notations,

Ωh = ∪
K∈Qh

K, Γh = ∪
K∈Qh

∂K

and

Bh (·, ·) =
∑
K∈Qh

BK (·, ·), Lh (·, ·) =
∑
K∈Qh

LK (·, ·), (·, ·)h =
∑
K∈Qh

(·, ·)K ,

(·, ·)∂h =
∑
K∈Qh

〈·, ·〉∂K , and ‖·‖2h =
∑
K∈Qh

‖·‖2K

then the following expression can be written for the hybrid problem over the whole

domain,

find uh ∈ Vh, λ ∈ z, and γ ∈ E such that

Bh (uh, vh)− (λ, vh)∂h = Lh (vh) ∀vh ∈ Vh

(µ, uh − γ)∂h = 0 ∀µ ∈ z, (3.25)

(κ, λ)∂h = 0 ∀κ ∈ E

where uh is the approximate solution.

3.2 Approximation of the fluxes and the traces

In the previous section a three field hybrid problem was derived (3.25). In order to

solve the proposed problem, the equations for fluxes and traces need to be approximated

numerically. The key point to step to the proposed method is to design expressions

for computing the fluxes λ and the traces γ from finite difference-like approximations.

The steps that have been proposed can be listed as:
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3.2 Approximation of the fluxes and the traces

1. Computing the fluxes λ based on values of uh, γ using finite difference-like expres-

sions.

2. Computing the traces γ by imposing continuity of total fluxes.

3. substituting the values of γ obtained in step. 2, in expression of λ derived at step.

1, to achieve an expression for λ only in terms of the unknowns uh.

Approximation of fluxes. A schematic view of discontinuous neighboring elements

has been illustrated by figure 3.2.

Figure 3.2: Neighboring discontinuous elements - A schematic view representing

the distance δ

Let us assume that the approximation uh is meaningful to compute the fluxes λ

up to a distance δ from the edge e (as shown in figure 3.2), on which the trace takes

a value γ. Then the distance δ will be a parameter of the formulation. Using a finite

difference-like approach the fluxes can be approximated as

λ± ≈ k±

δ

(
γ − uh±δ

)
where uh

±
δ can be approximated as

uh
±
δ = u±h − δ∂n±u±h + O

(
δ2
)
,

which gives,

λ± ≈ k±

δ

(
γ − u±h

)
+ k±∂n±u±h (3.26)

In figure 3.3, the idea for approximation of the fluxes between two neighboring elements

has been visualized.
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3. DISCONTINUOUS GALERKIN APPROXIMATION

Figure 3.3: Approximation of the fluxes for two neighboring elements

Approximation of traces. The second step consists of imposing continuity of total

fluxes i.e. the diffusive fluxes k∂nu and convective fluxes n · au. Then for neighboring

discontinuous elements K1 and K2 sharing an edge e ∈ Eih, with diffusion coefficients k1

and k2, the continuity of the total fluxes for an approximation solution uh ∈ Vh yields,

0 = [[T (u)]] + [[n · au]]

≈ (λ1 + λ2) + [[n · auh]]

≈ 1

δ
[(k1 + k2) γ − k1uh1 − k2uh2] + [[T (uh) + n · auh]]

≈ [[T (uh) + n · auh]] +
2

δ
({k} γ − {kuh}) .

Hence, an expression for γ can be derived as

γ =
{kuh}
{k}

− δ

2 {k}
[[T (uh) + n · auh]]. (3.27)

Final expression of the fluxes. Using the expressions derived in last two steps,

an expression have been derived for fluxes λ in terms of uh by replacing the derived

expression of γ in λ, that is,

λ =
k

δ
(γ − uh) + T (uh)

=
k

δ

(
{kuh}
{k}

− uh
)
− k

2 {k}
[[T (uh) + n · auh]] + T (uh) . (3.28)
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3.2 Approximation of the fluxes and the traces

Let us consider a harmonic average 〈·〉 for diffusion coefficient defined as

〈k〉 :=
k1k2

{k}
=

2k1k2

k1 + k2
(3.29)

between two neighboring elements. Now defining {T (uh)} = 〈k〉n · {∇uh}, finally we

obtain,

λ = −〈k〉
2δ
n · [[nuh]] + {T (uh)} − k

2 {k}
[[n · auh]]. (3.30)

Fluxes, traces and their test functions. Based on the traces and fluxes obtained

in 3.27 and 3.30 respectively, the test functions may be taken as,

κ =
{kv}
{k}

− δ

2 {k}
[[T∗ (v)− n · av]], (3.31)

for fluxes, and

µ = −〈k〉
2δ
n · [[nv]] + {T∗ (v)} − k

2 {k}
[[n · av]]. (3.32)

for traces, with v ∈ Vh.

Resulting DG approximation, constant k. Considering a constant diffusion

coefficient k over the domain, the general expressions obtained for traces, fluxes, and

their corresponding test functions yield,

γ = {uh} −
δ

2k
[[T (uh) + n · auh]], (3.33)

λ = − k

2δ
n · [[nuh]] + {T (uh)} − 1

2
[[n · auh]], (3.34)

(3.35)

and noting the definition for T∗ (v) introduced at 3.6, we have,

κ = {v} − δ

2k
[[T (v) + n · av − n · av]]

= {v} − δ

2k
[[T (v)]] (3.36)

and

µ = − k

2δ
n · [[nv]] + {T (v)} . (3.37)

The original equation is,

Bh (uh, v)− (λ, v)∂h + (λ, κ)∂h + (γ − u, µ)∂h = Lh (v) (3.38)
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3. DISCONTINUOUS GALERKIN APPROXIMATION

after replacing the obtained values of fluxes and traces, the following expression yields,

Bh (uh, vh)

−
(
− k

2δ
n · [[nuh]] + {T (u)} − 1

2
[[n · auh]], vh

)
∂h

+(
− k

2δ
n · [[nuh]] + {T (u)} − 1

2
[[n · auh]], {vh} −

δ

2k
[[T (vh)]]

)
∂h

+

(
{uh} −

δ

2k
[[T (uh) + n · auh]]− uh,−

k

2δ
n · [[nvh]] + {T (vh)}

)
∂h

= Lh (vh) (3.39)

Let us add the following definition,

(·, ·)E =
∑
E

〈·, ·〉E

over the element edges. Thus, writing the above equation in a more compact form the

final expression for the proposed DG formulation reads,

Bh (uh, vh) +
k

δ
([[nuh]], [[nvh]])E +

δ

2
([[n · ∇vh]], [[n · auh]])E

− ([[nuh]], k {∇vh})E − ([[nvh]], k {∇uh})E = Lh (vh) (3.40)

In the obtained formulation, the interior penalty method has been recovered, ad-

joint consistency is ensured and also there is a built-in convective flux continuity

δ
2 ([[n · ∇vh]], [[n · auh]])E whose effect is similar (the same in 1-D) as the more com-

mon δ
2 ({vh} , [[n · auh]])E flux continuity (that can be seen for example in (34)).

