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Abstract

Since the advent of computational mechanics, the numerical modelling of transient phe-
nomena has been a major field of interest in industry, including applications such as crash
simulation, impact, forging and many others. Traditionally, a Lagrangian formulation is em-
ployed for the numerical simulation of these problems and low order spatial interpolation is
preferred for computational workload convenience. For fast dynamics applications, the use
of explicit time integrators is regarded as efficient in the majority of cases. The well-known
second order solid dynamics formulation, where the primary variable is the displacement,
is typically discretised in space by using the finite element method and discretised in the
time domain by means of a Newmark time integrator. However, the resulting space-time
discretised formulation presents a series of shortcomings.

From the time discretisation point of view, the Newmark method has a tendency to introduce
high frequency noise in the solution field, especially in the vicinity of sharp spatial gradients.
From the space discretisation point of view, the use of isoparametric linear finite elements
leads to second order convergence in displacements, but only first order convergence for
stresses and strains. It is also known that these elements exhibit locking phenomena in
incompressible or nearly incompressible scenarios.

This work proposes a novel approach to obtain stabilised finite element solution of a new
system of first order hyperbolic equations, which aims to alleviate locking by introducing the
deformation gradient tensor as a conservation variable. A series of numerical experiments
are performed in order to determine the feasibility of the one step Taylor-Galerkin and the
Streamline Upwind Petrov-Galerkin finite element formulations. A comparative study is
also conducted with finite volume method.
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1.1 INTRODUCTION

Study of behaviour of Solid continuum under external and body forces has been a chal-

lenging and active field of research. Early developments in the field of solid mechanics

stemmed from civil engineering applications and currently has a wide range of applications

from nano-scale to macro-scale. An important consideration in developing a numerical

scheme is to able to represent the behaviour of a continuum. Fundamentally, the laws of

continuum mechanics adheres to two types of description of motion, namely Lagrangian

and Eulerian descriptions [12, 19, 35, 84].

The Lagrangian description is mainly used in the field of solid mechanics. In this descrip-

tion, the mesh motion coincides with the material motion. Hence, the history-dependent

constitutive relation can be resolved naturally [12, 38] and the movement of free surface

and material interfaces can be easily tracked. Lagrangian description naturally conserves

mass. However, large distortions may emerge as a consequence of large strains in this de-

scription.

The Eulerian description is widely popular in fluid mechanics and geodynamics applica-

tions. Here, the nodes and elements remain fixed in space, so that the continuum moves

or deforms with respect to the computational mesh. In this description, the material in-

terfaces and free surfaces can lose their accurate definitions [107]. This approach requires

higher mesh density to capture the material response, making the method very computa-

tionally expensive. This method is usually unsuitable for solids as this description provides

information only pertaining to current configuration.

With both Lagrangian and Eulerian descriptions certain difficulties and advantages occur

and on occasion it is possible to provide an alternative which attempts to secure the best

features of both Lagrangian and Eulerian description by combining these. Such methods are

known as Arbitrary-Lagrangian-Eulerian methods [106] and mostly used in fluid mechanics.

There are two broad classes of external loads, namely static and dynamical loading [81].

Static forces are those that are applied slowly to a structure and influence of inertia forces
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are not taken into account. In contrast, dynamic forces are time-varying forces which can

trigger vibration of structures. Many engineering problems in which the dynamic effects are

of particular importance are transportation, manufacturing and civil engineering structures

under environmental loadings (i.e. wind and snow load). A detailed discussion on the

various possible scenarios where dynamic loading is considered will be discussed in later

part of this chapter.

Traditionally, finite element method (FEM) is extensively used for problems in Computa-

tional Solid Mechanics [105]. Whereas, Finite Volume schemes are popular within the field

of Computational Fluid Dynamics [47]. Both schemes can be considered as methods of

weighted residuals where they differ in the choice of weighting functions [74]. The finite

element Galerkin method treats the shape function as the weighting function and can be eas-

ily extended to higher order by increasing the order of polynomial interpolation. In contrast,

the finite volume method results by selecting the weighting function as element piecewise

unit constant. These two numerical schemes are equivalent in many applications [54].

1.2 EARLY DEVELOPMENTS IN FEM

The development of finite element method can be contributed to pioneering works of many

researchers around the world. Perhaps, the first idea of finite elements was proposed by

Henrikoff [45]. Henrikoff suggested an approach for solving continuum problems with

proper boundary conditions which is fairly similar to the strategy that was used to resolve

truss problems. Until 1952, finite element applications were mostly limited to elements that

were connected by two points in space (e.g. rods, beams). In 1952, Ray Clough tackled the

problem of modelling membranes or plates that were part of bending regions of a structure

[31]. In 1956, Ioannis Argyris presented stress analysis results of an aircraft fuselages with

many cut-outs, openings and severe irregularities [9]. This work demonstrated systematic

implementation of finite element method, which later on paved way for immense popularity

of this scheme in computer applications. In the same year, a complete solution framework
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using the finite element method was reported [100] where triangular elements were consid-

ered to find solution to a plane stress problem. The well known direct stiffness method is

proposed in this work. Further developments of this method can be credited to Zienkiewicz

and Cheung [104] where they demonstrated that FEM is applicable to all problems that can

be recast into a variational form.

Earlier development of finite element method were mostly limited to infinitesimal or small

deformation problems [41, 51, 68, 70]. Since, many problems arising in solid mechanics

involve very large displacements, rotations and strains, the computational development has

to incorporate both large strain continuum mechanics and non-linear material behaviour.

Large strain theory, or finite strain theory also known as large deformation theory, deals

with deformations in which both rotations and strains are arbitrarily large. In this case,

the initial and deformed configurations of the continuum are significantly different and the

stress distribution due to varying geometry can not be neglected. For problems dealing with

dynamics, where the external loading increases or changes rapidly, the solution process are

even more complex and inertia effects needs to be taken into account.

Many applications in engineering require the solution of the dynamic response of structures

or deformable solids. In the field of civil engineering, the structural response of a building

under earthquakes loading (Figure 1.1), where, prior to the collapse, the structure under-

goes large displacements and displays elasto-plastic response. Developing a finite element

scheme capable of modelling this collapse accurately still poses a real challenge to engi-

neers and researchers. However, a considerable amount of research work have been carried

out in this direction. Dynamic response of systems of flexible beams and plates undergoing

finite strains has been considered in [36, 55, 89, 90]. A stress resultant finite element formu-

lation is proposed for the dynamic plastic analysis of plates and shells undergoing moderate

to large deformations [28, 66].

Crash worthiness is one of the main research interest of automotive industry. The impact of

a vehicle (Figure 1.2) involves fast dynamics and triggers geometrical non-linearity. Large
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Figure 1.1: Collapse of a building under earthquake [1]

strain finite element analysis of an impact can lead to accurate future design modifications

that could ensure the safe design of the vehicle. Similarly, the metal forming processes

(Figure 1.3), including rolling, forging, welding and extrusion of the material is relatively

complex. These processes involve important changes in the original geometry, large strains,

isochoric plastic flow, interaction (contact) with the forming tools and in many cases, self-

contact and a strong thermo-mechanical coupling [25, 29].

In field of biomedical engineering, the effect of impact loading human body and biological

soft tissues using hyperelasticity and plasticity constitutive formulations have been studied

[23, 69, 102]
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Figure 1.2: Collision of two cars [1]

1.3 MOTIVATION

A wide range of commercial finite element packages such as LS-DYNA3D [42], ANSYS

[3], ABAQUS [5], SAP 2000 [6] and PAM-CRASH [4] have been developed for dynamic

transient analysis. Majority of the packages use the Lagrangian description of motion. La-

grangian hydrocodes are also extensively used in automotive industry for resolving high

velocity impact problems [14]. Various versions of the LS-DYNA code use an Updated

Lagrangian description. Traditionally, Updated Lagrangian solid or structural mechanics

codes such as ABAQUS and NASTRAN [2] use an implicit time integration scheme for

evolving in time and are found not to be suitable for dynamic analyses in which shock

waves are dominant [67]. Since, the variables in the Updated Lagrangian are evaluated at

current configuration, which is constantly changing, finite element mesh coordinates need

to be recomputed at every time step. This leads to a significant rise in computer storage

and computational time [72]. In current work, the Total Lagrangian description is adopted,
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Figure 1.3: Welding of a metal [1]

where formulations are always with respect to the reference configuration.

The traditional solid dynamics formulation, where displacement field is the primary vari-

able, is solved by standard finite element spatial discretisation coupled with a family of

Newmark time integration schemes. However, the resulting space-time discretised formula-

tion presents a series of shortcomings. Firstly, Newmark’s method has a tendency for high

frequency noise to persist in the solution and most importantly, its accuracy is remarkably

degraded once artificial damping is implemented. Some minor modifications were intro-

duced to improve the accuracy of numerical dissipation without the inclusion of a disconti-

nuity sensor, which consequently made the Newmark scheme unsuitable for problems with

shock discontinuity [7, 30, 46, 103]. Moreover, it is well known that using linear elements
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in displacement-based FEM leads to second order convergence for displacements but one

order less for strains and stresses.

Constant stress elements exhibit volumetric locking in incompressible or nearly incompress-

ible applications; for instance, plastic flows involving large isochoric strains [20]. In order

to alleviate the locking phenomena, different approaches have been proposed. One of the

approaches recommends adoption of p-refinement along with high order interpolating func-

tions [37]. Another general strategy is to introduce a multi-field Veubeke-Hu-Washizu type

variational principle, which enables the use of independent kinematic descriptions for the

volumetric and deviatoric deformations [19]. The mean dilatation technique, in which a

constant interpolation for volumetric variables over an element is involved, is widely ac-

cepted. This specific technique can be identified as a particular case of Selective Reduced

Integration, where the volumetric stress components are integrated strategically using less

number of gauss points. Unfortunately, this scheme is not applicable for low order elements

(i.e. linear triangles and linear tetrahedrons) as these elements have already used the sim-

plest Gaussian quadrature rule. Bonet and Burton [16] suggested that the volumetric strain

energy is approximated by evaluating averaged nodal pressures in terms of nodal volumes

while the deviatoric component is treated in a standard manner. However, the resulting so-

lution performed poorly in bending dominated cases. To circumvent this issue, Dohrmann

et al. [37] proposed a new linear tetrahedron by employing nodal averaging process to the

whole small strain tensor. Subsequently, Bonet et al. [18] extended this application to large

strain regime with the idea of implementing an averaged nodal deformation gradient tensor

as the main kinematic variable.

It has been recently been observed that the explicit solid dynamics formulation can be ex-

pressed as a system of first order conservation laws similar to the system in wave propaga-

tion problems [17, 62, 73, 75]. An effort has been made to solve the first order conservation

laws using Discontinuous Galerkin method [75]. Additionally, the equation for the rate of

change of the deformation gradient tensor has also been added. The same system of first or-

der conservation laws has also been solved using two-step Taylor-Galerkin method [58, 79]
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and cell-centerd finite volume method [61] for Lagrangian solid dynamics.

1.4 OBJECTIVES AND SCOPE OF WORK

The objectives of the current study can be summarised as follows:

• Propose stabilised finite element schemes to solve first order hyperbolic system of

conservation laws.

• Investigate the consistency and stability of the schemes.

• Perform Spectral analysis of the schemes.

• Verify the order of convergence of the stabilised schemes.

• Investigate the suitability of different constitutive models, for instance, linear elastic,

non-linear Neo-Hookean models.

• Investigate the suitability of lumped mass formulation.

• Implement shock capturing scheme in order to minimise spurious oscillations in the

vicinity of shocks.

• Compare the accuracy of the stabilised finite element schemes with first and second

order finite volume schemes.

• Address issues regarding multi-dimensional implementation of the solution of the

conservation laws.

The effect of plasticity has not been studied in current work. However, the proposed numer-

ical framework permits the inclusion of any suitable plasticity models. This work briefly

introduces challenges arising from multi-dimensional implementation. However, further

study is needed in order to eliminate all the problems satisfactorily.
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1.5 LAYOUT OF THESIS

This work is divided into seven chapters including this chapter which reviews the earlier

research in FEM and introduces the motivation and objectives of current research. It also

provides the scope of the ongoing work.

Chapter 2 reviews the concept and terminologies used in Kinematics, which are used in

later part of the thesis. It also provides the formulation of the governing first order conser-

vation laws. The constitutive equations for the material models used in this study are also

presented. Finally, the contact and shock conditions corresponding to the Riemann solution

on the boundaries as well as interfaces between elements are described.

Chapter 3 proposes two stabilised finite element schemes e.g. one-step Taylor-Galerkin

scheme and the Streamline Upwind Petrov Galerkin scheme (SUPG) for solving the pure

advection equation. The stability and consistency of the resulting space-time schemes are

evaluated. Moreover, Spectral analysis is performed in order to determine the nature of

the dispersion and diffusion error. Finally, the Riemann problem is introduced and few

numerical simulations are conducted.

In chapter 4, the stabilised finite element formulations are extended in order to solve one

dimensional (1D) fast dynamics problems. Two different finite element framework, namely,

non-conservative and conservative framework, are introduced. The formulations for two

possible ways to obtain numerical solution, namely, “form A” and “form B”, for each

framework, are presented. The analytical and numerical solutions for propagation of an

acoustic wave in an 1D tube is discussed. Finally, few numerical experiments are performed

with regards to the SUPG scheme.

Chapter 5 focuses on the numerical implementation to solve 1D fast dynamics problems.

It briefly introduces the governing equations for the problem and presents results obtained

for an 1D example for both “form A” and “form B”. The convergence of the proposed

schemes are also verified in this chapter. Moreover, it proposes an shock capturing scheme

for ensuring better solution in the presence of shock discontinuity. The accuracy of the
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stabilised finite element schemes is compared with first and second order finite volume

schemes. The suitability of the formulation for incorporating different constitutive models

is investigated. Finally, the feasibility of adopting a lumped mass formulation is reported.

Chapter 6, briefly introduces the challenges arising from multi-dimensional implementation

of fast dynamics problems. The initial steps to circumvent these issues are presented. A

numerical example is presented and compared with finite volume schemes.

Finally, chapter 7 summarises the conclusions of the current work and addresses areas of

future research concerning the total Lagrangian solid dynamics finite element formulation.



Chapter 2

LARGE STRAIN STRUCTURAL

DYNAMICS

12
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2.1 INTRODUCTION

This chapter presents an overview of large strain solid dynamics and introduces some of the

notations and terminologies that will be used in the later part of this thesis. The chapter

begins with discussing few fundamental concepts of kinematics. The discussion is followed

by the new mixed formulation for fast dynamics. Later, the constitutive models utilised in

this work have been presented. Afterwards, the eigenstructure of the governing equation is

introduced. Finally, the contact and shock conditions are discussed.

2.2 KINEMATICS PRELIMINARIES

Kinematics can be defined as the science behind motion and deformation without any refer-

ence to the forces causing it [19]. Traditionally, behaviour of finite deformation is associated

with two alternative description settings, namely, Material or Lagrangian description and

Spatial or Eulerian description. This section introduces some of the basic concepts of kine-

matics. An extensive discussion on kinematics is available in references [12, 19, 35, 48, 84].

2.2.1 The Motion

Let B be a body with volume V , which consists of particles X at time t = 0. The motion

can be defined as the continuous time sequence of displacements which carries the body B

into current time t with volume v(t), containing the particles at x. In mathematical terms

x(t) = φ (X, t) . (2.1)

Alternatively, it can also be stated that

φ : V → v (t) where ∀X ∈ V, ∃x ∈ v(t)/x(t) = φ (X, t) . (2.2)
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The motion of B is shown in Figure 2.1. If the physical and kinematic quantities are ex-

 

V

0time t 

 v t

time t

 x X

2 2X ,x

1 1X ,x

3 3X ,x

Figure 2.1: Motion of a deformable body

pressed in terms of where the body was before deformation, it is known as material or

Lagrangian description. Alternatively, if the relevant quantities are described where the

body is after the deformation, it is called as spatial or Eulerian description.

2.2.2 Deformation Gradient Tensor

The deformation gradient tensor F is key to the description of deformation and hence strain.

It is expressed as the parital derivative of the mapping φ (X, t) with respect to the initial

configuration as,

F =
∂φ (X, t)

∂X
=

∂x

∂X
=∇0x, (2.3)

where ∇0 indicates the gradient with respect to the material configuration. The elemental

vector in spatial configuration dx can be obtained in terms of elemental vectors in initial

configuration dX as

dx = F dX. (2.4)
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Since, F transforms vectors in initial configuration to vectors in spatial configuration, it is

known as a two-point tensor.

2.2.3 Volume Change

The elemental spatial volume can be expressed as

dv = JdV, (2.5)

where dV is the volume at material configuration and Jacobian J is defined as the determi-

nant of the deformation gradient tensor as,

J = det(F ). (2.6)

The element mass dm can be written as

dm = ρ0V = ρv, (2.7)

where ρ0 and ρ indicate the densities in material and spatial configurations, respectively.