The treatment of the discontinuous part through a hybrid formulation has intro-

duced some features that are non-standard in discontinuous Galerkin methods, in par-

ticular,

− Compared to most of the DG formulations which are usually derived by ad-hoc

approaches, in the DG method obtained here all the terms are derived in a sense

naturally.

− Harmonic averages rather than arithmetic averages of discontinuous coefficients have

been justified.

− It is possible to devise extensions by proposing ways to compute the fluxes other

than what have been used in the current formulation
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3.3 Stabilized discontinuous finite element approximation

− convective flux continuity arises naturally

− Though it is very convenient to introduce additional stabilization

3.3 Stabilized discontinuous finite element approximation

Discontinuous Galerkin (DG) methods offer several important computational advan-

tages over their continuous Galerkin counterparts (3) as it was discussed at the begin-

ning of the current chapter. There has been recent interest in applying DG to elliptic

problems for modeling of advective-diffusive problems (4, 5, 6). High-order DG meth-

ods have been the center of many studies to deal with nonlinear conservation laws

and convection-dominated problems in CDR problems. Different methods have been

proposed for DG discretization of elliptic problems such as BR2 (1), IP (26), LDG

(27) and so on. A unified analysis of DG methods proposed by Arnold ( et al). in (9)

show the importance of consistency and stability terms in design of the DG methods.

They suggest that the stabilization of DG methods via the inclusion of a penalty term

is crucial, such that without it convergence is degraded or lost. Penalizing the jumps

across neighboring elements by introduction of penalty terms is a typical stabilizing

procedure in the context of DG finite elements. Due to existence of built-in stability

terms, DG methods are felt to have advantages of robustness over conventional Galerkin

methods. However, it seems that the vaunted robustness of the DG method has been

to some extent overstated (specially for low order DG methods). For instance, simple

one-dimensional examples of pure advection and pure diffusion were shown to give rise

to spurious oscillations in Hughes et al. (2). Hence, further considerations for stabi-

lization of DG methods, especially in elliptic problems such as convection-dominated

ones in CDR equations, seem to be essential.

The word ’stabilization’ identifies all the terms in DG formulation which enforce its

stability properties. A study by Brezzi et al. (8) show that the use of jump penalties,

upwinding and HughesFranca-type residual-based stabilizations (variational multiscale

methods) are all different forms of the same mechanism. Thus to achieve good conver-

gence characteristics and stable results, the key mechanism is the use of stabilization

terms, which in some sense penalize the continuity constraints such that, when overpe-

nalizing, the solution behaves close to continuous space (but of course not exactly the

same).
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3. DISCONTINUOUS GALERKIN APPROXIMATION

The method proposed in this study for stabilization of the DG discretized CDR

problem is through the variational multiscale (VMS) methods. An introduction to

VMS method was proposed in Chapter. 2 and was developed for CDR problem in the

space of conforming elements. A simultaneous approach will be followed here for DG

problem resulting in a stabilized DG solution.

Following the procedure explained in Chapter. 2, here also we start by decomposi-

tion of the unknown u into resolvable part uh and a subgrid scale unresolved part û,

that is,

u = uh + û (3.41)

which induces a decomposition of the broken space V into the coarse and fine scale

spaces Vh, and V̂ respectively by a direct sum i.e. V = Vh⊕ V̂ . Then the discontinuous

problem yields, finding uh ∈ Vh, and û ∈ V̂ such that,

B (uh, vh) +B (û, vh) = L (vh) ∀vh ∈ Vh (3.42)

B (uh, v̂) +B (û, v̂) = L (v̂) ∀v̂ ∈ V̂ (3.43)

Let us express the DG formulation derived in the previous section by writing the

terms associated with the boundaries denoted by E (u, v) of the elements as, find uh ∈ Vh
such that

Bh (uh, vh) + E (uh, vh) = Lh (vh) (3.44)

Then following the same steps introduced in Chapter (2.2), the VMS formulation of

the DG problem can be expressed as follows

Bh (uh, vh) + (û,L∗vh) + (û, ni (k∂ivh))∂h

+ (û, ainivh)∂h + E (uh, vh) + E (û, vh) = L (vh) ∀vh ∈ Vh,

(Lû, v̂)h + ((kni) ∂iû, v̂)∂h + ((kni) ∂iuh, v̂)∂h

+ E (uh, v̂) + E (û, v̂) = ((f − Luh) , v̂)h ∀v̂ ∈ V̂

where L∗ is the same adjoint operator defined previously. Approximating the subscales

equation by considering û as bubble function (vanishing over element boundaries), the
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3.3 Stabilized discontinuous finite element approximation

boundary terms will be removed unless the one including the general ingredients of the

DG boundary terms in the first equation, that is,

Bh (uh, vh) + (û,L∗vh)h + E (uh, vh) = L (vh) ∀vh ∈ Vh

(Lû, v̂)h = ((f − Luh) , v̂)h ∀v̂ ∈ V̂

(3.45)

Simplifying the second equation gives, find û ∈ V̂ such that,

Lû = R := f − Luh + v̂⊥ inΩh (3.46)

û = uske onΓh

Now considering subgrid solution û as bubble functions, we approximate uske = 0, and

also consider v̂⊥ = 0 which results in an approximate solution of subgride scales as,

û|K = τK (f − Luh) (3.47)

Considering the same discussions as in chapter (2.3) regarding the Fourier analysis of

the subgrid problem, the expression of τ for CDR equation can be written in the same

way as,

τ =
[
(c1k

r + s)2 + (c2 |ar|)2
]−1/2

(3.48)