From equations (2.5) and (2.7), it can be deduced that

ρ0 = Jρ. (2.8)

Equation (2.8) is known as conservation of mass or continuity equation.
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2.3 Strain

In order to measure strains in large deformation, a suitable strain tensorE referred to as the

Green-Lagrange strain tensor, is introduced

E =
1

2
(C − I) , (2.9)

where C is the right Cauchy-Green deformation tensor, which is expressed in terms of F

as

C = F TF . (2.10)

It is worth noticing thatC operates on material elemental vectors and hence, it is a material

tensor. The right Cauchy-Green deformation tensor can also be written as

C =
3∑

α=1

Λ2
αNα ⊗Nα, (2.11)

where Nα represents the principal material directions of C and their corresponding eigen-

values are denoted by Λα. The spatial measure of strain is known as left Cauchy-Green

deformation tensor and is related to F as

b = FF T . (2.12)

Similar toC, b can also be expressed in terms of principal spatial directions nα and associ-

ated eigenvalues Λα as

b =
3∑

α=1

Λ2
αnα ⊗ nα. (2.13)

Therefore, the relationship betweenNα and nα can be written as

FNα = Λαnα. (2.14)
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2.3.1 Velocity Measures

The Lagrangian description of velocity of a particle is defined as

v (X, t) =
∂φ (X, t)

∂t
. (2.15)

The velocity can be written in a spatial position x, by inverting equation (2.15) as

v (x, t) = v
(
φ−1 (x, t) , t

)
. (2.16)

The partial derivative of equation (2.16) with respect to the spatial configuration leads to the

definition of velocity gradient tensor l as

l =
∂v (φ−1 (x, t) , t)

∂x
=∇v, (2.17)

where∇ indites the gradient with respect to the spatial configuration. Therefore, the time

derivative of deformation gradient tensor in terms of the velocity gradient can be written as

Ḟ =
∂v

∂x

∂φ (X, t)

∂X
=∇vF = lF . (2.18)

2.3.2 Rate of Deformation

The time derivative of Lagrangian strain tensor is known as the material strain rate tensor

and can be easily obtained in terms of Ḟ as

Ė =
1

2
Ċ =

1

2

(
Ḟ TF + F T Ḟ

)
. (2.19)

The rate of deformation tensor d can be expressed as

d =
1

2

(
l + lT

)
, (2.20)
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which is the symmetric part of velocity gradient tensor. It can also be observed that

d = F−T ĖF−1. (2.21)

2.4 GOVERNING EQUATIONS

In this section, the governing conservation equations or balance laws, in the context of La-

grangian dynamics, are presented. The obvious advantage of this formulation is that all

derivatives with respect to spatial coordinates are calculated based upon an original unde-

formed configuration. The new mixed formulation combines conservation of linear mo-

mentum, deformation gradient and energy [17, 58, 61, 63, 62, 73, 79]. Similar formulations

exist in an Eulerian configuration [71, 99].

2.4.1 Conservation of Linear Momentum

For a continuum, conservation of linear momentum dictates that the rate of change of linear

momentum of particles in material configuration is equal to resultant forces applied to these

particles. Mathematically, this principle can be written as

d

dt

∫
V

p(X, t) dV =

∫
V

ρ0b(X, t) dV +

∫
∂V

t dA, (2.22)

where p(X, t) = ρ0v(X, t) is the linear momentum per unit of material volume, ρ0 repre-

sents the material density, v is the velocity field, b stands for the body force per unit mass

and t denotes the nominal traction vector. The traction force t can be related to the first

Piola-Kirchhoff stress tensor as

t = PN , (2.23)
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where N indicates the unit normal in reference configuration. Applying the divergence

theorem on the last term at right hand side yields

∫
V

dp(X, t)

dt
dV =

∫
V

ρ0b(X, t) dV +

∫
V

∇0 · P dV. (2.24)

It is worth mentioning that the derivative of the integral term at the L.H.S. of equation (2.22)

can rewritten as the integral of a derivative term in equation (2.24) as the integration takes

place over material volume which does not change over time. Since equation (2.24) is valid

for any arbitrary volume, the local form of conservation of linear momentum is

dp(X, t)

dt
= ρ0b(X, t) +∇0 · P . (2.25)

2.4.2 Conservation of Deformation Gradient

In order to alleviate shear locking as well as volumetric locking, it is useful to treat F as an

independent variable with the aim of increasing the degrees of freedom (or flexibility) of the

problem [18]. Conservation of deformation gradient tensor can be easily derived by noting

that the time derivative of F (X, t) is related to the linear momentum p(X, t) as

∂F

∂t
=

∂

∂X

(
∂φ (X, t)

∂t

)
=∇0

(
p

ρ0

)
. (2.26)

With the help of the identity tensor I , equation (2.26) can be alternatively written as

∂F

∂t
=∇0 ·

(
p

ρ0

⊗ I
)
. (2.27)

Considering the integral form of equation (2.27) over volume V and applying divergence

theorem to the right hand side

∫
V

∂F

∂t
dV =

∫
∂V

(
p

ρ0

⊗N
)
dA. (2.28)
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Equation (2.28) can be considered as the generalization of continuity equation usually em-

ployed in fluid mechanics.

2.4.3 Conservation of Energy

The conservation of the total energy dictates that, in a continuum, the change in total energy

of a material volume should be equal to sum of the work done and heat exchanged in the

system. Mathematically, it can be expressed as

d

dt

∫
V

ET dV =

∫
∂V

t · v dA−
∫
∂V

Q ·N dA, (2.29)

where ET is the total energy per unit of undeformed volume, t describes the traction vec-

tor, v stands for the velocity vector, Q denotes the heat flow vector and N represents the

outward-pointing unit normal vector in reference configuration. For simplicity, the heat

source term is ignored. Applying divergence theorem to convert surface integral in to vol-

ume integral leads to

d

dt

∫
V

ET dV =

∫
V

∇0 ·
(
P T p

ρ0

−Q
)
dV. (2.30)

The local differential form of equation (2.30) is given as

∂ET
∂t

=∇0 ·
(

1

ρ0

P Tp−Q
)
. (2.31)

The total energy ET can be expressed as

ET = e+ Ψext +
1

2ρ0

p · p (2.32)

where e indicates the internal energy in unit material volume consisting of heat and elastic

energy components, Ψext denotes the potential energy resulting from external forces ρ0b and

the last term expresses kinetic energy. Assuming that the external forces remain constant,
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the potential energy can be written as

Ψext = −ρ0b · x, (2.33)

and the time derivative leads to

Ψ̇ext = −ρ0b · v. (2.34)

Therefore, equation (2.31) can modified by combining with equation (2.27) as

∂e

∂t
= P :

∂F

∂t
−∇0 ·Q. (2.35)

2.4.4 Conservative Law Formulation

The physical laws for the linear momentum and the deformation gradient tensor are sum-

marised here for convenience:

∂p

∂t
−∇0 · P = ρ0b, (2.36)

∂F

∂t
−∇0 · (

p

ρ0

⊗ I) = 0, (2.37)

∂ET
∂t
−∇0 ·

(
1

ρ0

P Tp−Q
)

= 0. (2.38)

These conservation laws can then be grouped into a single system of first order hyperbolic

equations as
∂U
∂t

+
∂F I

∂XI

= S, ∀ I = 1, 2, 3; (2.39)
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where their components are illustrated as follows

U =



p1

p2

p3

F11

F12

F13

F21

F22

F23

F31

F32

F33

ET



, F I =



−P1I(F )

−P2I(F )

−P3I(F )

−δI1p1/ρ0

−δI2p1/ρ0

−δI3p1/ρ0

−δI1p2/ρ0

−δI2p2/ρ0

−δI3p2/ρ0

−δI1p3/ρ0

−δI2p3/ρ0

−δI3p3/ρ0

QI − (PiIpi) /ρ0



, S =



ρ0b1

ρ0b2

ρ0b3

0

0

0

0

0

0

0

0

0

0



. (2.40)

For a reversible process, the energy term can be solved independently.
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2.4.5 Interface Flux

At a given interface defined by the outward unit normal vector material configuration N =

[N1 N2 N3]T , the interface flux without the energy term is expressed as

FN = F INI =



−t1(F )

−t2(F )

−t3(F )

−N1p1/ρ0

−N2p1/ρ0

−N3p1/ρ0

−N1p2/ρ0

−N2p2/ρ0

−N3p2/ρ0

−N1p3/ρ0

−N2p3/ρ0

−N3p3/ρ0



, ∀ I = 1, 2, 3, (2.41)

with the help of t = PN .

2.5 HYPERELASTICITY

Traditionally, materials for which constitutive equations depend solely on the current state

of deformation are known as elastic. Hence, the stress at a particle X in body B can be

measured as a function of the current deformation gradient F associated with that particle.

Consequently, the first Piola-Kirchhoff stress P can be measured in terms of its conjugate

F as

P = P (F (X),X) , (2.42)
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where the direct dependence onX takes into account the possible non-homogeneous nature

of B.

Hyperelasticity occurs when work done by the stresses during a deformation process is

dependent only on the initial state at time t0 and the final configuration at time t. This

path-independent behaviour allows the stored strain energy function or elastic potential per

undeformed volume Ψ to be captured in terms of P and its work conjugate Ft as

Ψ (F (X),X) =

∫ t

t0

P (F (X),X) : Ft dt; Ψt = P : Ft, (2.43)

which leads to

P (F (X),X) =
∂Ψ (F (X),X)

∂F
. (2.44)

Behaviour of all hyperelastic materials are governed by equation (2.43) and equation (2.44).

This general constitutive equation can be further extended by observing that as a conse-

quence of the objectivity requirement, Ψ must be independent of the rotation component of

the deformation gradient. Therefore, Ψ can be expressed as a function of the right Cauchy-

Green tensor C as

Ψ (F (X),X) = Ψ (C(X),X) . (2.45)

Since, 1
2
Ct = Et is work conjugate to the second Piola-Kirchoff stress S, Lagrangian

constitutive equation for hyperelastic materials can be formulated as

Ψt =
∂Ψ

∂C
: Ct =

1

2
S : Ct; S(C(X),X) = 2

∂Ψ

∂C
=
∂Ψ

∂E
. (2.46)

For isotropic materials, Ψ can be expressed in terms of the principal invariants of F as

Ψ (F (X),X) = Ψ (IF , IIF , IIIF ,X) , (2.47)

where IF = tr(F ), IIF = F : F , IIIF = det(F ). Therefore, P can be written in terms
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of the invariants as

P =
∂Ψ

∂F
=

∂Ψ

∂IF

∂IF
∂F

+
∂Ψ

∂IIF

∂IIF
∂F

+
∂Ψ

∂IIIF

∂IIIF
∂F

, (2.48)

where the derivatives of the invariants are computed as

∂IF
∂F

= I;
∂IIF
∂F

= 2F ;
∂IIIF
∂F

= det(F )F−T . (2.49)

The stored energy function Ψ can be decomposed into the summation of deviatoric Ψdev(J
−1/3F )

and volumetric Ψvol(J) components as

Ψ(F ) = Ψdev(J
−1/3F ) + Ψvol(J), (2.50)

which in turn, leads to

P = Pdev + Pvol; Pdev =
∂Ψdev

∂F
; Pvol =

∂Ψvol

∂F
. (2.51)

2.5.1 Nearly Incompressible Neo-Hookean Material

The simplest model satisfying the conditions described in previous section is the nearly in-

compressible Neo-Hookean (NH) material. Its deviatoric and volumetric parts are described

as

Ψdev =
1

2
µ [J−2/3(F : F )− 3]; Ψvol =

1

2
κ(J − 1)2. (2.52)

Here, κ is the bulk modulus which only appears in the volumetric term whereas the shear

modulus µ, on the other hand, appears in the deviatoric counterpart. The corresponding

stress components can be evaluated as

Pdev = µJ−2/3[F − 1

3
(F : F )F−T ]; Pvol =

dΨvol

dJ

∂J

∂F
= κ(J − 1)JF−T . (2.53)
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The fourth-order constitutive tensor is defined as

C =
∂P

∂F
. (2.54)

2.5.2 Linear Elasticity

A linearised elastic constitutive relationship is considered as an excellent model to describe

small deformation behaviour for engineering materials such as, concrete, steel and metal.

In this type of material, Ψ is defined as

ψ (ε) =
1

2
λ (tr(ε))2 + µ (ε : ε) , (2.55)

where µ and λ are the so-called Lamé constants. It is worth mentioning that Saint-Venant

Kirchhoff material is recovered if ε is replaced by the Green-Lagrange strain tensor E.

Deformation gradient tensor can be split into a displacement gradient H = ∂u/∂X and

identity tensor I , i.e. F = I +H . In the context of infinitesimal strain, an assumption is

made such that only linear contributions of H are considered. In what follows, the engi-

neering strain ε and its trace can be further developed as

ε =
1

2

(
H +HT

)
=

1

2

(
F + F T − 2I

)
; tr(ε) = tr(H) = tr(F )− 3. (2.56)

In the absence of deformation (F = I), the stored energy functional vanishes as expected

(Ψ(ε) = 0). Based on equation (2.44), after few algebraic manipulations, the stress tensor

is obtained as

P (F ) = µ

[
F + F T − 2

3
tr(F )I

]
+ κ (tr(F )− 3) I. (2.57)



LARGE STRAIN STRUCTURAL DYNAMICS 27

2.6 EIGENSTRUCTURE

The mixed conservation law expressed in equation (2.39) can be rewritten in non-conservation

form as

∂U
∂t

+AI
∂U I
∂XI

= S, ∀I = 1, 2, 3, (2.58)

where Flux Jacobian matrixAI can be expressed as

AI =
∂F I

∂U . (2.59)

The Flux Jacobian matrix at a given interface can be written as

AN = AINI =
∂F I

∂U NI =
∂FN

∂U . (2.60)

In order to comprehend the eigenstructure of the Flux Jacobian matrix, it is useful to separate

the momentum and the deformation gradient tensor of U and FN as

U =

pF
 and FN =

 −t

−v ⊗N

 , (2.61)

where the term corresponding to energy is neglected for simplicity (i.e., no heat flow takes

place). In equation (2.61), F should be interpreted as column vectors of 9 entries corre-

sponding to each of its components. Consequently,AI can be expressed as

AN =

 −∂(PN)
∂p

−∂(PN)
∂F

−
∂
(

1
ρ0

p⊗N
)

∂p
−
∂
(

1
ρ0

p⊗N
)

∂F

 =

 03×3 −CN

− 1
ρ0
IN 09×9

 , (2.62)
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where the normal component of fourth order constitutive tensor C = ∂P
∂F

is indicated as

[CN ]ijJ =
∂PiI
∂FjJ

NI and [IN ]iIk = δikNI . (2.63)

The right and left eigenvectors ofAN , namelyRα and Lα, and their corresponding eigen-

values Uα can be related as

ANRα = UαRα (2.64a)

LTαAN = UαLTα . (2.64b)

The orthogonality condition between the left and right eigenvectors dictates that

AN =
12∑
α=1

Uα
RαLTα
RT

αLα
. (2.65)

In order to derive expressions for these eigenvectors, it is crucial to separate their compo-

nents into

Rα =

p
R
α

FR
α

 , Lα =

p
L
α

F L
α

 . (2.66)

Substituting the explicit expression forAN in equation (2.62) into equation (2.64a) leads to

−CN : FR
α = Uαp

R
α (2.67a)

− 1

ρ0

pRα ⊗N = UαF
R
α . (2.67b)

Eliminating FR
α by inserting equation (2.67b) into equation (2.67a) yields a symmetric

eigenvalue problem for pR as

CNNpRα = ρ0U
2
αp

R
α , (2.68)
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where the symmetric 3× 3 tensor CNN is given as

[CNN ]ij =
3∑
I,J

CiIjJNINJ . (2.69)

In the nonlinear elastic context, the eigenproblem discussed above yields 3 pairs of wave

speeds, which correspond to the volumetric (or P-wave) Up and shear (or S-wave) Us,

U1,2 = ±Up, (2.70a)

U3,4 = U5,6 = ±Us, (2.70b)

where

Up =

√
γ2 +

(
γ1
Λ2 + 2γ3

)
ρ0

; Us =

√
γ2

ρ0

, (2.71)

where

γ1 = κJ2 +
5

9
µJ−2/3 (F : F ) , (2.72a)

γ2 = µJ−2/3, (2.72b)

γ3 = −2

3
µJ−2/3, (2.72c)

Λ =
1

‖F−TN‖
. (2.72d)

Expression (2.70) concludes that the remaining six eigenvalues of matrix AN are zero. In

linear elasticity context, since F ≈ I and J ≈ 1, the longitudinal and shear waves can be

simplified as

Up =

√
λ+ 2µ

ρ0

; Us =

√
µ

ρ0

. (2.73)

The matrixAN can therefore be reconstructed in terms of non-zero wave speeds as

AN =
6∑

α=1

Uα
RαLTα
RT

αLα
. (2.74)

Moreover, the eigenvalue structure, also leads to 3 pairs of orthogonal eigenvectors, where
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the first one n corresponds to the outward unit normal vector in spatial configuration as-

sociated to material vector N and the remaining two are arbitrary tangential vectors t1,2

orthogonal to n. These orthogonal eigenvectors are written as

R1,2 =

 n

± 1
ρ0Up

n⊗N

 ; R3,4 =

 t1

± 1
ρ0Us

t1 ⊗N

 ;

R5,6 =

 t2

± 1
ρ0Us

t2 ⊗N

 . (2.75)

Subsequently, the set of left eigenvectors is obtained as

L1,2 =

 n

± 1
Up
C : (n⊗N )

 ; L3,4 =

 t1

± 1
Us
C : (t1 ⊗N )

 ;

L5,6 =

 t2

± 1
Us
C : (t2 ⊗N )

 . (2.76)

Noting that RT
αLα = 2 for α = 1, 2, . . . , 6, the Flux Jacobian matrix AN can now be

rewritten as

AN =
1

2

6∑
α=1

UαRαLTα (2.77a)

=
1

2
{R1, . . . ,R6}



Up 0 0 0 0 0

0 −Up 0 0 0 0

0 0 Us 0 0 0

0 0 0 −Us 0 0

0 0 0 0 Us 0

0 0 0 0 0 −Us




LT1

...

LT6

 (2.77b)

=
1

2

[
Up(R1LT1 −R2LT2 ) + Us(R3LT3 −R4LT4 +R5LT5 −R6LT6 )

]
. (2.77c)
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This expression suggests existence of 3 sets of waves being transmitted in opposite direc-

tion: one set of longitudinal waves travelling with speeds Up and −Up in the direction n as

well as 2 sets of shear waves moving with speeds Us and −Us in the directions t1 and t2.

2.7 SHOCK AND CONTACT CONDITIONS

The conservation law in equation (2.39) can be written in integral form (neglecting source

terms) as
d

dt

∫
V

U dV +

∫
V

∂F I

∂XI

dV = 0. (2.78)

Application of divergence theorem leads to

d

dt

∫
V

U dV +

∫
∂V

FN d∂V = 0. (2.79)

These conservation laws allow solutions with discontinuities or shocks propagating through

the medium at certain speed. Jump conditions are derived by considering an arbitrary vol-

ume of deformable body shown in Figure 2.2. The domain is divided by a jump discontinu-
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Figure 2.2: Surface discontinuity

ity across surface that separates it into two regions V + and V − with boundaries ∂V + and

∂V −, respectively. The speed of the moving surface Γ with unit normalN is denoted as U .
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Application of the Reynold’s transport theorem yields

d

dt

∫
V +

U dV =

∫
V+

∂U
∂t

dV +

∫
Γ

−UU+ d∂V

d

dt

∫
V −
U dV =

∫
V−

∂U
∂t

dV +

∫
Γ

UU− d∂V. (2.80)

Summation of both equations leads to the Reynold’s transport theorem with jump disconti-

nuity as

d

dt

∫
V

U dV =

∫
V

∂U
∂t

dV +

∫
Γ

UJU K d∂V, (2.81)

where JU K indicates jump in U as

JU K = U+ − U−. (2.82)

Subsequently, the expression for Flux term in equation (2.78) can be written as

∫
V

∂F I

∂XI

dV =

∫
∂V

FN d∂V +

∫
Γ

JFN K d∂V, (2.83)

Adding equation (2.81) and (2.81) yields

UJU K = JFN K. (2.84)

This is so called Rankine-Hugoniot condition [80, 98]. The generalised jump condition

derived in equation (2.84) can be utilised to formulate the jump conditions for momentum,

deformation gradient and energy as

U Jp K = −JP KN ,

U JF K = − 1

ρ0

Jp K⊗N ,

U JET K = − 1

ρ0

JP Tp K ·N . (2.85)
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Contact conditions play a major role in analysing dynamic problems. Figure 2.3 displays

motion of an arbitrary body which comes into contact with another body. Physically, this
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Figure 2.3: Contact motion generated shock waves

can be the result of impact between two bodies or two parts of the same body. Numerically,

contacts may arise from the use of discontinuous interpolations of the problem variables,

such as in Godunov’s type of methods or discontinuous Galerkin.

In current formulation, A general interface flux at a contact point can be expressed as

FC
N =

 −tC

− 1
ρ0
pC ⊗N

 (2.86)

where the term corresponding to energy has been neglected. The traction and linear mo-
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mentum term dependant on various contact conditions (Figure 2.4) can be expressed as

pC = 0, tC = t− (sticking surface) (2.87)

pCt = p−t , tCt = tBt ,

pCn = 0, tCn = t−n (sliding surface) (2.88)

pC = p−, tC = tB (free surface). (2.89)
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Figure 2.4: Different boundary conditions

2.8 CONCLUSION

Various concepts pertaining to Kinematics are introduced in this chapter. Among these,

the terms pertaining to deformation gradient tensor plays a major role in later part of this

thesis. Moreover, the conservation laws of deformation gradient tensor, linear momentum

and energy are formulated. The constitutive models of nearly incompressible Neo-Hookean

and linear elastic materials are also presented in this chapter. Furthermore, the expres-

sions for longitudinal and shear wave velocities for different material models are obtained.

The Rankine-Hugoniot condition is derived and extended to the conservation variables. Fi-

nally, the expression for contact for sticking surface, sliding surface and free surface are

presented.



Chapter 3

SOLUTION OF HYPERBOLIC

EQUATION IN ONE-DIMENSION

35
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3.1 INTRODUCTION

From the discussion of the previous chapter, it is known that the set of equations arising

from the new mixed Lagrangian solid dynamics problems are hyperbolic in nature. This

chapter aims to envisage different finite element formulations to solve the one-dimensional

(1D) hyperbolic equation. Later, these formulations can be extended to multi-dimensions.

This chapter first introduces the one step Taylor-Galerkin formulation for solving the pure

advection equation. This discussion is followed by Streamline Upwind Petrov-Galerkin

(SUPG) formulation for spatial discretisation. Later, various time integration schemes are

employed for obtaining the solution of the 1D linear advection equation, which is hyper-

bolic in nature. Various numerical analyses such as, consistency analysis, stability analysis

and spectral analysis are performed on the schemes. Few numerical examples are presented

in order to demonstrate the capabilities and efficiency of the schemes. Finally, some con-

clusions are reached on the proper choice of numerical schemes as well as their consistency

and stability.

3.2 TAYLOR-GALERKIN SCHEME

In this particular scheme, the advection equation is discretised in space using Galerkin ap-

proximation and in time with a second order Taylor series discretisation in time. The advec-

tion equation (3.12) at time step n can be written as

unt = −aunx. (3.1)

The second derivative with respect to time yields

utt = −aunxt = −auntx = a2unxx. (3.2)
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It is known from a Taylor series expansion that

∆u

∆t
:=

un+1 − un

∆t
= unt +

∆t

2
untt +O

(
∆t2
)

(3.3)

Substituting expressions for first and second order time derivatives (equations (3.1) and

(3.2)) into equation (3.3)

∆u

∆t
= −aunx +

a2∆t

2
unxx +O

(
∆t2
)
. (3.4)

Application of Galerkin discretisation to equation (3.4) results into

∫
Ω

W
∆uh

∆t
dΩ = −

∫
Ω

Wauhx dΩ +

∫
Ω

W
∆t

2
a2uhxx dΩ. (3.5)

Application of the divergence theorem to the R.H.S. leads to

∫
Ω

W
∆uh

∆t
dΩ =

∫
Ω

Wxau
h dΩ−

∫
Ω

∆t

2
a2Wxu

h
x dΩ +

∫
∂Ω

W
∆t

2
a2uhx d∂Ω

−
∫
∂Ω

Wauh d∂Ω. (3.6)

The discretised version of above equation is

nel∑
e=1

W̃ ·
∫

Ωe
NN T ∆ũ

∆t
dΩ =

nel∑
e=1

W̃ ·
∫

Ωe
aBN T ũ dΩ

−
nel∑
e=1

W̃ ·
∫

Ωe

a2∆t

2
BBT ũ dΩ + W̃N

∆t

2
a2uxN − W̃NauN .

(3.7)

The discretised form of equation (3.7) can be written as

MTG
∆ũ

∆t
+ KTGũ = 0, (3.8)
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where

MTG =

nel

A
e=1

(Me
TG) , KTG =

nel

A
e=1

(Ke
TG) and ũ =

nnode

A
i=1

(ũi) . (3.9)

In equation (3.9), A represents the assembly operator, ũi = [ui, ui+1]T and consistent ele-

ment mass matrix Me
TG is expressed as

Me
TG =

h

6

2 1

1 2

 (3.10)

and

Ke
TG = −a

2

−1 −1

1 1

+
∆ta2

2h

 1 −1

−1 1

 . (3.11)

The one step Taylor-Galerkin scheme is second order accurate in time and space.

3.3 DISCRETISATION IN SPACE: SUPG

The one-dimensional linear advection equation can be expressed as

ut + aux = 0 in Ω, (3.12)

with boundary and initial conditions

u = ů in (Ω, t0),

u = uD on (∂ΩD, t),

ux = uN on (∂ΩN , t), (3.13)

where a is the advection velocity, u denotes an unknown scalar variable, ut indicates the

partial derivative of u with respect to time (t), t0 indicates initial time, ux represents the

partial derivative of uwith respect to space, Ω is a bounded open domain in<with Lipschitz
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continuous boundary ∂Ω = ∂ΩD ∪ ∂ΩN with Neumann and Dirichlet boundary conditions

denoted by uN , uD, respectively.

As discussed earlier, the standard Bubnov-Galerkin solution of hyperbolic equations leads

problems such as spurious oscillations. In order to obtain a stabilised finite element solu-

tion, time-space elements are a natural choice [56, 85, 86]. Here, upwinding effect can be

incorporated by combining the time derivative and the advective term into a ”single ma-

terial” derivative, which leads to Petrov-Galerkin weighting function (WSUPG) [15, 56] in

one-dimension as

WSUPG

(
uh
)

=
Duh

Dt
= u̇h + auhx, (3.14)

Nevertheless, the most effective and popular approach is to first discretise the hyperbolic

equation in space, which leads to simultaneous first order ordinary differential equations

dependent only on time. Next, the equations are solved using appropriate time integra-

tion scheme. As a result, these algorithms allow usage of existing spatial finite element

frameworks and apply a suitable time integration scheme without significant development

of new software [59, 24, 34, 44, 49]. This technique is also known as Method of Lines [65].

Moreover, in practical applications the increased computational cost due to higher number

unknowns for coupled time-space formulations is a significant drawback.

A popular and efficient way to circumvent the problem arising from spurious oscillations

and locking, is to augment the Bubnov-Galerkin form of equation (3.12) with terms which

add numerical dissipation but diminish for all sufficiently smooth solutions. Resulting

schemes (e.g., SUPG method, Taylor-Galerkin method) are called consistently stabilised

methods [15] as the order of accuracy of Galerkin approximation is not disturbed. For 1D

advection equation, the SUPG scheme is expressed as

〈
W,
(
uht + auhx

)〉
Ω

= 0, (3.15)

where 〈 , 〉 indicates L2 inner product in the Ω. The weighting function W can be written



SOLUTION OF HYPERBOLIC EQUATION IN ONE-DIMENSION 40

as

W = W +WSUPG, (3.16)

where W
(
uh
)

is the Bubnov-Galerkin weighting function and the Petrov-Galerkin weight-

ing function (WSUPG) is formulated as

WSUPG = τaWx, (3.17)

where τ is the stabilisation parameter. It can be noticed that the Bubnov-Galerkin formula-

tion is recovered for τ = 0. The optimal value of τ for a convection-diffusion equation in

1D, is given as (Donea and Huerta, 2003)

τopt =
h

2|a|

(
coth|Pe| − 1

Pe

)
, (3.18)

where Pe denotes the Peclet number and h indicates the length of the element. For a pure

advection problem, Pe→∞ and equation (3.18) results into

τopt =
h

2|a|
. (3.19)

For an implicit time-integration scheme, an alternative expression for τopt is obtained as

[15, 21, 22, 76]

τopt =
h√

15|a|
. (3.20)

This maximises the phase accuracy of the semi discrete equation. Therefore, the SUPG

formulation of equation (3.12) in terms of τ can be written as

∫
Ω

Wuht dΩ +

nel∑
e=1

∫
Ωe
τaWx

(
uht + auhx

)
dΩ = −

∫
Ω

aWuhx dΩ. (3.21)
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Applying the divergence theorem on the first term at right hand side (R.H.S.),

∫
Ω

Wuht dΩ +

nel∑
e=1

∫
Ωe
τaWx

(
uht + auhx

)
dΩ =

∫
Ω

aWxu
h dΩ−

∫
∂Ω

aWuh d∂Ω. (3.22)

The finite element approximation for uh and W within a subdomain can be expressed as

function of a shape function vectorN as

uh ≈ ũ = Njũj =N T ũ; W ≈ W̃ = NjW̃j =N TW̃ , (3.23)

where j increments up to 2 for linear elements N =
[xi+1−x

h
x−xi
h

]T
. Similarly, ux is

obtained as

uhx ≈ ũx = Bjũj = BT ũ, (3.24)

where B represents the vector field containing the first derivative of the shape functions and

B =
[
− 1
h

1
h

]T for linear elements. Therefore, the semi-discretised form of equation (3.22)

can be expressed as

nel∑
e=1

W̃ ·
∫

Ωe
NN T ũt dΩ +

nel∑
e=1

W̃ ·
∫

Ωe
τaBN T ũt dΩ =

nel∑
e=1

W̃ ·
∫

Ωe
aBN T ũ dΩ

−
nel∑
e=1

W̃ ·
∫

Ωe
τa2BBT ũ dΩ− W̃NauN , (3.25)

where the constant term represents the Neumann boundary condition effect.

3.4 DISCRETISATION IN TIME

Once equation (3.12) is discretised in space, a suitable time integration scheme is used to

obtain the final solution. Due to the nature of the problems to be solved subsequently,

explicit schemes are preferred for implementation. In current section, Forward Euler and

Total Variation Diminishing (TVD) Runge-Kutta schemes are employed.
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3.4.1 Forward Euler Method

According to this scheme, ut is expressed as

∂u

∂t

∣∣∣∣n
i

=
un+1
i − uni

∆t
+O(∆t) ≈ ∆u

∆t
, (3.26)

where un+1
i indicates magnitude of variable at ith node and n+ 1 time step. The discretised

form of equation (3.25) can be written as

MSUPG
∆ũ

∆t
+ KSUPGũ = 0, (3.27)

where

MSUPG =

nel

A
e=1

(Me
SUPG) , KSUPG =

nel

A
e=1

(Ke
SUPG) and ũ =

nnode

A
i=1

(ũi) . (3.28)

In equation (3.28), A represents the assembly operator, ũi = [ui, ui+1]T and consistent

element mass matrix Me
SUPG, constructed using linear shape functions, is expressed as

Me
SUPG =

h

6

2 1

1 2

+
1

2

τa

∆t

−1 −1

1 1

 , (3.29)

and

Ke
SUPG = −a

2

−1 −1

1 1

+
τa2

h

 1 −1

−1 1

 . (3.30)

The numerical scheme using SUPG discretisation in space and Forward Euler time integra-

tion (SUPG-FE) leads to second order accuracy in space and first order accuracy in time.
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3.4.2 TVD Runge-Kutta Scheme

The total variation of a numerical scheme is given as

TV (u) =
∑
i

|ui+1 − ui|. (3.31)

where i indicates the node number. TVD Runge-Kutta time integration scheme [8, 33, 40,

87, 88] ensures

TV (un+1) ≤ TV (un). (3.32)

where n indicates the time step number. However, it is worth mentioning that a numerical

scheme is not entirely TVD unless the spatial derivatives are also approximated by a TVD

finite difference or finite element scheme [43, 47]. The semi-discrete advection equation

can be recast as

M
du

dt
= L(u) (3.33)

where M represents the global consistent mass matrix, u represents the global vector of

unknowns, L indicates the right side global vector. Rearranging terms

du

dt
= M−1L(u) = L̂(u) (3.34)

Two stage second order TVD Runge-Kutta scheme may be written as

Step 1:

u(1) = un + ∆tL̂n, (3.35)

where

L̂n = L̂(un). (3.36)
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Step 2:

u(2) = u(1) + ∆tL̂(1), (3.37)

where

L̂(1) = L̂
(
u(1)
)
. (3.38)

The solution at (n+ 1) time step is given as

un+1 =
1

2

(
un + u(2)

)
. (3.39)

If observed carefully, the solution un+1 in equation (3.39) can be viewed as the average

of solution at time step n and n + 2. The solution at n + 2 time step is obtained using

Forward Euler two times consecutively. The TVD Runge-Kutta schme coupled with the

SUPG formulation (SUPG-RK) leads to second order accuracy both in space and time.

3.5 CONSISTENCY ANALYSIS

The consistency condition dictates that when time and space steps tend to zero, the numer-

ical scheme must tend to the original differential equation. This is one of the requirements

imposed on a numerical scheme. In this section, the consistency condition for the sec-

ond order Taylor-Galerkin scheme and the SUPG-FE scheme are derived. Subsequently,

the expression for the stabilisation parameter τ in SUPG scheme is derived by means of a

dimensional analysis.