Finally, the VMS formulation of DG resulting in stabilized DG solution can be

expressed as,

Bτ (uh, vh) = Lτ (vh) vh ∈ Vh (3.49)

where Bτ (uh, vh) and Lτ (vh) are the stabilized forms, written as

Bτ (uh, vh) := Bh (uh, vh) + E (uh, vh)− (L∗vh, τLuh)h (3.50)

Lτ (vh) = L (vh)− (L∗vh, τf)h (3.51)

For calculation of unknown parameters of the stabilization parameter τ , a simul-

taneous procedure as in section (2.3.1) have been followed. Then, for example in the

case of an isotropic diffusion coefficient and a convection velocity a = (a, 0)t, and for a

degree of approximation p, the stabilization parameter is given by,

τ ≈

 4k(
h1
p2

)2 +
2a(
h1
p

)

−1

(3.52)
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4

Numerical results

In previous chapters, a DG method was developed and also the CG method was in-

troduced for solving CDR problem. It was discussed that in convection dominated

problems, both of the methods may go through numerical instabilities represented as

spurious oscillations in the solution of the problem. To overcome this problem, it was

discussed that the Variational Multiscale (VMS) method is an option to stabilize these

methods. Then the stabilized CG method was introduced and a stabilized DG method

was developed.

In the current chapter, some numerical tests have been presented and used to in-

vestigate various characteristics of the DG, and stabilized DG solution of the CDR

equations. To verify our results, the CG solution of the corresponding examples have

been computed and compared to the DG results. Finally, an application-based prob-

lem, which is to compute the concentration of fuel in a combustor, has been solved

using the developed stabilized DG method.

4.1 Numerical formulation in the transient and nonlinear

case

A steady CDR problem was introduced in Chapter (1.1), which has been the basis

for the formulations in previous chapters. Let us present a transient CDR problem
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4. NUMERICAL RESULTS

consisting with a general nonlinear reaction term, that is,

∂tu+ Lu = f inΩ× (0, T ) ,

u = 0 on ∂Ω× (0, T ) ,

u = u0 onΩ× {0}

(4.1)

where L is the CDR operator

Lu := −k∆u+ a · ∇u+R (u;µ) , (4.2)

Ω is a bounded domain in Rd with boundary ∂Ω.

Here R (u;µ) is the nonlinear reaction coefficient, µ is a system parameter that will

be explained in section (4.3), k > 0 is the constant (positive definite) and symmetric

diffusion tensor, a ∈ Rd the constant velocity field, and u0 ∈ L2 (Ω) is the initial

condition. This equation models an application-based problem for concentration of

fuel in a combustor. In order to solve the proposed equation some steps are required

regarding the time integration and also the nonlinearity of the reaction term that will

be discussed in the following.

Time integration. There are various schemes proposed for time integration of the

transient problems. Some of the well-known methods include, the second order Crank

Nicolson scheme, and the Backward Differencing time integration schemes (denoted by

BDF). Cranck Nicolson schemes generally contain errors on phase magnitude (if imple-

mented for the wave equation for example) and more accurate on domain magnitude,

but in turn the BDF2 schemes are more accurate on phase magnitude though contain-

ing error on the domain magnitude. Since having error on phase is much harmful than

having error on domain, here we have implemented BDF schemes. Accordingly, the

BDF1 time integration scheme for equation 4.1 is defined as,

un+1 − un

δt
+ L

(
un+1

)
= fn+1 (4.3)

and the same equation using the BDF2 schemes is defined as,

3un+1 − 4un + un−1

2δt
+ L

(
un+1

)
= fn+1 (4.4)
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4.1 Numerical formulation in the transient and nonlinear case

where n is the time step and 0 = t0 < t1 < · · · < tn < · · · < tN = tfinal, with

0 ≤ n ≤ N . It is noticed that the BDF2 is the main scheme used here for the time

integration, and BDF1 scheme has been implemented only at the beginning (t = 0).

Linearization of the nonlinear reaction term. Because of the existence of a

nonlinear reaction, it is required to linearize this term. To this end, the well-known

Newton methods have been implemented. Hence, the iterative linearized form of 4.1

at each time step (BDF2 time integration scheme) gives,

3un+1
i+1 − 4un + un−1

2δt
− k∆un+1

i+1 + a · ∇un+1
i+1 (4.5)

+ R
(
un+1
i

)
+R′

(
un+1
i

) (
un+1
i+1 − u

n+1
i

)
= fn+1 (4.6)

Let us to introduce a notation for the iterative solution of the linearized equation at

each time step (Nonlinear Transient case) as u = un+1
i+1 . Then the above expression can

be written in a more compact form that represents the algorithmic form of the time

integration for the linearized problem, that is,

L (u) := −k∆u+ a · ∇u+ sntu = fnt (4.7)

where

snt =

(
3

2δt
+R′

(
un+1
i

))
,

fnt = fn+1 +
2un

δt
− un−1

2δt
−R

(
un+1
i

)
+R′

(
un+1
i

)
un+1
i

Here i is the iteration for linearization at each time step n.

VMS stabilization. Now after deriving the variational formulation of 4.7 and fol-

lowing the same approach introduced in section (3.3) for stabilized DG method, we

may write the stabilized DG formulation of the nonlinear transient CDR equation as

follows, find uh ∈ Vh such that

Bτ (uh, vh) = Lτ (vh) vh ∈ Vh (4.8)
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where

Bτ (uh, vh) := Bh (uh, vh) + E (uh, vh)− (L∗vh, τLuh)h

Lτ (vh) = Lh (vh)− (L∗vh, τfnt)h

Similar to the procedure in section (2.3) considering the case with convection velocity

a = (a, 0), the stabilization parameter is given by,

τ ≈

 4k(
h1
p2

)2 + snt +
2a(
h1
p

)

−1

(4.9)

4.2 Some simple tests

In previous chapters the numerical solution of CDR problem was proposed and stabi-

lized continuous and discontinuous Galerkin formulations were introduced in particular

to deal with convection-dominated problems. In this chapter, some simple tests have

been carried out using the proposed DG formulation which has been validated using

the results obtained from CG method. In numerical examples at this study, the fol-

lowing has been considered. Peclet number denoted by Pe is a dimensionless number

that is commonly used in convection-diffusion problems. In the current discussion, Pec

is referred to as the cell Peclet number (inside each element) and PeL as the domain

Peclet number defined as,

Pec =
|a|h
2k

, and, PeL =
|a|L
k

(4.10)

where h is the element length, and L is the domain length. In convection dominated

problems the Peclet number is large (Pe� 0) and numerical instabilities occur.