SOLUTION OF HYPERBOLIC EQUATION IN ONE-DIMENSION 45

3.5.1 Consistency Analysis of The Taylor-Galerkin Scheme

The resulting discretised equation for an internal node i can be written as

h

6∆t
[∆ui−1 + 4∆ui + ∆ui+1] = −a

2

[
−uni−1 + uni+1

]
− a2∆t

2h

[
−uni−1 + 2uni − uni+1

]
.

(3.40)

Applying Taylor discretisation in time to the left hand side (L.H.S.) results into

h

6∆t

[
ϑni−1 + 4ϑni + ϑni+1

]
= −a

2

[
−uni−1 + uni+1

]
− a2∆t

2h

[
−uni−1 + 2uni − uni+1

]
, (3.41)

where

ϑ = ∆t (ut) +
∆t2

2
(utt) +

∆t3

6
(uttt) . (3.42)

Grouping terms with same order of derivatives at L.H.S yields

h

6

[
$t +

∆t

2
$tt +

∆t2

6
$tt

]
= −a

2

[
−uni−1 + uni+1

]
− a2∆t

2h

[
−uni−1 + 2uni − uni+1

]
,

(3.43)

where

$ = (u)ni−1 + 4 (u)ni + (u)ni+1 . (3.44)

Applying Taylor discretisation in space

h

[
(ut)

n
i +

h2

6
(utxx)

n
i +

∆t

2
(utt)

n
i +

h2∆t

12
(uttxx)

n
i +O

(
∆t2
)]

=

−a
(
h (ux)

n
i +

h3

6
(uxxx)

n
i

)
− a2∆t

2h

(
−2

h2

2
(uxx)

n
i

)
.

(3.45)
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Converting second order time derivative at L.H.S into second order space derivative using

relationship at equation (3.2)

(ut)
n
i +

��
���

��a2∆t

2
(uxx)

n
i +O

(
h2,∆t2

)
= −a (ux)

n
i −

ah2

6
(uxxx)

n
i +

��
���

��a2∆t

2
(uxx)

n
i . (3.46)

Finally

(ut + aux)
n
i +O

(
h2,∆t2

)
= 0. (3.47)

Hence, it is proved that the Taylor-Galerkin scheme is second order accurate in time and

space.

3.5.2 Consistency Analysis of The SUPG-FE Scheme

SUPG space discretisation along with Forward Euler time integration scheme, should result

into a solution first order accurate in time and second order accurate in space (SUPG-FE).

The discretised equation for an internal node i can be expressed as

h

6∆t
[∆ui−1 + 4∆ui + ∆ui+1] +

τa

2∆t
[∆ui−1 −∆ui+1] = −a

2

[
−uni−1 + uni+1

]
−τa

2

h

[
−uni−1 + 2uni − uni+1

]
.

(3.48)

Some of the terms of equation (3.48) is similar to those of equation (3.40) and hence, can

be simplified as

h

[
(ut)

n
i +

a2∆t

2
(uxx)

n
i +O

(
h2,∆t2

)]
+

τa

2∆t
[∆ui−1 −∆ui+1] =

−a
(
h (ux)

n
i +

h3

6
(uxxx)

n
i

)
− τa2

h

(
−2

h2

2
(uxx)

n
i

)
. (3.49)
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The second term on the L.H.S of equation (3.49) can be further manipulated using a Taylor

series expansion as

h

[
(ut)

n
i +

a2∆t

2
(uxx)

n
i +O

(
h2,∆t2

)]
+
τa

2

[
(ut)

n
i−1 +

∆t

2
(utt)

n
i−1 − (ut)

n
i+1 −

∆t

2
(utt)

n
i+1 +O

(
∆t2
)]

= −a
(
h (ux)

n
i +

h3

6
(uxxx)

n
i

)
− τa2

h

(
−2

h2

2
(uxx)

n
i

)
. (3.50)

Applying Taylor discretisation in space for the same term

h

[
(ut)

n
i +

a2∆t

2
(uxx)

n
i +O

(
h2,∆t2

)]
− τah

[
(utx)

n
i + (uttx)

n
i +O

(
∆t2
)]

= −a
(
h (ux)

n
i +

h3

6
(uxxx)

n
i

)
+
τa2

h

(
h2 (uxx)

n
i

)
. (3.51)

Converting the time derivatives into space derivatives leads to

h

[
(ut)

n
i +

a2∆t

2
(uxx)

n
i +O

(
h2,∆t2

)]
− τa2h

[
�����− (uxx)

n
i + (uttx)

n
i +O

(
∆t2
)]

= −a
(
h (ux)

n
i +

h3

6
(uxxx)

n
i

)
+������
τa2h (uxx)

n
i . (3.52)

Finally

(ut + aux)
n
i +O

(
h2,∆t

)
= 0. (3.53)

Hence, the convergence order holds (i.e. first order in time and second order in space).

However, it can be seen from equation (3.52) that the diffusion introduced by Bubnov-

Galerkin scheme still prevails and the stabilisation parameter τ has failed to suppress it.

Therefore, this scheme seems to be unstable. An in-depth stability analysis can confirm this

speculation. It is also worth noticing that the stabilisation term is similar to Taylor-Galerkin

scheme if τ = ∆t
2

.
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3.6 VON NEUMANN STABILITY ANALYSIS

Once the consistency of the numerical scheme has been established, the following step is

to verify its stability. The Von Neumman method [10, 47, 57, 64, 101] can analyse the

stability of a scheme in relation to a partial differential equation when considering periodic

boundary conditions. The novelty of this stability analysis is the expansion of the error, or

the numerical solution, in a finite Fourier series in the spatial frequency. The stability of a

scheme is guaranteed on the condition that the amplitude of any harmonic must not increase

indefinitely in time. The procedure to perform this stability analysis can be summarised in

following steps:

1. In the numerical scheme, replace all the terms of the form un+k
i+m with V n+keI(i+m)ϕ,

where ϕ represents the phase angle and I indicates
√
−1. It can be noticed that this

decomposition separates the time and space dependence of the solution. The time

behaviour is denoted by amplitudes V n+k, while the Fourier modes contain the full

space dependence.

2. Simplify all the terms by eliminating the factor eIiϕ.

3. Obtain the expression for the amplification factor given as

G =
V n+1

V n
. (3.54)

4. Ensure the stability is maintained by imposing |G| ≤ 1 for ϕ ∈ [−π, π].

Given the wavelength ζ of a wave pattern, phase angle ϕ can be computed as

ϕ =
2πh

ζ
. (3.55)
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3.6.1 Stability Analysis of The Taylor-Galerkin Scheme

The equation for an internal node i can be rewritten from equation (3.40) as

h

6∆t

[
un+1
i−1 + 4un+1

i + un+1
i+1

]
=

h

6∆t

[
uni−1 + 4uni + uni+1

]
− a

2

[
−uni−1 + uni+1

]
− a2∆t

2h

[
−uni−1 + 2uni − uni+1

]
. (3.56)

Introducing Fourier decomposition

h

6∆t

[
V n+1eI(i−1)ϕ + 4V n+1eI(i)ϕ + V n+1eI(i+1)ϕ

]
=

h

6∆t

[
V neI(i−1)ϕ + 4V neI(i)ϕ + V neI(i+1)ϕ

]
− a

2

[
−V neI(i−1)ϕ + V neI(i+1)ϕ

]
−a

2∆t

2h

[
−V neI(i−1)ϕ + 2V neI(i)ϕ − V neI(i+1)ϕ

]
. (3.57)

Further simplification yields

h

6∆t

[
eI(i−1)ϕ + 4eI(i)ϕ + eI(i+1)ϕ

]
V n+1 =

h

6∆t

[
eI(i−1)ϕ + 4eI(i)ϕ + eI(i+1)ϕ

]
V n

− a

2

[
−eI(i−1)ϕ + eI(i+1)ϕ

]
V n

− a2∆t

2h

[
−eI(i−1)ϕ + 2eI(i)ϕ − eI(i+1)ϕ

]
V n.

(3.58)

Further manipulation leads to

h

6∆t

[
e−Iϕ + 4 + eIϕ

]
V n+1 =

h

6∆t

[
e−Iϕ + 4 + eIϕ

]
V n − a

2

[
−e−Iϕ + eIϕ

]
V n

− a2∆t

2h

[
−e−Iϕ + 2− eIϕ

]
V n. (3.59)
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Introducing the expansion

eIϕ = cosϕ+ I sinϕ,

e−Iϕ = cosϕ− I sinϕ,

equation (3.59) can be expressed as

h

3∆t
[cosϕ+ 2]V n+1 =

h

3∆t
[cosϕ+ 2]V n − a [I sinϕ]V n +

a2∆t

h
[cosϕ− 1]V n.

(3.60)

Hence, the amplification factor (G) can be written as

G =
V n+1

V n
=

(cosϕ+ 2)− 3a∆t
h

(I sinϕ) + 3a2∆t2

h2
(cosϕ− 1)

cosϕ+ 2
. (3.61)

Introducing the Courant-Friedrichs-Lewy (CFL) number as

C =
a∆t

h
, (3.62)

equation (3.61) can be expressed as

G =
(cosϕ+ 2)− 3C (I sinϕ) + 3C2 (cosϕ− 1)

cosϕ+ 2
,

=
(cosϕ+ 2) + 3C2 (cosϕ− 1)

cosϕ+ 2
− I 3C sinϕ

cosϕ+ 2
. (3.63)

In order to satisfy, stability criteria i.e. |G| < 1, in the complex plane, G needs to be

contained in the unit circle. Figure 3.1 shows the evolution of G in the complex plane with

an increasing CFL number. It is found that the one step Taylor-Galerkin scheme is stable up

to a CFL number 0.5.
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Figure 3.1: Polar representation of the amplification factor for the Taylor-Galerkin scheme

3.6.2 Stability Analysis of The SUPG-FE Scheme

SUPG-FE scheme is first order in time and second order in space. Considering the particular

case where

τ =
∆t

2
, (3.64)

equation (3.48) can be expressed as

h

6∆t
[∆ui−1 + 4∆ui + ∆ui+1] +

a

4
[∆ui−1 −∆ui+1] = −a

2

[
−uni−1 + uni+1

]
− a2∆t

2h

[
−uni−1 + 2uni − uni+1

]
.

(3.65)

Separating time steps,

h

6∆t

[
un+1
i−1 + 4un+1

i + un+1
i+1

]
+
a

4

[
un+1
i−1 − un+1

i+1

]
=

h

6∆t

[
uni−1 + 4uni + uni+1

]
+
a

4

[
uni−1 − uni+1

]
− a

2

[
−uni−1 + uni+1

]
−a

2∆t

2h

[
−uni−1 + 2uni − uni+1

]
. (3.66)
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Introducing Fourier decomposition, equation (3.66) is simplified as

h

6∆t
[2 cosϕ+ 4]V n+1 − a

4
[2I sinϕ]V n+1 =

h

6∆t
[2 cosϕ+ 4]V n − a

4
[2I sinϕ]V n

−a
2

[2I sinϕ]V n − a2∆t

2h
[−2 cosϕ+ 2]V n,

(3.67)

Further simplifying, amplification factor (G) is obtained as

G =
V n+1

V n
=

(cosϕ+ 2)− 9a∆t
2h

(I sinϕ) + 3a2∆t2

h2
(cosϕ− 1)

(cosϕ+ 2)− 3a∆t
2h

(I sinϕ)
,

=
(cosϕ+ 2)− 9C

2
(I sinϕ) + 3C2 (cosϕ− 1)

(cosϕ+ 2)− 3C
2

(I sinϕ)
,

=

[
(cosϕ+ 2)− 9C

2
(I sinϕ) + 3C2 (cosϕ− 1)

] [
(cosϕ+ 2) + 3C

2
(I sinϕ)

][
(cosϕ+ 2)− 3C

2
(I sinϕ)

] [
(cosϕ+ 2) + 3C

2
(I sinϕ)

] ,

= ξ + Iη, (3.68)

where

ξ =
(cosϕ+ 2)2 + 3C2 (cosϕ+ 2) (cosϕ− 1) + 27

4
C2 sin2 ϕ

(cosϕ+ 2)2 + 9
4
C2 sin2 ϕ

, (3.69)

η =
3
2
C sinϕ (cosϕ+ 2) + 9

2
C2 sinϕ (cosϕ− 1)− 9

2
C sinϕ (cosϕ+ 2)

(cosϕ+ 2)2 + 9
4
C2 sin2 ϕ

. (3.70)

Figure 3.2 shows the evolution of G in complex plane with increasing CFL number. It can

be clearly seen that SUPG-FE scheme is unstable. This conclusion agrees perfectly with the

observations made during consistency analysis in subsection 3.5.2.

Efforts have been made in the past to make SUPG-FE scheme stable by neglecting the effect

of τ in mass matrix [34]. The stability of the scheme is further improved by lumping the

mass matrix. However, the resulting scheme is fairly similar to an one-step Taylor-Galerkin

scheme and is not in the interest of current work.
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Figure 3.2: Polar representation of the amplification factor for the SUPG-FE scheme

3.7 SPECTRAL ANALYSIS

While performing a Von Neumann stability analysis, the expression of the amplification

factor G is obtained as a function of the phase angle ϕ and other parameters of the scheme.

Therefore, it can be concluded that G should contain the complete information concerning

the behaviour of a numerical scheme and, in particular, the information regarding the gen-

erated numerical errors. The error in amplitude of numerical solution is called diffusion or

dissipation error. It is defined as the ratio of the computed amplitude to the exact amplitude

and can be expressed when particularised for a linear hyperbolic equation as [47]

εD = |G| (3.71)

Accuracy of a numerical scheme requires the modulus ofG to be as close to one as possible,

but stability requires |G| to be lower than one.The error on the phase of the solution is

defined as dispersion or phase error and can be written when particularized for a linear
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hyperbolic equation as [47]

εϕ =
ϕnum
Cϕ

(3.72)

where

ϕnum = tan−1

(
−Im G

Re G

)
(3.73)

Dispersion error can be interpreted as the ratio between the numerical and physical convec-

tion speeds. When the dispersion error is larger than one, εϕ > 1, the phase error is said to

be a leading error and the numerical convection velocity is larger than the exact one. This

means that the computed solution moves faster than the physical one. On the contrary, when

εϕ < 1, the phase error is a lagging error and the computed solution propagates at a lower

velocity than the physical one.

3.7.1 Spectral Analysis of The Taylor-Galerkin Scheme

The diffusion error can be calculated using equations (3.63) and (3.71)

εD =

[(
(cosϕ+ 2) + 3C2 (cosϕ− 1)

cosϕ+ 2

)2

+

(
3C sinϕ

cosϕ+ 2

)2
] 1

2

. (3.74)

The diffusion error is represented in Figure 3.3 in a Cartesian diagram as function of the

phase angle ϕ for constant values of the CFL number. It can be observed from Figure

3.3 that the diffusion error is more than one for C = 0.75 at higher phase angle, which

renders the numerical scheme unstable. This is quite expected as the stability limit of the

Taylor-Galerkin scheme, obtained from Von Neumann stability analysis, is C = 0.5. Using

the relationships given in equation (3.72) and equation (3.73), the dispersion error can be
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Figure 3.3: Cartesian representation of the diffusion error as a function of phase angle, in
degrees, for Taylor-Galerkin scheme

computed as

εϕ =
1

Cϕ
tan−1

(
3C sinϕ

(cosϕ+ 2) + 3C2 (cosϕ− 1)

)
. (3.75)

Figure 3.4 shows the variation of the dispersion error with increasing phase angle, in a

cartesian diagram ϕ for constant values of the CFL number. It is noticed from Figure 3.4 that

for lower values values of CFL the numerical solution lags behind the analytical solution.

However, for higher magnitude of CFL, the numerical solution leads the analytical solution

at lower frequency followed by a sudden phase shift at higher frequency.

3.7.2 Spectral Analysis of SUPG-FE Scheme

The diffusion error of the SUPG-FE scheme can be evaluated using the relationship provided

in equation (3.68) as

εD =
√
ξ2 + η2. (3.76)
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Figure 3.4: Cartesian representation of the dispersion error as a function of phase angle, in
degrees, for Taylor-Galerkin scheme

The change in the diffusion error with increasing phase angle is displayed in Figure 3.5. It

Figure 3.5: Cartesian representation of the diffusion error as a function of phase angle, in
degrees, for SUPG-FE scheme

can be observed from Figure 3.5 that the amplitude of diffusive error is less than or equal

to one only at extreme ends of the phase angle axis. Hence, it reaffirms that the SUPG-FE

scheme is unstable. Similarly, dispersion error for this numerical scheme can be calculated
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as,

εϕ =
1

Cϕ
tan−1

(
−η
ξ

)
. (3.77)

Figure 3.6 represents the dispersion error as a function of phase angle. The numerical

Figure 3.6: Cartesian representation of the dispersion error as a function of phase angle, in
degrees, for SUPG-FE scheme

solution leads the analytical solution at lower phase angle and lags at higher phase angle for

low CFL number. However, for higher CFL number, the numerical solution initially lags

the analytical solution followed by sudden phase shift.