4.2.1 1D convection-diffusion

In this section, some numerical experiments have been conducted for a convection

diffusion problem in 1-D and in a convection-dominated regime. The discretization

has been carried out by both CG and DG methods and using both unstabilized and

stabilized formulations. Also the approximations have been used for orders of p =

1, · · · , 4 (linear, quadratic, cubic, and quartic elements) which shape functions and the

gauss rule points have been designed and implemented.
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4.2 Some simple tests

In the following examples it has been considered that our domain is Ω = [0, 1]

and the source term, f = 1, h denotes the element size, and p denotes the order of

polynomial approximation.

4.2.1.1 Continuous Galerkin results

As a first example the non-stabilized and stabilized CG results have been depicted in

figure 4.1.

Since the problem is convection dominated (with a Pec = 30), which is very greater

than one, the CG solution performs spurious oscillations. On the other hand the sta-

bilized results show that using VMS method, the spurious oscillations are disappeared.

Furthermore, it is noticed that our stabilization is global and we are not stabilizing

locally. Accordingly, the local instabilities that appear in stabilized results, in a very

sharp edge, cannot be treated using this method. For that, local mesh refinement or

some special treatment such as shock capturing method could be proposed which is

beyond the aims of this study.

4.2.1.2 Discontinuous Galerkin results

The problem that was investigated in previous section is recalled here and the DG

discretization has been used to solve it. The problem has been solved for non-stabilized

and stabilized DG methods using proposed formulations 3.40, and 3.49 respectively.

According to these formulations, it is observed that there is a coefficient δ, so-called

penalty parameter, in the convection and diffusion flux continuity terms which has not

been assigned any specific values, and will be shown to be a crucial parameter. As a

matter of fact, the calculation of the coefficient δ is not easy and is always a case that

needs considerations (e.g. using error analysis).

Let us define the penalty parameter as δ = αh where h is the element size and α

is a coefficient that will be discussed later. Referring to the figure 3.2, the definition

of δ = αh is equivalent to taking a distance from the element edge inside each element

depending on a coefficient α. Here we have selected the values of α < 0.5 which looking

back to the figure 3.2 makes sense (δ with a limit of 0.5h).

Figures 4.2, illustrate the DG solution of the proposed problem in non-stabilized

and stabilized cases for different orders of polynomial approximation, and considering

different values of α coefficient.
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(b) Stabilized CG results

Figure 4.1: CG results, 10 elements, Pec = 30
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Figure 4.2: non-stabilized DG results compared to CG results, Pec = 30. dashed blue

line: α = 0.05, dotted magenta line: α = 0.005, dashed-dotted black line: α = 0.0005, and

solid red line: CG solution.

Now let us analyze the effect of the penalty coefficient on our DG solution using

these figures and and by looking back to our DG formulation 3.40. It is observed that

this formulation contain two terms which are dependent on the penalty parameter δ,

that is, the diffusion flux continuity term,

k

δ
([[nuh]], [[nvh]])E , (4.11)

and the convection flux continuity term,

δ

2
([[n · ∇vh]], [[n · auh]])E .

reminding that δ = αh was defined before.
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Assume values of the penalty parameter when α → 0. In this case and when k is

fixed (for Pe < 1 or Pe > 1 and of course being sure that Pe → ∞ is not the case),

the formulation will enforce, strongly, the continuity. For these values of α the same

stability problems as in the continuous case may be encountered. This may imply that

the DG results are performing in continuous space. Whereas if we assume comparatively

large (critical) values of the penalty parameter when α → αc (with critical coefficient

αc = 0.5 in limit) when k → 0, excessive continuity will be enforced in the direction

of convection velocity a which can be manifested with bigger jumps over the element

edges. Another important issue that must be considered is in a case when k → 0 and

α→ 0 which would impose a 0
0 delimma and therefore must be avoided by appropriate

selection of α value. However, by proper selection of the α in that case, either of the

fist or second cases discussed above could be anticipated depending on which one of

the continuity terms dominates the other.

In fact this can already be checked from the same figures in 4.2 or looking into

the left column in figures 4.4, 4.5, and 4.6. When α = 0.05 excessive continuity has

been imposed in the direction of a and the results represent bigger jumps and not in

a good agreement with CG results. On the other hand, when α = 0.0005 continuity

has been imposed strongly and the resulting DG solution performs close to continuous

space as we can see that the CG and DG results are perfectly matching in this case.

Also, it is observed that as it was predicted the same stability problems in CG are

appearing when continuity is enforced strongly. Furthermore, one may ask to select

values of α > 0.5. In the case of 1D, quite similar results have been achieved as the

previous case but the value of α in this case (α > 0.5) play a reverse role compared

to the previous case (α < 0.5). The reason can be clearly explained looking back to

above terms and considering the same explanations as previous case. In figures within

4.3, the results for non-stabilized DG using values of α > 0.5 has been depicted and

compared to CG results.
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Figure 4.3: non-stabilized DG results compared to CG results, Pec = 30. dashed blue

line: α = 1, dotted magenta line: α = 10, dashed-dotted black line: α = 100, and solid red

line: CG solution.

To overcome the problems occurred with the choice of penalty parameter, one pos-

sibility is to use the same stabilization strategy for discontinuous interpolants as for

continuous ones. As explained in Chapter (3.3), the stabilization method we have im-

plemented is the VMS method. In figures 4.4 for α = 0.05, 4.5 for α = 0.005, and 4.6

for α = 0.0005, stabilized results have been compared to those of non-stabilized ones

for p = 1, · · · , 4.
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Figure 4.4
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(h) stabilized DG, p = 4

Figure 4.4: DG solution, 10 elements, Pec = 30, with α = 0.05
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(k) non-stabilized DG, p = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 x 10-3

x

y

(l) stabilized DG, p = 2

Figure 4.5
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Figure 4.5: DG solution, 10 elements, Pec = 30, with α = 0.005
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Figure 4.6
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(w) non-stabilized DG, p = 4
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Figure 4.6: DG solution, 10 elements, Pec = 30, with α = 0.0005

Some interesting observations have been made through these results. The figures

on left side show the non-stabilized DG solution for different values of the penalty co-
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efficient δ (based on α). The figures on the right side are the stabilized results for the

same problem. An important point that can be inferred from these results is regarding

the robustness of the DG methods. As it was explained before, DG methods are felt to

have the advantage of robustness due to their built-in stability, especially for first order

polynomial approximations. But with respect to these results, depending on the value

of the penalty parameter, the DG results either perform spurious oscillations similar to

the CG case or produce results that might be inaccurate (with considerable jumps in

results which would be visible especially when less number of elements implemented).