3.8 NUMERICAL EXAMPLE: COSINE WAVE

Hereafter, few numerical examples are discussed in order to demonstrate the accuracy and

applicability of each scheme. To begin with, a sufficiently smooth wave pattern, consisting
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of a cosine wave is considered,

u(x) =


1
2

(
1 + cos

(
π(x−x0)

σ

))
, if |x− x0| ≤ σ.

0, otherwise.
(3.78)

The magnitude of σ and x0 are taken as 0.12 and 0.2, respectively. The domain of the prob-

lem is [0, 1]. The speed of the wave is considered as 0.1. Therefore, the time needed for

the wave to leave the domain is 9. The propagation of the wave using Bubnov-Galerkin

(BG) solution is depicted in Figure 3.7. Number of elements to discretise the domain is

20. As expected, it can be seen that the magnitude of spurious oscillations rises uncontrol-

lably as CFL number increases. The algorithms of various stabilised numerical schemes are

Figure 3.7: Propagation of the wave using Bubnov-Galerkin (BG) scheme

presented in Figure 3.8. The accuracy of these schemes are compared with the analytical so-

lution. Finally, a detailed convergence study is conducted to verify the order of convergence

of each scheme.
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• INPUT number of elements and solution parameters

• COMPUTE number of nodes

• INITIALIZE vector containing nodal coordinates in domain

• COMPUTE number of time steps using equation (3.62)

• IF one-step Taylor-Galerkin scheme

– COMPUTE global matrices based on equation (3.7)

• ELSEIF SUPG scheme

– COMPUTE global matrices based on equation (3.25)

• INITIALIZE vector containing initial condition (u0) based on the wave profile

• INCORPORATE Dirichlet boundary conditions

• IF time integration scheme TVD Runge-Kutta

– ALLOCATE MEMORY for u(1),u(2) as described in equation (3.35) and
equation (3.37)

– LOOP over time steps

∗ COMPUTE unknown vector at next time step using equation (3.35)-
(3.39)

– END LOOP

• ELSE

– LOOP over time steps

∗ COMPUTE unknown vector at next time step using un+1 = un +
∆tL̂n

– END LOOP

• COMPUTE post-processing parameters.

Figure 3.8: Algorithm for solving 1D advection equation

3.8.1 Results & Discussions

Figure 3.9 shows the propagation of the wave using Taylor-Galerkin (TG) scheme. The

value of CFL is taken as 0.5. The phase angles can be computed for different spatial dis-

cretisation using the relationship given in equation (3.55). The corresponding phase angles
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(a) h=0.05, time=3 (b) h=0.05, time=5

(c) h=0.025, time=3 (d) h=0.025, time=5

(e) h=0.0125, time=3 (f) h=0.0125, time=5

Figure 3.9: Propagation of a cosine wave using Taylor-Galerkin scheme

for the given wave are 45◦, 22.5◦and 11.25◦for element size of 0.05, 0.025 and 0.0125, re-

spectively. Therefore, the reduced amplitude of numerical approximation at Figure 3.9(a)
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and Figure 3.9(b) can be explained through discussion in subsection 3.7.1. Similarly, the

lagging in the numerical solution can be explained from an earlier discussion. The overall

performance of the TG scheme improves with higher mesh density. The oscillations ob-

served in the numerical solution of BG scheme diminishes effectively when TG scheme is

implemented. As wave propagates towards end domain, the numerical solution becomes

less diffusive.

Figure 3.10 displays movement of the wave using SUPG-FE scheme. The value of CFL is

considered as low as 0.1. The increment in diffusion of numerical approximation at Figure

3.10(a) and Figure 3.10(b) can be explained through discussion in subsection 3.7.2. Like-

wise, the lagging in the numerical solution can be linked to earlier discussion. Although,

the numerical approximation improves with lower element size, the spurious oscillations

can not be eliminated for the smooth problem. This supports the conclusion reached from

the numerical analysis that the SUPG-FE scheme is unstable.

Figure 3.11 shows propagation of the wave using a SUPG scheme in space and TVD Runge-

Kutta time integration in time (SUPG-RK scheme). Due to the nature of the time integra-

tion scheme and the presence of a consistent mass matrix, it is increasingly difficult to

perform analyses such as, Consistency analysis, Von-Neuman stability analysis and Spec-

tral analysis, in an analytical manner. However, the stability condition and consistency

of this scheme can be evaluated very accurately through multiple numerical simulations.

SUPG-RK scheme displays the same diffusive pattern as the TG scheme. Although, careful

observations reveal that the dispersion error in SUPG-RK scheme is slightly smaller than

TG scheme. After multiple function evaluations, it is found that SUPG-RK scheme is stable

up to CFL number 0.6. This gives a computational advantage over the TG scheme, which is

stable only up to C = 0.5.
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(a) h=0.05, time=3 (b) h=0.05, time=5

(c) h=0.025, time=3 (d) h=0.025, time=5

(e) h=0.0125, time=3 (f) h=0.0125, time=5

Figure 3.10: Propagation of a cosine wave using SUPG-FE scheme
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(a) h=0.05, time=3 (b) h=0.05, time=5

(c) h=0.025, time=3 (d) h=0.025, time=5

(e) h=0.0125, time=3 (f) h=0.0125, time=5

Figure 3.11: Propagation of a cosine wave using SUPG-RK scheme

3.8.2 Convergence Study

A convergence study is performed keeping CFL number constant and varying mesh size

as well as time step size, accordingly. Number of elements in the domain is taken as 10,
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20, 40 and 80. CFL is considered as 0.5. Error is calculated and normalised with respect

to analytical solutions. Convergence of stabilised numerical schemes based on L1 norm is

shown in Figure 3.12. The slope is calculated based on least squares approximation. Figure

(a) t=1 (b) t=2

(c) t=3 (d) t=4

Figure 3.12: Convergence of stabilised numerical schemes based on L1 norm

3.13 shows the convergence pattern obtained by calculating error based on L2 norm. In

order to establish order of convergence, the slope needs to be 1.0 for SUPG-FE and 2.0 for

TG and SUPG-RK schemes. The convergence pattern for SUPG-RK and TG is same as

expected, in spite of minute differences in the magnitude of error.
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

Figure 3.13: Convergence of stabilised numerical schemes based on L2 norm

3.8.3 Conclusion

The propagation of a cosine wave is simulated using different numerical schemes. Clearly,

TG and SUPG-RK schemes have better predictability than BG scheme. Their stability and

consistency criteria is established. It is observed that SUPG-FE scheme is unstable for

solving hyperbolic problems and henceforth, will not be used.

3.9 RIEMANN PROBLEM

A Riemann Problem is defined by means of hyperbolic equation together with special initial

conditions. The initial data is piecewise constant with a single jump discontinuity at some
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point, say x = 0.

u(x) =


uL, if x < 0.

uR, if x > 0.

(3.79)

The Riemann Problem plays an important role for developing numerical fluxes for utilising

finite volume methods [13, 65, 98].

3.10 NUMERICAL EXAMPLE: STEP WAVE

A step wave propagation problem can be categorised as a Riemann problem. Hence, in

this section, the capability of the TG scheme and the SUPG-RK scheme to capture the

propagation of a step wave is illustrated. The following wave is considered,

u(x) =


1, if |x− x0| ≤ σ.

0, otherwise.
(3.80)

The magnitude of σ and x0 are taken as 0.1 and 0.2, respectively. The domain of the problem

is [0, 1]. The speed of wave is taken as 0.1. Therefore, the time consumed for the wave to

leave the domain is 9. Both TG scheme and SUPG-RK schemes are used to simulate the

propagation of this wave. The focus of this example is to investigate the prediction capability

of numerical schemes with varying CFL. Number of elements is taken as 160. The accuracy

of the approximation is compared against analytical solution at time t = 5.

3.10.1 Results & Discussions

Figure 3.14 shows the propagation of the step wave using the TG scheme with CFL numbers

varying from 0.2 to 0.5. Whereas, Figure 3.15 displays the movement of the wave using

SUPG-RK scheme with different CFL numbers varying from 0.2 to 0.5.

Both in Figure 3.14 and Figure 3.15, small wiggles can be noticed near the vicinity of
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(a) C=0.2 (b) C=0.3

(c) C=0.4 (d) C=0.5

Figure 3.14: Propagation of a step wave using Taylor-Galerkin scheme

discontinuity. These wiggles are linked to a property known as monotonicity [47]. The

monotonicity condition for a numerical scheme can be stated as the requirement that no

new extrema be created by the scheme, other than those eventually present in the initial

solution. In short, it can be concluded that the numerical oscillations are the consequence

of the non-monotone behaviour of the second order schemes. The amplitude of the wiggles

in the SUPG-RK scheme is smaller than in the TG scheme. One of the reasons for this

phenomenon is the total variation diminishing Runge-Kutta time integration formulation

implemented in SUPG-RK scheme.

Further observations from Figure 3.14 and Figure 3.15 reveal that the wiggles appears in the

upstream end of the discontinuities at lower values of CFL and they move to the downstream
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(a) C=0.2 (b) C=0.3

(c) C=0.4 (d) C=0.5

Figure 3.15: Propagation of a step wave using SUPG-RK scheme

end as CFL increases. This can be explained through variation of dispersion error with CFL

number. At lower CFL, the magnitude of the dispersion error is predominantly less than

one. This means that the numerical solution moves slower than the analytical solution.

Therefore, oscillations appear at the upstream side of discontinuity. On the other hand, at

higher CFL, the dispersion error is larger than one, which triggers wiggles to appear on the

downstream side.
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3.11 CONCLUSION

This chapter has presented three finite element formulations for solving the linear advection

equation. One of them, SUPG-FE is found to be unstable.The remaining two numerical

schemes, SUPG-RK and TG perform well and provide second order convergence both in

space and time. Moreover, SUPG-RK scheme shows higher stability and smaller wiggles

when compared with the TG solution. A constant value of stabilisation parameter τ for

SUPG formulation is adopted throughout this chapter. However, in later part of this work

the effect of different values of τ will be discussed.
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4.1 INTRODUCTION

The general form of a hyperbolic system of linear equations is given as

U t +AI
∂U I
∂XI

= 0, ∀I = 1, 2, 3 in Ω, (4.1)

with boundary and initial conditions

U = Ů in (Ω, t0),

U = UD on (∂ΩD, t),

Un = UN on (∂ΩN , t), (4.2)

whereU denotes the vector containing the unknown conservation variables,U t indicates the

partial derivative of U with respect to time t, t0 indicates the initial time and Ω is a bounded

open domain in <n, n = 1, 2, 3 with Lipschitz continuous boundary ∂Ω = ∂ΩD ∪ ∂ΩN .

AI is so called flux-Jacobian matrix in the “I” spatial direction and AINI possesses real

eigenvalues ∀N = [N1, N2, N3] /||N || = 1. For 1D problems with 2 degrees of freedom

(D.O.F), equation (4.1) can be written as

U t +AUx = 0, (4.3)

where

U =

uv
 , A =

f a

b g

 . (4.4)

In equation (4.4), u, v denote the unknown scalar variables. A simplified expression forA

with physical relevance is obtained by setting and by setting f, g = 0.

In this chapter, the analytical approach for solving equation (4.3) is discussed. Next, the

basic formulation for obtaining a numerical solution will be presented. Both analytical and
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numerical approaches are illustrated with a numerical example of the propagation of an

acoustic wave in a shock tube. This discussion is followed by the introduction of a finite

element formulation in a conservative framework. Finally, concluding remarks are made

regarding the suitability of different frameworks.

4.2 ANALYTICAL SOLUTION

Looking at the nature of the hyperbolic equations presented in equations (4.3) and (4.4), the

solution is expected to be composed of two waves propagating to the left and right of the

domain. This suggests for a solution of the form

U (x, t) = U (x− st) (4.5)

for wave speed s, where U (η) is some function of a variable η. With this assumption, it can

be seen that

U t (x, t) = −sU ′ (x− st) ,

Ux (x, t) = U ′ (x− st) . (4.6)

Therefore, equation (4.3) reduces to

AU ′ (x− st) = sU ′ (x− st) . (4.7)

As s is a scalar andA is a matrix, this is only plausible if s is an eigenvalue ofA and U ′ (η)

is its corresponding right eigenvector of A for each value of η. For the matrix A given in

equation (4.4) the eigenvalues are computed as

Λ1 = −c0 and Λ2 = c0, (4.8)
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where

c0 =
√
ab, (4.9)

which represents the speed of the wave. As expected, waves propagate in both directions.

The right eigenvectors of the flux-jacobian matrixA are,

R1 =

−
c0
b

1

 , R2 =


c0
b

1

 . (4.10)

Hence the general solution can be expressed as,

U = w1 (x+ c0t)R1 + w2 (x− c0t)R2, (4.11)

where w1 (η) , w2 (η) are scalar functions of some variable η also known as characteristic

variables. The values of these functions will depend on the initial data given

U (x, t0) = Ů (x) =

ů (x)

v̊ (x)

 . (4.12)

For simplicity, t0 is considered as zero. Therefore, after implementing the initial condition

equation (4.11) reduces to

Ů (x) = w1 (x)R1 + w2 (x)R2. (4.13)

After solving equation (4.17), the values of the characteristic variables are obtained as

w1 =
b

2c0

[
−ů (x) +

c0

b
v̊ (x)

]
,

w2 =
b

2c0

[
ů (x) +

c0

b
v̊ (x)

]
. (4.14)
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Therefore, the solution of equation (4.3) becomes

u(x, t) =
1

2
[̊u (x+ c0t) + ů (x− c0t)]−

c0

2b
[̊v (x+ c0t)− v̊ (x− c0t)] ,

v(x, t) = − b

2c0

[̊u (x+ c0t)− ů (x− c0t)] +
1

2
[̊v (x+ c0t) + v̊ (x− c0t)] . (4.15)

4.2.1 Numerical Example: Propagation of Acoustic Wave

An acoustic wave is a small pressure disturbance which travels through a compressible gas

resulting infinitesmall changes in density and pressure. The linearised equations modelling

this phenomenon can be written as

pu

t

+

u0 K0

1
ρ0

u0


pu

x

= 0, (4.16)

where p and u represent pressure and velocity distribution in the gas, respectively. K0

indicates the bulk modulus of compressibility, ρ0 denotes the initial density of the gas and u0

represents the velocity of the gas. A simplified set of equations are obtained for motionless

state by setting u0 = 0, yielding

pt +K0ux = 0,

ρ0ut + px = 0. (4.17)

Following the procedure discussed earlier, the final solution is obtained as [65]

p(x, t) =
1

2
[p̊ (x+ c0t) + p̊ (x− c0t)]−

Z0

2
[̊u (x+ c0t)− ů (x− c0t)] ,

u(x, t) = − 1

2Z0

[p̊ (x+ c0t)− p̊ (x− c0t)] +
1

2
[̊u (x+ c0t) + ů (x− c0t)] , (4.18)
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where

Z0 = ρ0c0 and c0 =

√
K0

ρ0

. (4.19)

Figure 4.1 shows the evolution of an initial pressure perturbation, concentrated near the

origin, into distinct simple waves propagating with velocities−c0 and c0 and corresponding

change in velocities for the following set of initial conditions [65]

p̊ =
1

2
e−80x2 + S (x) ,

ů = 0, (4.20)

where

S (x) =


1, if −0.3 < x < −0.1.

0, otherwise.
(4.21)

The magnitude of ρ0 and K0 is taken as 1 and 0.25, respectively.

4.3 NUMERICAL SOLUTION

In this section, different numerical approaches to obtain the solution of equation (4.3) is

discussed.