Furthermore these instabilities occur within both of the low order and high order ap-

proximations (p = 1, · · · , 4). This might imply the need for stabilization of the DG

method.

The most interesting observation from these examples is that, we show the benefits

of adding stabilization to the original DG formulation. According to the stabilized

results, no spurious oscillations are appearing (unless a local instability appearing in

the sharp edge which cannot be treated by our global stabilization scheme and needs to

be treated by local mesh refinement or some special treatment such as shock capturing

method). Without adding the stabilization term in convective dominated flows, the

solution exhibits a strong dependence on the penalty parameter through the coefficient

α that enforces weak continuity of the unknown. By adding the stabilization term the

solution is virtually insensitive to this parameter.

4.2.2 2D convection-diffusion

In previous section, some numerical experiments were carried out in 1D case which

were followed by some interesting observations regarding the penalty parameter and the

need for stabilization of DG method. In the current section, some numerical examples

have been presented implementing non-stabilized and stabilized CG and DG solutions

in 2D. It is assumed that the source term f = 1. A 2D domain Ω = [0, 1] × [0, 1]

has been considered for all the cases. The boundary conditions are considered either
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homogeneous or the one defined as follows,

u (x, 0) = u (x, 1) = u (1, y) = 0

u (0, y) = 0 when |y − 0.5| > 0.125

u (0, y) = 1 when |y − 0.5| < 0.075

u (0, y) = 20 (y − 0.375) when y ≥ 0.375, y ≤ 0.425

u (0, y) = 20 (0.625− y) when y ≥ 0.575, y ≤ 0.625

which has been visualized in figure 4.7.
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Figure 4.7: Boundary conditions, blue: u = 0, green: u = 1, magenta: functions of y as

defined

The experiments have been carried out for, unstructured and structured triangulars,

and structured quadrilaterals. Polynomial approximations of the order p = 1, · · · , 4 i.e.

linear, quadratic, cubic, and quartic elements have been implemented in our calcula-

tions. To this end, the corresponding shape functions over the elements were built

and appropriate gauss rules were implemented for integrations. Noting that the higher

order elements were built such that their Jacobian of transformation (from reference

to physical element) would be linear. In figure 4.8, some sample domain meshing in-

cluding unstructured and structured triangular mesh, and quadrilateral mesh has been

represented. Also figures within 4.9, are schematic view of part of the mesh depicting

the corresponding element’s polynomial degree of approximation.
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(c) A quadrilateral mesh

Figure 4.8: A schematic view of the domain partitioned using different types of meshing
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Figure 4.9: A schematic view of part of the unstructured triangular mesh, and structured

quadrilateral mesh, p is the polynomial order of approximation

4.2.2.1 Continuous Galerkin results

As a first example (figure 4.10) a convection-diffusion problem has been solved using

non-stabilized CG approach. Since Pec � 0 the results are stable and there has been

no need for stabilization.
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(a) CG, Pec = 0.5, Structured triangular

mesh, 20 elements on each side, p = 4

(b) CG, Pec = 0.5, quadrilateral mesh, 10

elements on each side, p = 4

(c) CG, Pec,min = 0.1625, Unstructured tri-

angular mesh, a total of 1312 elements, p = 1

Figure 4.10: non-stabilized CG solution for different meshes, in all figures original mesh

has been represented

Now let us consider a convection-dominated case with Pe� 0. In figure 4.11, some

of the results for the proposed problem can be observed. The problem has been solved

using structured triangular elements and quadrilateral elements, and in non-stabilized

and stabilized cases.
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(a) CG, non-stabilized, quadrilaterals with

p = 1, Pec = 50

(b) CG, stabilized, quadrilaterals with p = 1,

Pec = 50

(c) CG, non-stabilized, unstructured tringu-

lars with p = 1 (ntot = 328), Pec,min = 57

(d) CG, stabilized, unstructured tringulars

with p = 1 (ntot = 328), Pec,min = 57

(e) CG, non-stabilized, triangulars with p = 2,

Pec = 50

(f) CG, stabilized, triangulars with p = 2,

Pec = 50

Figure 4.11
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(g) CG, non-stabilized, quadrilaterals with

p = 3, Pec = 50

(h) CG, stabilized, quadrilaterals with p = 3,

Pec = 50

(i) CG, non-stabilized, triangulars with p = 3,

Pec = 50

(j) CG, stabilized, triangulars with p = 3,

Pec = 50

(k) CG, non-stabilized, triangulars with p = 4,

Pec = 50

(l) CG, stabilized, triangulars with p = 4,

Pec = 50

Figure 4.11
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(m) CG, non-stabilized, quadrilaterals with

p = 4, Pec = 50

(n) CG, stabilized, quadrilaterals with p = 4,

Pec = 50

Figure 4.11: convection-dominated samples, CG results for non-stabilized and stabilized

cases, quadrilaterals with 10 elements on each side, and structured triangulars with 20

elements on each side, in all the figures original mesh has been represented

These simple examples demonstrate the inconsistency problems arising in convection-

dominated regime. Also, the stabilized results show that using VMS, the results have

become stabilized and the spurious oscillations are damped out.

4.2.2.2 Discontinuous Galerkin results

In this section a set of numerical examples similar to the ones in CG case have been

presented. Non-stabilized and stabilized DG methods have been implemented in order

to discretize the problem. Different orders of approximations from linear to quartic

(p = 1, · · · , 4) have been considered using unstructured and structured triangulars

and also quadrilateral elements. The previous assumptions regarding the domain etc

are also valid in this case. In order to implement the DG formulation 3.40, we have

considered the penalty parameter δ = αhorth where α is a parameter similar to the one

defined in 1D case, and horth is a characteristic length. Since two neighboring elements

sharing an edge may have different sizes, there is a need to define a common length

for horth implemented for both of the fluxes coming from these elements on the sharing

edge. Therefore, horth has been taken equivalence to a distance between the barycenters

of two neighbor elements and is orthogonal to the sharing edge (figure 4.12).

54



4.2 Some simple tests

Figure 4.12: two neighboring elements and their horth

With these definitions, let us first start with some Convection-Diffusion (CD) prob-

lems which are stable and do not require stabilization. To this end, two types of bound-

ary conditions, homogeneous and also the general one specified at the beginning of the

section (4.2.4) have been considered. In figures 4.13, a pure diffusion case has been con-

sidered with homogeneous boundary conditions (to test the simplest case). Following

that, figures 4.14 represent a set of examples for CD problem with non-homogeneous

boundaries which are also in a stable regime.

As it was mentioned previously instabilities are present in convection-dominated

regimes in CD problems. In figures 4.15, 4.16, 4.17, and 4.18 several numerical ex-

amples have been represented using non-stabilized and stabilized DG formulations in

a convection-dominated case. Different types of elements including, structured and

unstructured triangulars, and also quadrilaterals have been implemented to discretized

the problem. Instabilities are clearly visible in all the cases, whereas the results for

the stabilized cases do not perform any spurious oscillations. There have been some

very interesting observations which confirm our results in previous section for 1D case.

Regarding the penalty parameter α in our DG formulation 3.40, several different values

have been tried in the aforementioned figures. It was discussed in section (4.2) that the

values of the α < 0.5 are the ones that based on the derivation of our DG formulation

make more sense and can be confirmed here in 2D case as well (values used are be-

tween 0.00001 ≤ α ≤ 0.01). With the same discussion in previous section for 1D case

and looking back to the convection and diffusion continuity terms in equation 3.40 as

shown in equation 4.11, we can analyze our results in shown in the current figures in

2D similarly.

When α→ 0 while k is fixed and considering Pe < 1 or Pe > 1 knowing that Pe→
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(a) α = 0.01, non-stabilized unstructured

tringulars with p = 4, with ntot = 328 ele-

ments

(b) α = 0.01, non-stabilized structured tringu-

lars with p = 4, with 20 elements on each side

(c) α = 0.01, non-stabilized quadrilaterals

with p = 4, with 10 elements on each side

Figure 4.13: DG, homogeneous boundary condition, stable case, original mesh repre-

sented
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(a) α = 0.01, non-stabilized unstructured

tringulars with p = 4, Pec,min = 0.324

(b) α = 0.01, non-stabilized structured tringu-

lars with p = 4, Pec,min = 0.5

(c) α = 0.01, non-stabilized quadrilaterals

with p = 4, Pec = 0.5

Figure 4.14: DG, stable case, original mesh represented
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∞ is not the case, continuity is strongly enforced by the formulation. Then the DG

results may perform in continuous space and the same stability problems encountered

in the case of CG results may be expected in DG results in this case. Whereas for

comparatively large (critical) values of the penalty parameter when α → αc (with

critical coefficient αc = 0.5 in limit) when k → 0, excessive continuity is enforced in

the direction of convection velocity which may be characterized by bigger jumps across

the interior boundaries as it can be observed in the figures. It is noticed that when

k → 0 and α → 0 the 0
0 delimma will be expected which must be treated carefully by

appropriate choice of α. After the proper selection of α parameter the results might

behave similar to the cases discussed above.

These discussions can be checked from the same results in figures 4.15, 4.16, 4.17,

and 4.18 compared to CG results in figure 4.11. Comparing the non-stabilized DG

solutions with α = 0.0001 or α = 0.00001 to the CG results with similar conditions

(the same polynomial approximation, Pe number and so on), it is observed that by

decreasing the penalty parameter (α → 0), the DG results seem to be performing in

continuous space especially when α = 0.00001 the CG and DG results are perfectly

comparable. In order to check, for example see figure 4.15e compared to 4.11c, figure

4.16e compared to 4.11e, figures 4.17e and 4.17g compared to figures 4.11g and 4.11i

respectively, and figures 4.18e and 4.18g compared to figures 4.11k and 4.11m respec-

tively. On the other hand, for larger values of penalty parameter such as α = 0.01

bigger jumps are visible in the figures and the DG results are not in good agreement

with those of CG ones.

To deal with the problems arising from the choice of the stabilization parameter, a

possibility is to use a stabilized strategy, similar to continuous case, for Discontinuous

interpolations. As it was discussed in section (3.3), VMS method have been imple-

mented to achieve a stabilized DG formulation as in equation 3.49. Now let us look

back into the same figures 4.15, 4.16, 4.17, and 4.18. On the right column of the figures,

the stabilized results have been represented for all the cases with different elements and

interpolations using different values for α. A very interesting conclusion can be under-

stood by comparing the stabilized results and their non-stabilized solution, i.e. the

stabilized results for each degree of interpolation behave very similarly, seeming to be

independent from the values of α. This has been already observed in 1D case in pre-

vious section which can be now confirmed using these results in 2D. In non-stabilized
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cases the DG results are strongly dependent on the penalty parameter by α, whereas

in stabilized DG results the solution is virtually insensitive to the parameter α. This

may imply some benefits of stabilization in DG methods.

(a) α = 0.01,non-stabilized quadrilaterals

with p = 1, Pec = 50

(b) α = 0.01, stabilized quadrilaterals with

p = 1, Pec = 50

Figure 4.15

(c) α = 0.001,non-stabilized structured

tringulars with p = 1, Pec = 50

(d) α = 0.001, stabilized structured tringulars

with p = 1, Pec = 50

Figure 4.15
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(e) α = 0.0001,non-stabilized unstructured

tringulars with p = 1, Pec = 57

(f) α = 0.0001, stabilized unstructured tringu-

lars with p = 1, Pec = 57

Figure 4.15: DG solution, p = 1, convection-dominated regime, quadrilaterals elements

are with 10 elements on each side, structured triangulars with 20 elements on each side,

and unstructured tringulars with total of 328 elements. The original mesh is represented

within each figure

(a) α = 0.01,non-stabilized unstructured

tringulars with p = 2, Pec = 57

(b) α = 0.01, stabilized unstructured tringu-

lars with p = 2, Pec = 57

Figure 4.16
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(c) α = 0.001,non-stabilized quadrilaterals