4.3.1 Taylor-Galerkin Scheme

Equation (4.3) can be expressed as

U t = −AUx, (4.22)

which leads to

U tt = (−AUx)t = −AU tx = A (AUx)x . (4.23)
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Figure 4.1: Evolution of pressure and velocity waves

Applying Taylor discretisation in time, an expression similar to equation (3.4) is obtained

as
∆U
∆t

:=
Un+1 − Un

∆t
= −AUnx +

∆t

2
A (AUx)nx +O

(
∆t2
)
. (4.24)

The weak form of the above strong form can be written as

∫
Ω

W · ∆Uh

∆t
dΩ +

∫
Ω

W ·AUhx dΩ =

∫
Ω

∆t

2
W ·A

(
AUhx

)
x
dΩ. (4.25)
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After applying divergence theorem to the R.H.S., the weak formulation leads to

∫
Ω

W · ∆Uh

∆t
dΩ +

∫
Ω

W ·AUhx dΩ =−
∫

Ω

∆t

2
Wx ·AAUhx dΩ

+

∫
∂Ω

∆t

2
W ·AAUhx d∂Ω, (4.26)

hereafter, referred as “formA”. Further application of the divergence theorem to the second

term of the L.H.S. results in

∫
Ω

W · ∆Uh

∆t
dΩ =

∫
Ω

Wx ·AUh dΩ−
∫

Ω

∆t

2
Wx ·AAUhx dΩ

−
∫
∂Ω

W ·AUh d∂Ω +

∫
∂Ω

∆t

2
W ·AAUhx d∂Ω, (4.27)

henceforth, referred as “form B”. Following a standard finite element expansion, form A

given in equation (4.26) leads to

nel∑
e=1

W̃ ·
∫

Ωe
NN T ∆Ũ

∆t
dΩ = −

nel∑
e=1

W̃ ·
∫

Ωe
NABT Ũ dΩ

−
nel∑
e=1

W̃ ·
∫

Ωe

∆t

2
BAABT Ũ dΩ +

∫
∂ΩN

∆t

2
WN ·AAUx d∂Ω. (4.28)

Analogously, form B as expressed in equation (4.27) can be expressed as

nel∑
e=1

W̃ ·
∫

Ωe
NN T ∆Ũ

∆t
dΩ =

nel∑
e=1

W̃ ·
∫

Ωe
BAN T Ũ dΩ

−
nel∑
e=1

W̃ ·
∫

Ωe

∆t

2
BAABT Ũ dΩ

−
∫
∂ΩN

WN ·AU d∂Ω +

∫
∂ΩN

∆t

2
WN ·AAUx d∂Ω.

(4.29)
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For linear shape functions,

N =



x(i+1)−x
h

0

x−xi
h

0

0
x(i+1)−x

h

0 x−xi
h


, B =



− 1
h

0

1
h

0

0 − 1
h

0 1
h


. (4.30)

The discretised form of equation (4.29) can be written as

MTG
∆Ũ

∆t
+ KTGŨ = 0, (4.31)

where

MTG =

nel

A
e=1

(Me
TG) , KTG =

nel

A
e=1

(Ke
TG) and Ũ =

nnode

A
i=1

(
Ũi

)
. (4.32)

In equation (4.44), A represents the assembly operator, Ũi = [ui, ui+1, vi, vi+1]T and con-

sistent element mass matrix Me
TG is expressed as

Me
TG =

h

6



2 1 0 0

1 2 0 0

0 0 2 1

0 0 1 2


, (4.33)

and

Ke
TG = −1

2



0 0 −a a

0 0 −a a

−b b 0 0

−b b 0 0


+
ab∆t

2h



1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1


. (4.34)
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4.3.2 SUPG-RK Scheme

The general form of SUPG scheme is expressed as

〈(W +WSUPG),R
(
Uh
)
〉
Ω

= 0, (4.35)

where

R
(
Uh
)

=

(
Uht +AI

∂Uh

∂XI

− S
)
, ∀I = 1, 2, 3, (4.36)

and

WSUPG = τAT
I

∂W

∂XI

. (4.37)

For one dimensional problems

WSUPG = τATWx. (4.38)

The SUPG formulation of equation (4.3) can then be written as

∫
Ω

W · Uht dΩ +

nel∑
e=1

∫
Ωe
τATWx ·

(
Uht +AUhx

)
dΩ = −

∫
Ω

W ·AUhx dΩ, (4.39)

to be referred to as form A. The application of divergence theorem at the R.H.S. yields

∫
Ω

W · Uht dΩ +

nel∑
e=1

∫
Ωe
τATWx ·

(
Uht +AUhx

)
dΩ =

∫
Ω

Wx ·AUh dΩ

−
∫
∂Ω

W ·AUh d∂Ω, (4.40)
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henceforth known as form B. After FE expansion, form A given in equation (4.39) can be

expressed as

nel∑
e=1

W̃ ·
∫

Ωe
NN T ∆Ũ

∆t
dΩ +

nel∑
e=1

W̃ ·
∫

Ωe
τBAN T ∆Ũ

∆t
dΩ =

−
nel∑
e=1

W̃ ·
∫

Ωe
NABT Ũ dΩ−

nel∑
e=1

W̃ ·
∫

Ωe
τBAABT Ũ dΩ. (4.41)

Whereas, form B of given in equation (4.40) leads to

nel∑
e=1

W̃ ·
∫

Ωe
NN T ∆Ũ

∆t
dΩ +

nel∑
e=1

W̃ ·
∫

Ωe
τBAN T ∆Ũ

∆t
dΩ =

nel∑
e=1

W̃ ·
∫

Ωe
BAN T Ũ dΩ−

nel∑
e=1

W̃ ·
∫

Ωe
τBAABT Ũ dΩ

−
∫
∂ΩN

WN ·AU d∂Ω. (4.42)

Equation (4.42) can be rewritten as

M
dU

dt
= L(U) (4.43)

where

M =

nel

A
e=1

(Me) , and Ũ =

nnode

A
i=1

(
Ũi

)
. (4.44)

where A represents the assembly operator, Ũi = [ui, ui+1, vi, vi+1]T and consistent element

mass matrix Me
TG represents element consistent mass matrix. Performing simple operation,

dU

dt
= M−1L(U) = L̂(U) (4.45)

A two step second order TVD Runge-Kutta scheme can be sketched as

Step 1:

U(1) = Un + ∆tL̂n, (4.46)
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where

L̂n = L̂(Un). (4.47)

Step 2:

U(2) = U(1) + ∆tL̂(1), (4.48)

where

L̂(1) = L̂
(
U(1)

)
. (4.49)

The solution at (n+ 1)th time step is given as

Un+1 =
1

2

(
Un + U(2)

)
. (4.50)

4.3.3 Numerical Example: Propagation of Acoustic Wave

The acoustic wave propagation problem discussed in section 4.2.1 is solved using form A

of both the one-step Taylor-Galerkin scheme and the SUPG-RK shecme. Homogeneous

dirichlet boundary conditions are considered on the left boundary. Homogeneous Neumann

boundary conditions are considered on the right boundary. Analyses are carried out with

300, 600 and 1200 elements. CFL is chosen as 0.5. Figure 4.2 displays the propagation

of the pressure and velocity waves using the Taylor-Galerkin scheme at t = 0.5. The

propagation of the acoustic wave is captured using the SUPG-RK scheme in Figure 4.3.

The stabilisation parameter τ is chosen as

τ = τI, τ =
∆t

2
(4.51)

It can be observed from Figure 4.2 and Figure 4.3, that for both the schemes numerical so-

lutions converge to corresponding analytical solutions quickly. The wiggles in the solution

appear as a result of the non-monotonicity.
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Figure 4.2: Evolution of pressure and velocity waves using Taylor-Galerkin Scheme at t =
0.5, C = 0.5

4.4 CONSERVATIVE FRAMEWORK

In fast dynamics problems, shock discontinuities along with geometric and material non-

linearities are often encountered. Therefore, it is convenient to express the first order hyper-

bolic equation in equation (4.1) in a conservative form as

U t +
∂F I

∂XI

= 0 ∀I = 1, 2, 3, (4.52)
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Figure 4.3: Evolution of pressure and velocity waves using SUPG-RK Scheme at t =
0.5, C = 0.5

where F I represents the Flux component in I direction and Flux Jacobian matrix AI is

defined as

AI =
∂F I

∂U . (4.53)

It can be noticed that ifAI 6= f (U) i.e. the Flux Jacobian matrix is linear

∂F I

∂XI

= AI
∂U
∂XI

, (4.54)
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both conservative and non-conservative framework of governing equations render the same

solution.

4.4.1 Taylor-Galerkin Scheme in Conservative Form

Equation (4.52) for 1D problems can be rewritten as

U t = −Fx, (4.55)

Further simplifications lead to

U tt = −Fxt = −F tx = −
(
∂F
∂U U t

)
x

= (AFx)x (4.56)

Taylor discretisation in time leads to

∆U
∆t

:=
Un+1 − Un

∆t
= −Fn

x +
∆t

2
(AFx)

n
x +O

(
∆t2
)
. (4.57)

The weak form for the above equation can be written as

∫
Ω

W · ∆Uh

∆t
dΩ +

∫
Ω

W ·Fh
x dΩ =

∫
Ω

∆t

2
W ·

(
AFh

x

)
x
dΩ. (4.58)

Application of divergence theorem on the R.H.S results in form A as

∫
Ω

W · ∆Uh

∆t
dΩ +

∫
Ω

W ·Fh
x dΩ = −

∫
Ω

∆t

2
Wx ·AFh

x dΩ +

∫
∂Ω

∆t

2
W ·AFh

x d∂Ω.

(4.59)



SOLUTION OF A 1D TWO-EQUATION SYSTEM OF HYPERBOLIC EQUATIONS 85

Further application of the divergence theorem on the second term of the L.H.S. leads to

form B as

∫
Ω

W · ∆Uh

∆t
dΩ =

∫
Ω

Wx ·Fh dΩ−
∫

Ω

∆t

2
Wx ·AFh

x dΩ−
∫
∂Ω

W ·Fh d∂Ω

+

∫
∂Ω

∆t

2
W ·AFh

x d∂Ω.

(4.60)

After FE expansion, the equation (4.59) can be expressed as

nel∑
e=1

W̃ ·
∫

Ωe
NN T ∆Ũ

∆t
dΩ = −

nel∑
e=1

W̃ ·
∫

Ωe
NBT F̃ dΩ

−
nel∑
e=1

W̃ ·
∫

Ωe

∆t

2
BABT F̃ dΩ +

∫
∂ΩN

∆t

2
WN ·AFx d∂Ω, (4.61)

and form B is presented as

nel∑
e=1

W̃ ·
∫

Ωe
NN T ∆Ũ

∆t
dΩ =

nel∑
e=1

W̃ ·
∫

Ωe
BN T F̃ dΩ

−
nel∑
e=1

W̃ ·
∫

Ωe

∆t

2
BABT F̃ dΩ−

∫
∂ΩN

WN ·F d∂Ω

+

∫
∂ΩN

∆t

2
WN ·AFx d∂Ω. (4.62)

For linear shape functions, the expression in equation (4.61) can be simplified when partic-

ularized for an intermediate element as be written as

MTG
∆Ũ

∆t
+ KTGŨ = 0, (4.63)

where

MTG =

nel

A
e=1

(Me
TG) , KTG =

nel

A
e=1

(Ke
TG) and Ũ =

nnode

A
i=1

(
Ũi

)
. (4.64)
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In equation (4.64), A indicates the assembly operator, Ũi = [ui, ui+1, vi, vi+1]T and consis-

tent element mass matrix Me
TG is expressed as

Me
TG =

h

6



2 1 0 0

1 2 0 0

0 0 2 1

0 0 1 2


, (4.65)

and

Ke
TG =

1

2



a −a 0 0

a −a 0 0

0 0 b −b

0 0 b −b


+

√
ab∆t

2h



0 0 1 −1

0 0 −1 1

1 −1 0 0

−1 1 0 0


(4.66)

Similar expression can be computed for equation (4.62).

4.4.2 SUPG-RK Scheme in Conservative Form

The SUPG formulation in conservative framework for form A equation can be written as

∫
Ω

W · Uht dΩ +

nel∑
e=1

∫
Ωe
τATWx ·

(
Uht +Fh

x

)
dΩ = −

∫
Ω

W ·Fh
x dΩ. (4.67)

Using the divergence theorem on the R.H.S. form B can be expressed as

∫
Ω

W · Uht dΩ+

nel∑
e=1

∫
Ωe
τATWx ·

(
Uht +Fh

x

)
dΩ =

∫
Ω

Wx ·Fh dΩ−
∫
∂Ω

W ·Fh d∂Ω.

(4.68)
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The spatial semi-discretised form for A leads to

nel∑
e=1

W̃ ·
∫

Ωe
NN T ∆Ũ

∆t
dΩ +

nel∑
e=1

W̃ ·
∫

Ωe
τBAN T Ũ t dΩ =

−
nel∑
e=1

W̃ ·
∫

Ωe
NBT F̃ dΩ−

nel∑
e=1

W̃ ·
∫

Ωe
τBABT F̃ dΩ,

(4.69)

and spatial semi-discretised form for B can be expressed as

nel∑
e=1

W̃ ·
∫

Ωe
NN T ∆Ũ

∆t
dΩ +

nel∑
e=1

W̃ ·
∫

Ωe
τBAN T ∆Ũ

∆t
dΩ =

nel∑
e=1

W̃ ·
∫

Ωe
BN T F̃ dΩ−

nel∑
e=1

W̃ ·
∫

Ωe
τBABT F̃ dΩ

−
∫
∂ΩN

WN ·F d∂Ω. (4.70)

Final solution can be obtained by implementing TVD-RK scheme as sketched in subsection

4.3.2 (equations (4.69) and (4.70)).

4.5 SELECTION OF STABILISATION PARAMETER

The stabilisation parameter τ proposed in original SUPG formulation is expressed as [22,

50]

τ = τI (4.71)

Here, two separate expressions for τ is employed based on spatial discretisation and tempo-

ral discretisation. They are given as follows:

• Spatial criteria: τ = Zχh
R

, where Z indicates a non-dimensional parameter, χ is a

parameter related to stability and R is the spectral radius of Flux-jacobian matrixAI .

• Temporal criteria: τ = Zχ∆t.
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It is worth pointing out that, in the original formulation [22] τ is proposed based only on

spatial criteria. This is highly logical for an implicit scheme as τ needs to be independent

of the size of time step ∆t. However, for an explicit scheme, h and ∆t are related through

CFL number and therefore, τ can be defined based on either criteria. Considerable work

has been carried out [22, 50] to observe the effect on stability and accuracy of the solution

by considering Zχ = 1
2
, 1

4
, 1√

15
. This definition of τ yields lower values for higher order

elements [49, 94]. Subsequent minor modifications of τ are carried out considering the

interaction between a shock-capturing term and the earlier version of τ [91].

Lately, new formulations of τ are proposed for higher order elements [39]. One of these

method suggests calculation of τ based on element level matrices and vectors [95]. These

definitions are generally written in terms of the ratios of the norms of the matrices or vectors

e.g., for an advection dominated problem τ is expressed as

τ =
∆t

2

‖Ce‖∥∥∥C̃e

∥∥∥ , (4.72)

where

Ce :

∫
Ωe

W · ∂Fh
I

∂XI

dΩ and C̃e :

∫
Ωe

∂W

∂XI

· ∂Uh

∂t
dΩ. (4.73)

These definitions automatically take into account the local length scales and advection field.

Moreover, based on these definitions τ can be calculated for each element and each degree of

freedom [26]. It is also well known that the stabilization parameters to be used in advancing

the solution from time step n to n + 1 should be evaluated at time step n [93, 95]. In this

way, further nonlinearity in solution scheme is avoided.

In current work, τ is defined from a temporal perspective. Generally, τ = ∆t
2

for all the

analyses using SUPG-RK scheme, unless otherwise stated.
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4.5.1 Numerical Experiment: Propagation of Acoustic Wave

An experiment is conducted in order to observe the effect of varying τ . Figure 4.5 depicts the

evolution of pressure and velocity waves for the acoustic wave propagation problem varying

τ at t = 0.5. Number of elements taken for the study is 600 and the magnitude of CFL is
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Figure 4.4: Evolution of pressure and velocity waves using SUPG-RK scheme with varying
τ at C = 0.5

considered as 0.5. Further investigations reveal that the solution can not be obtained beyond

the value of τ = 0.5∆t when CFL is 0.5. However, by reducing CFL at 0.3, solution can

be reached when τ = ∆t. Figure 4.4 displays the evolution of pressure and velocity waves

using the SUPG-RK scheme with varying τ at t = 0.5 and C = 0.3. It can be observed

both from Figure 4.4 and Figure 4.5, increasing magnitude of τ adds more diffusion to the

solution and therefore, minimises the spurious oscillations. However, after a certain value
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Figure 4.5: Evolution of pressure and velocity waves using SUPG-RK scheme with varying
τ at C = 0.3

of τ , the solution becomes over diffusive and renders unstable. Therefore, for a given CFL

there exists an optimum value of τ .

4.6 CONCLUSION

This chapter introduces the stabilised finite element formulations for solving 1D hyper-

bolic problems with 2 D.O.F. The numerical formulations for the one step Taylor-Galerkin

scheme and the SUPG-RK scheme are presented both in a non-conservative and conserva-

tive framework. It is concluded that for a conservative framework is more suitable for solv-

ing fast dynamics problems. Moreover, the accuracy of the stabilised schemes is demon-
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strated through a numerical example of propagation of an acoustic wave in a shock-tube.

Furthermore, two possible ways to solve the discretised equations are presented and they

are indicated as “formA” and “form B”. An in depth investigation on the influence of these

forms will be presented in next chapter. Finally, a discussion is included on selection of the

stabilisation parameter τ for the SUPG-RK scheme. The effect on the solution by varying

τ is demonstrated. It is observed that τ plays an important role in determining the accuracy

of the solution and the optimum magnitude of τ is dependant on the CFL number.



Chapter 5

1D FAST STRUCTURAL DYNAMICS

PROBLEM

92
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5.1 INTRODUCTION

This chapter addresses 1D fast structural dynamics problems. The nature of this type of

problems is similar to the problems discussed in previous chapter. Therefore, the conserva-

tive finite element framework can be implemented to solve these problems. In the following

sections, the governing equations for 1D fast dynamics problems is derived, their eigen-

structure is discussed. Extensive numerical analyses are carried out in order to address the

accuracy, convergence as well as suitability of form A and form B. Furthermore, the accu-

racy of the stabilised finite element schemes is compared with the finite volume schemes.