with p = 2, Pec = 50

(d) α = 0.001, stabilized quadrilaterals with

p = 2, Pec = 50

(e) α = 0.0001, non-stabilized structured

tringulars with p = 2, Pec = 50

(f) α = 0.0001, stabilized structured tringu-

lars with p = 2, Pec = 50

Figure 4.16: DG solution, p = 2, convection-dominated regime, quadrilaterals elements

are with 10 elements on each side, structured triangulars with 20 elements on each side,

and unstructured tringulars with total of 328 elements. The original mesh is represented

within each figure
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(a) α = 0.01,non-stabilized quadrilaterals

with p = 3, Pec = 50

(b) α = 0.01, stabilized quadrilaterals with

p = 3, Pec = 50

(c) α = 0.001,non-stabilized unstructured

tringulars with p = 3, Pec = 57

(d) α = 0.001, stabilized unstructured tringu-

lars with p = 3, Pec = 57

(e) α = 0.0001,non-stabilized quadrilaterals

with p = 3, Pec = 50

(f) α = 0.0001, stabilized quadrilaterals with

p = 3, Pec = 50

Figure 4.17
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(g) α = 0.00001, non-stabilized structured

tringulars with p = 3, Pec = 50

(h) α = 0.00001, stabilized structured tringu-

lars with p = 3, Pec = 50

Figure 4.17: DG solution, p = 3, convection-dominated regime, quadrilaterals elements

are with 10 elements on each side, structured triangulars with 20 elements on each side,

and unstructured tringulars with total of 328 elements. The original mesh is represented

within each figure

(a) α = 0.01, non-stabilized unstructured

tringulars with p = 4, Pec = 57

(b) α = 0.01, stabilized unstructured tringu-

lars with p = 4, Pec = 57

Figure 4.18
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(c) α = 0.001, non-stabilized unstructured

tringulars with p = 4, Pec = 57

(d) α = 0.001, stabilized unstructured tringu-

lars with p = 4, Pec = 57

(e) α = 0.0001,non-stabilized structured

tringulars with p = 4, Pec = 50

(f) α = 0.0001, stabilized structured tringu-

lars with p = 4, Pec = 50

Figure 4.18
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(g) α = 0.00001,non-stabilized quadrilaterals

with p = 4, Pec = 50

(h) α = 0.00001, stabilized quadrilaterals with

p = 4, Pec = 50

Figure 4.18: DG solution, p = 4, convection-dominated regime, quadrilaterals elements

are with 10 elements on each side, structured triangulars with 20 elements on each side,

and unstructured tringulars with total of 328 elements. The original mesh is represented

within each figure

4.3 An Application Based Problem: Fuel Concentration

in a Combustor

In this section, an application based example has been presented. This example models

the jet diffusion flame in a combustor. The parameters of the problem have been

taken as the ones in a study of the same problem within (37) to compare the results.

The problem is governed by transient nonlinear reaction-convection-diffusion equations

which was presented in section (4.1) by equation 4.1.

Considering the equation 4.1 for our problem, the variable u represents the con-

centration of fuel in the domain, the coefficient a is the convection velocity, and k the

diffusion coefficient which are all taken as constant, and the source term is assumed as

f = 0. The term R (u) is an Arrhenius type nonlinear reaction given by,

R (u;µ) = Au (c− u) e−E/(d−u) (4.12)

where c and d are known constants and the system parameters defined as µ = (lnA,E)

can vary within the parameter domain D : [5, 7.25] × [0.05, 0.15] according to (37).

From a physical point of view, u represents fuel concentration, whereas c − u is the
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Figure 4.19: The domain for the modeled fuel concentration problem

concentration of the oxidizer. The parameters A and E are usually estimated from

experimental data. Figure 4.19 shows the 2D combustor domain.

A flow velocity of 0.2 (m/s) has been considered in x direction, the diffusion coef-

ficient taken as k = 5× 10−6
(
m2/s

)
. The fixed Arrhenius parameters are c = 0.2 and

d = 0.24, and the system parameters set to µ = (6.4318, 0.1091). On the left side of the

boundary (at the Dirichlet boundary) as shown in figure 4.19, the value of u denoted

by uD is set to c at the fuel inflow, and set to 0 at the oxidizer inflow. On the right

side of the domain two types of conditions have been considered, either zero Dirichlet

or zero Neumann boundary conditions.

Considering zero Dirichlet boundary conditions on the right side of the domain,

results for CG and DG solution of the problem have been represented in figure 4.20 in

a steady case. It’s observed that in CG non-stabilized case there are spurious oscillations

which imply the need for stabilization as shown on the left column of the same figure.

Regarding the DG, for comparatively small values of penalty coefficient (α = 1e − 8)

results seem to perform in continuous space and hence experiencing the same stability

problems as in CG case. On the other hand, for larger values of penalty coefficient

(α = 5e−5 or α = 1e−4) but still not very close to the critical value (αc = 0.5), in the

non-stabilized results the jumps are quite visible in the figures whereas the stabilized

DG solution perform better results and well agreeing with the stabilized CG case. Note

that the reason for having small values of α can be explained by looking back into our

DG formulation (3.40), and considering the portion k/δ in the diffusion continuity term

with δ = αh. Accordingly for small values of diffusion coefficient here (k = 5e − 6),

the value of α need to be such that the appropriate penalty parameter (δ) value is

ensured with respect to the continuity terms. Of course the values of α need to avoid

over-penalization by very small values, and also need to ensure appropriate results by
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taking values not very close to critical values, also the importance of the mesh size in

results should be noticed.

(a) CG, p = 4, non-stabilized (b) CG, stabilized

(c) DG, p = 4, non-stabilized, α = 1e− 8 (d) DG, p = 4, stabilized, α = 1e− 8

(e) DG, p = 4, non-stabilized, α = 5e− 5 (f) DG, p = 4, stabilized, α = 5e− 5

Figure 4.20
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(g) DG, p = 2, non-stabilized, α = 1e− 4 (h) DG, p = 2, stabilized, α = 1e− 4

Figure 4.20: Fuel concentration in a steady case (nonlinear RCD equation), zero Dirichlet

BC on right boundary, comparison of non-stabilized and stabilized CG and DG solutions,

quadrilaterals with [20× 10] elements and p = 4, and unstructured triangulars with ntot =

664 elements and p = 2. Note: original mesh has been represented.