Afterwards, a shock capturing scheme is introduced in order to improve the accuracy of the

stabilised finite element schemes. The performance of the shock capturing scheme is com-

pared with slope limiters implemented in finite volume schemes. Finally, some conclusions

are reached regarding the suitability of numerical schemes.

5.2 GOVERNING EQUATION

For a reversible process, the mixed formulation for one dimensional fast dynamics reduces

to

U t +F1x = 0, (5.1)

where

U =

 p1

F11

 , F1 =

−P11

−p1
ρ0

 . (5.2)

In equation (5.2), p1 denotes linear momentum, F11 represents the deformation gradient and

ρ0 indicates constant material density. In the small strain linear regime, the First Piola-
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Kirchhoff stress is expressed as,

P11 = (λ+ 2µ)(F11 − 1), (5.3)

where λ and µ are Lamé constants. Therefore, in a non-conservative form, the governing

equations can be written as

U t +A1Ux = 0, (5.4)

where

A1 =

 0 −(λ+ 2µ)

− 1
ρ0

0

 . (5.5)

Furthermore, imposition of a null Poisson’s ratio, ν = 0, leads to

λ =
νE

(1 + ν)(1− 2ν)
= 0, and E = 2µ(1 + ν) = 2µ, (5.6)

which results in a Flux Jacobian matrixA1 as

A1 =

 0 −E

− 1
ρ0

0

 . (5.7)

The eigenvalues ofA1 are computed as

Λ1 = −

√
E

ρ0

and Λ2 =

√
E

ρ0

, (5.8)

For a linear problem, time is computed based on the maximum eigenvalue as

∆t =
Ch

Λ2
. (5.9)
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The algorithm to solve 1D solid mechanics problems is presented in Figure 5.1.

• INPUT number of elements and solution parameters

• COMPUTE number of nodes and nodal coordinates in domain [0, 10]

• DEFINE material properties

• COMPUTE number of time steps using equation (5.9)

• ALLOCATE MEMORY for p1, F11 and X

• IF one-step Taylor-Galerkin scheme

– COMPUTE global matrices based on equation (4.61) (form A) or (4.62)
(form B)

• ELSEIF SUPG-RK scheme

– COMPUTE global matrices based on equation (4.69) or (4.70) (form B)

• COMPUTE global matrices

• IF time integration scheme TVD Runge-Kutta

– IMPLEMENT time integration algorithm as presented in Figure 5.2

• ELSE

– IMPLEMENT time stepping scheme as presented in Figure 5.3

• COMPUTE post-processing parameters.

Figure 5.1: Algorithm for solving 1D solid mechanics problem

5.3 BAR SUBJECTED TO SINUSOIDAL TRACTION

In order to demonstrate the capabilities of the one step Taylor-Galerkin and SUPG-RK

schemes, a sinusoidal traction force is applied axially to a bar displayed in Figure 5.4 with

properties as shown in Table 5.1. The bar is fixed at one end and the tensile traction loading

applied to the free end is expressed as

T = T0 sin(ωt) (5.10)
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• ALLOCATE MEMORY for U(1),U(2) as referred in equation (4.46) and equa-
tion (4.48)

• LOOP over time steps

– EVALUATE flux Fn
1 using equation (5.2) and (5.3)

– CORRECT flux using Neumann boundary conditions (only for form A)

– EVALUATE boundary term
∫
∂Ω
WF (only for form B)

– COMPUTE U(1) using equation (4.46)

– IMPLEMENT Dirichlet boundary conditions and CORRECT F11 at nodes
of known traction

– COMPUTE F (1) and U(2)

– CORRECT flux using Neumann boundary conditions (only for form A)

– EVALUATE boundary term
∫
∂Ω
WF (only for form B)

– IMPLEMENT Dirichlet boundary conditions and CORRECT F11 at nodes
of known traction

– COMPUTE U(2) using equation (4.48)

– COMPUTE X using trapezoidal rule

• END LOOP

Figure 5.2: Algorithm for TVD Runge-Kutta time integration scheme

• LOOP over time steps

– EVALUATE flux Fn
1 using equation (5.2) and (5.3)

– CORRECT flux using Neumann boundary conditions (only for form A)

– EVALUATE boundary term
∫
∂Ω
WF (only for form B)

– COMPUTE
∫
∂Ω

∆t
2
WAFx d∂Ω

– COMPUTE Un+1 = Un + ∆tLn

– IMPLEMENT Dirichlet boundary conditions and CORRECT F11 at nodes
of known traction

– COMPUTE X using trapezoidal rule

• END LOOP

Figure 5.3: Algorithm for Taylor-Galerkin time integration scheme

where

T0 = 1× 10−3N and ω = 0.1. (5.11)
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T=T0 f(t) 

L 

x 

y 

Figure 5.4: Axially-loaded cantilever bar

Table 5.1: Properties of axially-loaded bar

Property Magnitude
Linear density (m) 1 kg/m
Young’s modulus (E) 1 N/m2

Poison’s ratio (ν) 0
Length (L) 10 m
Cross section area (A) 1 m2

The objective of this study is to verify the accuracy the numerical schemes provide by

comparing the numerical solutions with corresponding analytical solutions. The analytical

solution is obtained through Fourier analysis. The displacement at mid-point of the bar is

given as

X(x, t) =
∞∑
n=1

(−1)n
2T0L

mL (ω2
n − ω2)

(
sin(ωt)− ω

ωn
sin(ωnt)

)
sin

(
(2n− 1)πx

2L

)
(5.12)

where

ωn = (2n− 1)
π

2

√
EA

mL2
. (5.13)

The domain is discretized into 50, 100 and 200 elements. CFL number is considered as 0.5.

Figure 5.5 shows the time history of displacement, velocity and axial stress at the mid-span

of the bar using formA of Taylor-Galerkin scheme as presented in equation (4.61). The re-
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sults are compared against analytical solution provided in equation (5.11). The time history
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Figure 5.5: Time history of a bar under sinusoidal traction using TG scheme (form A)

of the same variables, calculated based on form B given in equation (4.62), is depicted in

Figure 5.6.



1D FAST STRUCTURAL DYNAMICS PROBLEM 99

0 20 40 60 80 100
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Time (s)

D
is

pl
ac

em
en

t (
m

)
Solution at mid−span using TG scheme

 

 

Analytical solution
50 elements
100 elements
200 elements

(a) Displacement

Time (s)

D
is

pl
ac

em
en

t (
m

)

Solution at mid−span using TG scheme

 

 

(b) Magnified view

0 20 40 60 80 100
−2

−1

0

1

2

3
x 10

−3

Time (s)

V
el

oc
ity

 (
m

/s
)

Solution at mid−span using TG scheme

 

 

Analytical solution
50 elements
100 elements
200 elements

(c) Velocity

Time (s)

V
el

oc
ity

 (
m

/s
)

Solution at mid−span using TG scheme

 

 

(d) Magnified view

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

4

5
x 10

−3

Time (s)

A
xi

al
 s

tr
es

s 
(N

/m
2 )

Solution at mid−span using TG scheme

 

 

Analytical solution
50 elements
100 elements
200 elements

(e) Axial stress

Time (s)

A
xi

al
 s

tr
es

s 
(N

/m
2 )

Solution at mid−span using TG scheme

 

 

(f) Magnified view

Figure 5.6: Time history of a bar under sinusoidal traction using TG scheme (form B)

Similarly, time history of displacement, velocity and axial stress at mid-span of the bar

obtained using formA and form B of SUPG-RK scheme is plotted in Figure 5.7 and Figure

5.8, respectively.
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Figure 5.7: Time history of a bar under sinusoidal traction using SUPG-RK scheme (form
A)

From the results, it seems that form A of both stabilised schemes provide slightly better

solution than form B for stress and velocity. However, the solution for displacement is

almost identical as it is evaluated through time integration of velocity. A trapezoidal time
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Figure 5.8: Time history of a bar under sinusoidal traction using SUPG-RK scheme (form
B)

integration scheme is implemented to obtain displacement.
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5.4 CONVERGENCE STUDY

The purpose of this numerical experiment is to verify the order convergence of the proposed

stabilised finite element schemes. In order to obtain the convergence plot, the bar at sec-

tion 5.3 is subjected to an exponential loading as it is C∞ continuous. The properties and

boundary conditions are considered same as before. The tensile traction loading applied at

free end is expressed as

T = T0e
−ω(t−13)2 (5.14)

where

T0 = 1× 10−3N and ω = 0.1. (5.15)

The convergence study for is conducted using 20, 40, 80, 160 and 320 elements at C =

0.5. Normalised error is calculated based on L2 norm at t = 10 s. Figure 5.9 depicts

the convergence of displacement, velocity and stress for the Taylor-Galerkin formulation.

Figure 5.10 shows the convergence of the same parameters for the SUPG-RK formulation.
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Figure 5.9: Convergence of the Taylor-Galerkin scheme based on L2 norm for 1D fast
dynamics problem
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Figure 5.10: Convergence of SUPG-RK scheme based on L2 norm for 1D fast dynamics
problem

nodal coordinates of very fine mesh. In current work, a domain of 640 elements is taken for

computation of normalised error.

It can be seen from Figure 5.9 and Figure 5.10, both schemes provide second order accuracy

for displacement, velocity and stress. However, in a relatively coarser mesh the convergence

of stress is faster in SUPG-RK scheme than Taylor-Galerkin scheme. The convergence

pattern for form A is identical to that of form B.

5.5 BAR SUBJECTED TO CONSTANT TRACTION

A step-function loading is applied to the same bar. The purpose for this experiment is to

observe the ability of both form A and form B to capture the shock waves. The properties

and boundary conditions are considered same as before. The tensile traction loading applied

at free end is expressed as

T = T0 (5.16)
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where

T0 = 1× 10−3N. (5.17)

The displacement of the bar obtained using Fourier analysis is expressed as

X(x, t) =
∞∑
n=1

(−1)n+1 2T0

mL

1− cos(ωnt)

ω2
n

sin

(
(2n− 1)πx

2L

)
(5.18)

where ωn is given in equation (5.13). The domain is discretized into 50, 100 and 200 el-

ements. CFL number is considered as 0.5. Figure 5.11 and Figure 5.13 display the time

history of displacement, velocity at free end and axial stress at fixed end of the bar using

form A and form B of Taylor-Galerkin scheme, respectively. Variation of the same param-

eters is simulated in Figure 5.12 for formA and in Figure 5.14 for form B of the SUPG-RK

scheme.

5.5.1 Discussion

From Figure 5.5, Figure 5.6, Figure 5.7 and Figure 5.8, it can be noticed that the numerical

solutions converge quickly to corresponding analytical results. The spurious oscillations

arise for axial stress and velocity. Moreover, if observed carefully, it can be seen the accu-

racy of the form A is slightly higher than form B for both Taylor-Galerkin and SUPG-RK

schemes. The reason is that the jump in flux in intermediate elements is neglected in form

B. Nevertheless, it is still advantageous to implement form B for two reasons. Firstly, the

underlying principle behind form A is based on the fact that flux can be linearly interpo-

lated in terms of shape functions i.e. F = NiFi. However, this is true only in small-strain

framework. Secondly, the Neumann boundary conditions appear naturally in the form B as

a result of applying divergence theorem, hence, easier to implement. Therefore, form B is

adopted in later part of this work. The predication of displacement is fairly similar of all the

schemes and not of primary concern.
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Figure 5.11: Time history of a bar under constant traction using TG scheme (form A)
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Figure 5.12: Time history of a bar under constant traction using SUPG-RK scheme (form
A)

5.5.2 Effect of Varying Stabilisation Parameter

A numerical experiment is conducted in order to observe the change in solution with varying

stabilisation parameter τ . For this purpose, CFL number is reduced to 0.4 and magnitude
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Figure 5.13: Time history of a bar under constant traction using TG scheme (form B)

of τ is considered as ∆t, ∆t
2

and ∆t
4

. Number of elements is taken as 100. The result is

shown in Figure 5.15. As expected, as τ increases more diffusion is added to the solution

until it reaches an optimum value. When CFL number is equal to 0.4, ∆t is found to be the
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Figure 5.14: Time history of a bar under constant traction using SUPG-RK scheme (form
B)

optimum value of τ . However, at stability limit (C = 0.5), the optimum magnitude of τ is

known to be ∆t
2

.
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Figure 5.15: Effect of varying τ at C = 0.4

5.5.3 Comparison of Different Schemes

A study is conducted to compare the accuracy of stabilised finite element schemes imple-

mented in current work with cell-centered finite volume schemes [61, 63, 62]. The domain

is discretised into 100 elements and analyses are carried out at C = 0.5. Figure 5.16 shows

the solutions obtained through one step Taylor-Galerkin, SUPG, first and second finite vol-

ume schemes. The solutions are plotted against analytical solution. If observed carefully, it

can be seen that the magnitude of wiggles in Taylor-Gaerkin scheme is higher than that of

SUPG-RK scheme. This occurs as larger diffusion is added into the solution due to TVD

Runge-Kutta time integration scheme associated with SUPG-RK scheme. Further observa-

tions reveal that monotonicity of first order finite volume scheme ensures a solution without



1D FAST STRUCTURAL DYNAMICS PROBLEM 110

0 20 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−3

Time (s)

V
el

oc
ity

 (
m

/s
)

Solution at free end

 

 

SUPG−RK
Taylor Galerkin
FV first order
FV second order
Analytical solution

(a) Velocity

20

−1

−0.5

0

0.5

1

1.5

x 10
−3

Time (s)

V
el

oc
ity

 (
m

/s
)

Solution at free end

 

 

(b) Magnified view

0 20 40
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Time (s)

A
xi

al
 s

tr
es

s 
(N

/m
2 )

Solution at fixed end

 

 

SUPG−RK
Taylor Galerkin
FV first order
FV second order
Analytical solution

(c) Axial stress

0

0.5

1

1.5

2

2.5

x 10
−3

Time (s)

A
xi

al
 s

tr
es

s 
(N

/m
2 )

Solution at fixed end

 

 

(d) Magnified view

Figure 5.16: Comparison of numerical schemes

wiggles. However, the non-monotonic second order finite volume scheme solution includes

spurious oscillations. If noticed carefully, the magnitude of the wiggles in second order

finite volume method is less than finite element schemes. This is mainly because the flux is

evaluated at the boundary of each element in finite volume scheme. Whereas, in finite ele-

ment scheme flux is computed only at the boundary of the domain making it less diffusive.

Additionally, higher number of D.O.F are present in the finite element scheme as compared

to finite volume method.



1D FAST STRUCTURAL DYNAMICS PROBLEM 111

5.6 SHOCK CAPTURING SCHEME

The purpose of introducing the shock capturing scheme is to remove spurious oscillations

from the solution. This can be achieved usually done by adding diffusion near the vicinity

of shock. The generalised semidiscretised form of SUPG-RK scheme in multi-dimension

can be expressed as

∫
Ω

W ·R
(
Uh
)
dΩ +

nel∑
e=1

∫
Ωe
τAT

J

∂W

∂XJ

·R
(
Uh
)
dΩ +

nel∑
e=1

∫
Ωe
δ
∂W

∂XI

· ∂U
h

∂XI

dΩ = 0,

(5.19)

where

R
(
Uh
)

=

(
∂Uh

∂t
+
∂Fh

I

∂XI

)
I, J = 1, 2, 3. (5.20)

The semi discrete form when particularised for 1D fast structural dynamics problem leads

to

∫
Ω

W · Uht dΩ +

nel∑
e=1

∫
Ωe
τATWx ·

(
Uht +Fh

x

)
dΩ

+

nel∑
e=1

∫
Ωe
δWx · Uhx dΩ =

∫
Ω

Wx ·Fh dΩ−
∫
∂Ω

W ·Fh d∂Ω. (5.21)

Similarly, the semi discrete form for TG scheme with shock capturing can be written as

∫
Ω

W · ∆Uh

∆t
dΩ +

nel∑
e=1

∫
Ωe
δWx · Uhx dΩ =

∫
Ω

Wx ·Fh dΩ−
∫

Ω

∆t

2
Wx ·AFh

x dΩ

−
∫
∂Ω

W ·Fh d∂Ω +

∫
∂Ω

∆t

2
W ·AFh

x d∂Ω.

(5.22)

An earlier version of the shock capturing parameter δ is proposed by Le Beau and Tezduyar

[59, 60]. The expression for this shock capturing term, used in the context of conservation

variables, is derived from the shock capturing term expressed in terms of entropy variables

[52, 53]. Moreover, computation of this term involves evaluation of the Jacobian matrix of
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the transformation from the entropy variables to the conservation variables [60]. Recently, a

novel shock capturing scheme, known as Y Zβ shock capturing, has been proposed [96, 97].

This scheme has been widely used for capturing shocks in flow problems [11, 26, 27, 77, 78].

In addition to being much simpler than the earlier shock capturing scheme, Y Zβ Shock

capturing scheme yields substantially better shock quality [96, 97].

5.6.1 Y Zβ Shock Capturing

Y Zβ shock capturing are formulated based on scaled residuals and are defined with options

for smoother or sharper shocks. “YZ” version of Y Zβ shock capturing scheme can be

expressed as [83, 96, 97]

δ =
∥∥Y−1Z

∥∥( nsd∑
i=1

∥∥∥∥Y−1∂Uh

∂Xi

∥∥∥∥2
)β/2−1(

hshoc
2

)β
, (5.23)

where

Z =

(
∂Uh

∂t
+
∂Fh

I

∂XI

)
, Y = diag (U ref ) ,

hshoc = 2

(
nen∑
a=1

|j · ∇Na|

)−1

= h (for 1D problems). (5.24)

In equation (5.24), Y is a diagonal scaling matrix containing reference values of compo-

nents of U and j is defined in direction of density for flow problems. “YZU” version of

Y Zβ shock capturing scheme can be written as

δ =
∥∥Y−1Z

∥∥( nsd∑
i=1

∥∥∥∥Y−1∂Uh

∂Xi

∥∥∥∥2
)β/2−1 ∥∥Y−1Uh

∥∥1−β
(
hshoc

2

)β
. (5.25)

In flow problems, different expressions for scaling matrix Y has been tested. One of

these expressions recommends inflow condition for variables in Eulerian configuration [92],

which corresponds to initial values of variables at Lagrangian configuration. Since, the sec-
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ond Piola-Kirchhoff stress is zero initially, this expression can not adopted. Therefore, the

expression for Y is considered as

Y = αI, (5.26)

where α is a scalar parameter which needs to be tuned for a specific problem. Lowering

the magnitude of α enables better shock capturing. However, there exists an optimum value

beyond which α can not be reduced. In equations (5.23) and (5.25) β = 1 for smoother

shocks and β = 2 for sharper shocks. In current work, the magnitude of β is taken as 2.

5.6.2 Numerical Experiments

A series of numerical experiments are carried out for determining the efficiency of Y Zβ

shock capturing scheme. To begin with, the elastic bar subjected to constant traction force,

discussed in section , is analysed. The value of CFL is taken as 0.3 and α = 0.0006.

Number elements to discretise the domain is taken as 50, 100 and 200. Figure 5.17 shows

the variation in axial stress and velocity using Taylor-Galerkin scheme. The change in same

parameters, using SUPG-RK scheme, is displayed in Figure 5.18. If observed carefully,

Y Zβ shock capturing scheme performs slightly better along with SUPG-RK scheme. This

can again be related to two stage TVD RK time integration.

An investigation is conducted to determine the convergence trend for a sufficiently smooth

problem in presence of shock capturing scheme. For this purpose, the bar subjected to

exponential traction force (as discussed in section 5.4 is analysed. Figure 5.19 displays

the convergence pattern for Taylor-Galerkin and SUPG-RK schemes. It can be observed

that the velocity, displacement and axial stress of the bar are second order convergent in

both schemes in spite of inclusion of shock capturing term in the stabilised finite element

formulation.

A further comparison is made between Y Zβ shock capturing scheme implemented in sta-
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Figure 5.17: Time history of a bar under constant traction using TG scheme with shock
capturing

bilised finite element formulations and slope limiters [61] applied in second order cell cen-

tred finite volume scheme (Figure 5.20). The solution of the SUPG-RK scheme is slightly

better than the Taylor Galerkin scheme due to the inclusion of TVD RK scheme. The slope

limiter seems to work well when implemented in more diffusive cell centred finite volume

scheme. The solution of the finite volume and stabilised finite element schemes is also com-

pared with Trapezoidal Newmark scheme [20]. The spurious oscillations in the Newmark

scheme near discontinuity appear as expected.
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Figure 5.18: Time history of a bar under constant traction using SUPG-RK scheme with
shock capturing

5.7 NON-LINEAR ELASTICITY

An investigation is carried out for observing the change in the solution when the constitutive

model is changed from linear elastic to nearly incompressible Neo-Hookean material (dis-

cussed in subsection ). The imposition of null Poisson’s ratio leads to calculation of Lamé

constants and shear modulus κ as

λ = 0, µ =
E

2
and κ =

2µ

3
. (5.27)

The magnitude of E is considered as unity. The amplitude of the loading is taken as 0.1 i.e.

100 times more than elastic analysis in order to activate the non linearity of the constitutive
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Figure 5.19: Convergence of stabilised finite element schemes in the presence of shock
capturing term

model. The other parameters are kept same as in elastic analysis. Figure 5.21 shows the

variation in displacement, stress and velocity at mid point of a bar while being subjected

to a sinusoidal traction force using Taylor-Galerkin scheme. The variation in the same

parameters using the SUPG-RK formulation is displayed in Figure 5.22. The elastic solution

is obtained through Fourier analysis. The non linear behaviour can very well be captured

using both schemes. It is worth noticing that the size of the time step in a non-liear analysis

is not constant, but changes as the solution evolves in time. The steps for calculation of time

step size are summarised hereafter.

• For every node, compute parameters as

γ1 = κJ2 +
5

9
µJ−

2
3 (F : F ) , γ2 = µJ−

2
3 and γ3 = −2

3
µJ−

2
3 (5.28)

• Calculate longitudinal wave speed as

Up =

√
γ2 +

(
γ1
Λ2 + 2γ3

)
ρ0

, (5.29)

where Λ is eigenvalue related to F , ρ0 is taken as unity.
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Figure 5.20: Comparison of shock capturing schemes with Newmark scheme and Slope
limiter

• Finally time step size can be computed as

∆t =
Ch

max(Up)
(5.30)

5.8 LUMPED MASS FORMULATION

One of the concerns of current study is the range of stability of the stabilised finite element

schemes. Since, adoption of consistent mass matrix in the finite element formulation leads

to a stability limit of C = 0.5 for both the schemes. One of the ways to increase this limit

is by lumping the mass matrix [82, 105]. Figure 5.23 shows the time history of a bar under
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Figure 5.21: Time history of a bar under sinusoidal traction using TG scheme (Neo-Hookean
material)

constant traction using the Taylor-Galerkin scheme with lumped mass matrix. Similarly,

the time history obtained through SUPG-RK scheme is displayed in Figure 5.24. The CFL
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Figure 5.22: Time history of a bar under sinusoidal traction using SUPG-RK scheme (Neo-
Hookean material)

number for these analyses is extended to 1.0 which is twice the stability limit obtained from

consistent mass matrix. Although, adopting lumped mass matrix offers further advantages
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Figure 5.23: Time history of a bar under constant traction using TG scheme and lumped
mass formulation

such as faster convergence and smaller spurious oscillations, it also raises dispersion (or

phase) error [105] in the solution. However, this phase error can be reduced by increasing
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Figure 5.24: Time history of a bar under constant traction using SUPG-RK scheme and
lumped mass formulation

the mesh density.

Since, one of the objectives of the proposed scheme is to obtain solution with moderately
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coarse mesh, consistent mass matrix has been adopted throughout this work. The stability

limit can also be increased by using a multi-stage time stepping scheme at the expense of

higher computational cost.

5.9 CONCLUSION

This chapter presents the implementation of the stabilised finite element formulation for

solving 1D fast dynamics problems. The capabilities of these schemes have been demon-

strated through several numerical experiments. It is found that the stresses in the solution

converge at same rate as displacements and velocities. Although, form A provides slightly

better result than form B, it is found the implementation of form B is easier and therefore,

adopted in the rest of the work. The finite element framework also provides opportunities

to implement different constitutive models. The SUPG-RK scheme performs better than the

one-step Taylor-Galerkin scheme. The solution obtained through finite element schemes are

compared to that of finite volume schemes. It is found that spurious oscillations in finite ele-

ment scheme and second order finite volume schemes arise in presence of discontinuity due

to their non-monotonic nature. A shock capturing scheme developed in Eulerian finite ele-

ment formulation is implemented in the Lagrangian formulation in order to alleviate those

wiggles and their efficiency is compared to slope limiters applied in second order finite vol-

ume formulation. The effect of lumped mass matrix on the solution is also investigated.

Although, lumped mass matrix drastically increases the stability limit, it is not adopted to

reduce dispersion error in the solution.
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6.1 INTRODUCTION

This chapter briefly introduces the two-dimensional (2D) implementation of fast dynamics

problems. It addresses the curl-fee involution arising from compatibility condition. More-

over, the numerical results obtained from preliminary analysis is presented.

6.2 CURL-FREE INVOLUTION

In this SUPG scheme, the deformation gradientF is a primary variable which contrasts with

the usual finite element formulation where the spatial coordinate x is the primary variable.

For convenience, the expression for F is recalled here as

F =
∂φ (X, t)

∂X
=

∂x

∂X
=∇0x, (6.1)

or following index notation

FiI =
∂xi
∂XI

. (6.2)

The gradient of deformation gradient tensor satisfies

∂2xi
∂XI∂XJ

=
∂2xi

∂XJ∂XI

. (6.3)

In the case, where F is primary variable, the compatibility condition must be satisfied as

curlF = 0, (6.4)

in order to guarantee the existence of a single-valued continuous displacement field. These

conditions are met under exact integration provided they are satisfied by the initial condi-

tion, which in turn implies that the curl preservation is an inherent analytical property of

the evolution operator. A robust numerical scheme must have the ability to control curl-

errors under long-term response analysis. These errors usually accumulate and lead to a
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breakdown of the scheme.

An initial effort to ensure compatibility is made by adopting the discretised “formB” for the

conservation of linear momentum equation and “form A” for conservation of deformation

gradient tensor. This seems logical ans the curl-error arises from the second equation and

“formA” ensures that the order of continuity of v is not altered. This is useful to recall that

“formA” does not invoke the Divergence theorem unlike “form B”. Additionally, adopting

“formB” for the conservation of linear momentum allows the traction force in the boundary

to appear naturally as a result of employing the Divergence theorem.

6.3 NUMERICAL EXAMPLES

6.3.1 Short Column

In order to evaluate the performance of the proposed scheme in large strain bending dom-

inated problems, the vibration of a short column is considered. The column is being sub-

jected to a linear distributed initial velocity V0 = 0.1Y/Lm/s. The properties of the column

is listed in Table 6.1. The magnitude of CFL is taken as 0.2 and value of stabilisation pa-

Table 6.1: Properties of short column

Property Magnitude
Density (ρ0) 1.1e03 kg/m3

Young’s modulus (E) 1.7e07 N/m2

Poison’s ratio (ν) 0.45
Length (L) 6 m
Width (b) 1 m

rameter is considered as τ = 0.2∆t. The domain is discretised in to 4× 24 elements.Figure

6.1 displays the evolution of pressure in the column at different time instant.
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Figure 6.1: Evolution of pressure distribution at different time instant for a short column

6.3.2 Tensile Test

For further investigating, a large deformation of punching test is considered. A square

plate of size 1 m × 1 m is constrained at the bottom, left and right boundary as shown in

Figure 6.2. The plate is pulled uniformly with an initial velocity V0 = 500m/s. Nearly

incompressible constitutive material is implemented for the numerical computation. The
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Figure 6.2: A tensile test

properties of the material is show in Table 6.2. The domain is discretised in to 10 × 10

Table 6.2: Properties of plate

Property Magnitude
Density (ρ0) 7e03 kg/m3

Young’s modulus (E) 2.1e07 N/m2

Poison’s ratio (ν) 0.3
Length (L) 1 m
Width (b) 1 m

elements. The magnitude of CFL is kept at 0.2 and value of stabilisation parameter is

considered as τ = 0.2∆t. Figure 6.3 displays pressure distribution in the plate. If observed

carefully, the solution leads to singularity in the solution at t = 0.0016131 s.

6.4 CONCLUSION

This chapter presents some preliminary results obtained from 2D fast dynamics problems.

The analysis results need to be compared with corresponding finite element solution and

other numerical schemes. The solution obtained from the vibration of the short column

seems to be agreeable. However, from the solution of punching test, it seems that the curl-

error has not been diminished completely. Therefore, additional measures need to be taken
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Figure 6.3: Evolution of pressure distribution at different time instant for a tensile test

to ensure compatibility condition.
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7.1 SUMMARY AND CONCLUSION

This work begins with a discussion on various terminologies and concepts in Kinematics.

The terms associated to deformation gradient tensor is emphasised particularly as they play

crucial role in the later part of the thesis. The first order conservation laws formulated

from conservation of linear momentum, deformation gradient and total energy is derived.

Moreover, different constitutive models, namely, nearly incompressible Neo-Hookean ma-

terial model and linear elastic materials are described. The eigen structure of the governing

equations is presented, as well. The eigenvalues represent the shear and longitudinal wave

velocities and are important for obtaining time step size for the evolution of the solution in

time. Contact and shock conditions are an integral part of the fast dynamics problems. The

boundary of the problem domain is treated as contact. Hence, formulations related to free

surface, sliding surface and sticking surface are derived.

In this work, two particular stabilised schemes, e.g. one step Taylor-Galerkin scheme and

SUPG scheme, are employed. Their similarity in structure makes them a favourable choice.

In order to determine the suitability of these schemes, first they are employed to solve a

pure advection equation. Extensive numerical experiments are performed on the schemes to

evaluate their stability and consistency. For the one step Taylor-Galerkin scheme the stabil-

ity limit is found to be at CFL number of 0.5 and it is second order convergent both in time

and space. Two time integration schemes, namely, Forward Euler and TVD Runge-Kutta,

are chosen for updating the SUPG solution in time. The Forward Euler time integration

is found to be highly unstable and hence, discarded. The resulting space-time discretised

SUPG formulation using TVD Runge-Kutta scheme displays second order convergence and

has a stability limit of C = 0.6. A spectral analysis is also carried out in order to determine

the dispersion and diffusion error of the schemes. It is found that for lower values values

of CFL the numerical solution lags behind the analytical solution. However, for higher

magnitude of CFL, the numerical solution leads the analytical solution at lower frequency

followed by a sudden phase shift at higher frequency. The stabilised schemes are imple-
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mented to propagate a cosine wave and a step wave. Wiggles appear in the solution while

propagating the step wave because of non-monotonic nature of both schemes.

In later part of this work, the stabilised finite element formulations are extended to solve 1D

hyperbolic equation with two degrees of freedom. Two different computational framework,

namely, non-conservative and conservative framework is presented. For a linear problem,

both conservative and non-conservative frameworks yield same solution. However, for a

non-linear problem conservative framework is preferred. In each framework, two different

formulations are presented which are indicated as “form A” and “form B”. The differ-

ence in those formulations arise from application of the Divergence theorem. The proposed

formulations are employed to solve propagation of acoustic wave in a 1D gas tube. The

numerical solution is compared against analytical solution. As expected, spurious oscilla-

tions arise in the solution due to presence of shock waves. One of the flexibilities of SUPG

formulation is the choice of stabilisation parameter. A detailed study is performed on effect

of stabilisation parameter in the solution. It is observed that for a given CFL there exists an

optimum magnitude of stabilisation parameter.

The analyses of one dimensional solid mechanics problems show that the SUPG-RK scheme

performs better than the one step Taylor-Galerkin scheme. The improved accuracy in

SUPG-TK scheme arises from the implementation of TVD-RK time integration. An in-

depth analysis reveals that “form A” yields slightly better results than “form B”. However,

in 1D case, it is easier to work with “form B”, since the Neumann boundary conditions

appear naturally. The formulation performs adequately when nearly incompressible Neo-

Hookean material model is employed. The implementation of lumped mass matrix increases

the stability of the scheme up to two times, but introduces dispersion error in the solution.

Dispersion error can be minimised by refining the mesh. However, usage of consistent mass

matrix is preferred since one of the aims of this study is to use relatively coarser mesh. The

performance of the stabilised finite element schemes is compared to that of finite volume

scheme. In the presence of shock discontinuity, spurious oscillations arise only in second

order finite volume scheme as the first order finite volume scheme is monotonic. A shock
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capturing scheme is also employed for diminishing the wiggles appearing in the finite ele-

ment solution. The performance of the shock capturing scheme is found to be satisfactory

when compared with finite volume solution with slope limiters.

The current work also includes preliminary analysis results of two dimensional fast dynam-

ics problems. A novel idea is presented to ensure the satisfaction of compatibility condition.

This strategy seems to work well for most of the cases, with few exceptions. Therefore, fur-

ther improvements need to be made for ensuring curl-free involution. The solutions also

need to be compared with finite volume results.

7.2 FUTURE RESEARCH DIRECTIONS

This work has a tremendous potential for research in future. Some of the ideas are as

follows:

• Establish and reliable and robust framework for two-dimensional and three-dimensional

applications.

• Include plasticity in the formulations. This can be easily achieved by means of a

sub-routine.

• Incorporate different type of elements. Especially, implementation of linear triangular

elements will offer significant advantage over contemporary finite element solvers

• Introduce formulation for unstructured mesh.

• Improve shock capturing scheme.

This work can also be extended to other stabilised finite element schemes such as discontinuous-

Galerkin method [32].
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