Now let us consider the transient nonlinear case with u0 = 0 at time t = 0, and

considering a Neumann boundary condition on the right side of the boundary. In figure

4.21, the results using CG and DG solution of the problem have been represented. In

these figures the results after the steady state time denoted by (ts) have been shown.

Also in the same figures, the time step has been denoted by δt. The DG results are

all stabilized, in order to make the formulation non-sensitive to the penalty parameter

while still considering values of α that would avoid performing our DG solution in

continuous space. According to the results it is observed that for two different meshes

with different degrees of approximations, and also different α values the obtained results

are well agreeing. These application based results, following previously obtained results

and discussions, may indicate the benefits of stabilization in DG formulations and

specifically, as in our study, the convection dominated CDR problems.
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(i) CG, p = 4, stabilized, transient case, ts =

0.32 (s) with δt = 0.01

(j) DG, p = 4, stabilized, α = 1e−5, transient

case, ts = 0.36 (s) with δt = 0.01

(k) DG, p = 2, non-stabilized, α = 1e − 4,

transient case, ts = 0.33 (s) with δt = 0.01

Figure 4.21: Fuel concentration in a transient case (transient nonlinear RCD equation),

zero Neumann BC on right boundary, stabilized DG solutions, quadrilaterals with [20×10]

elements and p = 4, and unstructured triangulars with ntot = 664 elements and p = 2.

Note: original mesh has been represented.
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5

Conclusions

A stabilized Discontinuous Galerkin (DG) formulation was proposed for Convection

Diffusion Reaction (CDR) equations using high order approximations. A three field

hybrid approach was used in order to derive our DG formulation. The resulting DG

formulation turns out to be very classical; the only difference is in the term that enforces

continuity in the direction of convection velocity when diffusion goes to zero. The

developed DG formulation recovers the Interior Penalty (IP) method, preserves adjoint

consistency, and its flux continuity terms are derived naturally and without using the

common ad-hoc approaches.

Some simple numerical examples were conducted using the developed DG formula-

tion for CDR problem and in particular in the case of convection-dominated regime,

which were compared to the Continuous Galerkin (CG) results obtained for the same

problem. It was shown that the results obtained using the DG method are strongly

dependent on the penalty parameter (δ). There were some interesting observations

which were concluded according to the proposed DG formulation and were verified by

our results. Suppose δ = αh, when α→ 0 while k is fixed and considering Peclet (Pe)

number as Pe < 1 or Pe > 1 (convection-dominated case), the formulation will enforce,

strongly, the continuity. In this case it was observed that the same stability problems

as in the case of continuous Galerkin are encountered which implies that the DG results

are performing in continuous space. Whereas for critical values of penalty parameter

when α→ αc (with an interpretation of αc = 0.5) excessive continuity will be enforced

in the direction of convection velocity which is manifested by bigger jumps across the
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element boundaries. These results indicate the strong dependence of the DG results on

penalty parameter and also the difficulties in determining an appropriate value for it.

To overcome these problems, a stabilization of the DG method was proposed i.e.

using the same stabilization strategy for discontinuous interpolations as for continuous

ones. The proposed stabilized formulation was motivated from the variational multi-

scale (VMS) concept. From the proposed numerical examples, the benefits of adding

stabilization to the original discontinuous Galerkin formulation were shown. Without

this term, the solution exhibits a strong dependence on the parameter α that enforces

weak continuity of the unknown. Adding the stabilization term, the solution is virtu-

ally insensitive to this parameter. Our numerical examples in different cases and using

linear to higher orders of approximation (p = 1, · · · , 4) indicate that the stabilized DG

results for different values of α perform very closely which verifies the above conclusions.

From the analytical point of view, these results are explained by the dependence of the

stability and convergence bounds on α, which explode as continuity of the unknown is

excessively enforced and no additional stabilization is added.

Finally, an application based problem was presented in which the fuel concentration

was computed in a combustor. The governing transient nonlinear reaction-convection-

diffusion equations were derived considering parameters for convection-dominated regime

and by considering the reaction term modelled as an Arrhenius type nonlinear function.

The problem was numerically solved using the proposed stabilized DG method and the

derived DG results were compared to the computed CG results for the same problem.

In the end, the same discussions and conclusions explained above were clearly observed

and verified for this application based example as well as the other proposed examples.

72



Bibliography

[1] F. Bassi, and S. Rebay. A high-order accurate discon-

tinuous finite element method for the numerical

solution of the compressible Navier-Stokes equa-

tions. J. Comput. Phys. 131 (2), 267-279, 1997. 4, 21,

31

[2] T.J.R. Hughes, G. Engel, L. Mazzei, M.G. Larson. A com-

parison of discontinuous and continuous Galerkin

methods based on error estimates, conserva-

tion, robustness and efficiency. in: B. Cock-

burn, G.E. Karniadakis, C.-W. Shu (Eds.), Discontinu-

ous Galerkin Methods: Theory, Computation and Appli-

cations, Springer-Verlag, 2000. 5, 31

[3] P. Bochev, T.J.R. Hughes, and G. Scovazzi. A Multiscale

Discontinuous Galerkin Method. Siam J. Numer.

Anal. 44 (4), 14201440, 2006. 4, 31

[4] F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo.

Discontinuous Galerkin approximations for ellip-

tic problems. Numerical methods in PDEs, 16 (4),

365378, 2000. 4, 31

[5] C. Dawson. The Pk+1-Sk local discontinuous

Galerkin method for elliptic equations. Siam J.

Numer. Anal. 40 (6), 21512170, 2003. 4, 31

[6] T. J. R. Hughes, A. Masud, and J. Wan. A stabilized

mixed discontinuous Galerkin method for Darcy

flow. Comp. Meth. Appl. Mech. Enrgr, 195 (25-28), 3347-

3381, 2006. 4, 31

[7] B. Cockburn, G. Karniadakis and C.-W. Shu. The de-

velopment of discontinuous Galerkin methods, in

Discontinuous Galerkin Methods: Theory, Com-

putation and Applications. B. Cockburn, G. Karni-

adakis and C.-W. Shu, editors, Lecture Notes in Compu-

tational Science and Engineering, Springer, 11 3-50, Part

I: Overview, 2000. 22

[8] F. Brezzi, B. Cockburn, L.D. Marini,, and E. Süli. Sta-
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