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ABSTRACT

This Master Thesis proposes a combined formulation of the Discontin-
uous Galerkin Method (DG) with solenoidal basis functions and the eX-
tended Finite Element Method (XFEM), in order to solve the incompressible
Navier-Stokes equations for unsteady flows around a solid object, providing
high orders of accuracy in space and time. This DG-XFEM formulation sim-
plifies the meshing process using structured meshes that also do not need to
be updated at every time step if the object moves, reducing the computa-
tional cost.

In the DG-XFEM formulation a fixed structured mesh is used and its
elements are classified in three groups, which receive a different treatment.
First, the elements inside the solid object are excluded in the calculations
since it is treated as a void. Second, the elements belonging to the fluid
are calculated as in the DG solenoidal formulation. Third, for the elements
cut by the interface integration is modified using XFEM in order to take
into account only the fluid region, considering curved integration cells to
accurately compute integrals in high-order elements; straight afterwards it
is solved again with the DG solenoidal formulation. In the DG solenoidal
formulation incompressible flows are first solved for velocity and only part
of the pressure’s degrees of freedom (hybrid pressure), reducing the overall
size of the system to be solved, while the rest of pressure degrees of freedom
(interior pressure) is computed as a post-processing.

A numerical validation of the method is given with the simulation of
the classical benchmark test of the flow past a cylinder, showing its good
performance in several cases tested.
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Chapter 1

Introduction

1.1 Objectives

In order to determine the flow around an undeformable solid, a Discontin-
uous Galerkin (DG) formulation with solenoidal basis functions is proposed
in [24, 26], which provides high orders of accuracy in space and time for
unsteady incompressible flows. In this case, this is done using a computa-
tional mesh that covers the fluid domain, matching the material interfaces.
However, following this approach, if the solid moves remeshing is needed.

To avoid this, we propose to consider a fixed mesh covering the whole do-
main (fluid and solid) and use the eXtended Finite Element Method (XFEM)
to solve the problem. The introduction of XFEM [7] with a level-set method
suppresses the need to mesh the discontinuity surfaces, adding more free-
dom in the meshing process. As there is no need to adapt the mesh around
the object, structured meshes can be used. Moreover, in the case that the
object moves, there will be no need to remesh at every time step.

The aim of this thesis is to derive a DG formulation with solenoidal
approximations combined with XFEM in order to solve the incompressible
Navier-Stokes equations for unsteady flows. The basic idea of this DG-
XFEM formulation is to combine the good features of both methods to
obtain better results than DG in terms of simplicity of mesh implementation
and computational cost.

1.2 Discretization methods: state of the art

A brief explanation about the methods mentioned in section 1.1 is shown
below. A short reference to the time integration is also given.

1



CHAPTER 1. INTRODUCTION 2

1.2.1 Discontinuous Galerkin method

The Discontinuous Galerkin method was first developed in 1973 by Reed
and Hill [32], but it was not used for CFD simulations until the 90’s by
Cockburn and Shu [18]. The solution of the Navier-Stokes equations with
the DG method was first accomplished by Bassi and Rebay [4] in 1997. As
the method gained more attention in the CFD research community, further
advances have come fairly rapidly (see for instance [35, 15, 17, 31]). Re-
searchers now use the DG method to perform simulations of a wide variety
of flow regimes. The method has been adapted to use it with compressible
and incompressible, steady and unsteady, as well as laminar and turbulent
conditions.

The DG method combines features of both Finite Element (FEM) [9] and
Finite Volume Methods (FVM) [3]. The solution is represented within each
element as a polynomial approximation (as in FEM), while the inter-element
convection terms are resolved with upwinded numerical flux formulae (as in
FVM). Theoretically, solutions may be obtained up to an arbitrarily high
order of accuracy [14]. In addition to that, DG also permits the formulation
of very compact numerical schemes. This is due to the fact that the solution
representations in each element are purposefully kept independent of the
solutions in other cells, with inter-element communication occurring only
between adjacent cells (elements sharing a common face). This character-
istic, along with other favourable numerical properties, makes this method
extremely flexible (easily handling a wide variety of element types and mesh
topologies) and also allows a number of adaptive techniques (both h- and p-
refinement) and solver acceleration strategies to be implemented in a rather
straightforward manner. The drawback of a DG formulation is in general
its cost because of the duplication of degrees of freedom at the elements’
boundaries. This overhead of degrees of freedom is becoming less significant
for high-order approximations.

1.2.2 Solenoidal basis functions

Solenoidal basis functions are useful in the Stokes and Navier-Stokes prob-
lems with incompressibility conditions (see for instance [2, 25, 28]). Using
solenoidal approximations in incompressible problems allows to split the ve-
locity space into the direct sum of a solenoidal part and an irrotational part.
Then the problem consists of an uncoupled problem, allowing to decrease
the total number of degrees of freedom and, consequently, the computational
cost.

1.2.3 eXtended Finite Element Method

XFEM was developed in 1999 by Belytschko and collaborators [6, 5] to help
alleviate shortcomings of the Finite Element Method and is used to model
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the propagation of discontinuities such as cracks or material interfaces. The
idea behind the method is to retain most advantages of meshfree methods
while minimizing their negative sides [22].

This method was developed to ease difficulties in solving problems with
localized features that are not efficiently resolved by mesh refinement. One
of the initial applications was the modelling of fractures in a material [6]. In
this original implementation, bases that include crack opening displacements
are obtained by means of adding —for the nodes belonging to elements cut
by the interface— discontinuous basis functions to the standard polynomial
shape functions. A key advantage of XFEM is that in such problems the
finite element mesh does not need to be updated to track the crack path.
Subsequent research, for example [13, 21, 36], has illustrated the more gen-
eral use of the method for problems involving singularities, material inter-
faces, regular meshing of micro-structural features such as voids, and other
problems where a localized feature can be described by an appropriate set
of basis functions.

The principle of this method [7] is the enrichment of the polynomial
approximation space of the classical Finite Element Method, so that it is
able to naturally reproduce the discontinuities. The construction of the en-
richment is frequently done with the level-set method, developed in 1988 by
Osher and Sethian [30], since it simplifies the process of tracking interfaces’
evolution. By means of this method, it is not only possible to determine
where the enrichment is needed but it also facilitates its construction. The
idea is to define interfaces implicitly by means of the zero-level of a scalar
function within the domain.

Another key point in XFEM is the modification of the integration in
the elements affected by the discontinuities. For the elements cut by the
interface, integration rules are modified to be able to compute accurate
integrals at its both sides. Usually, the interface is approximated by a linear
function in each element. However, for high-order elements with curved
interfaces there is the necessity of using also high-order integration methods
that can be adapted to these shapes depending on the degree of interpolation,
as it is presented in [11, 19].

1.2.4 Rosenbrock time integration

In the past, numerical techniques for flow simulations has focused mainly
on steady state calculations due to computational costs. However, many
physical phenomena are unsteady, creating the need for efficient numerical
formulations for this kind of problems. A very well-known example of un-
steady problem is the generation of the so-called von Kármán vortices in a
flow past a cylinder.

In this thesis, a 4-stage ROSI2Pw method has been used, which be-
longs to the family of the Rosenbrock methods. As explained in [26], these
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methods are derived from Singly Diagonally Implicit Runge-Kutta (SDIRK)
methods, which are a special case of IRK methods where all the diagonal
coefficients of the Butcher array are identical. Rosenbrock methods avoid
the solution of nonlinear systems, reducing the computational cost. At each
time step, velocity and pressure are updated using a similar formulation as
in a standard Runge-Kutta (RK) method [27].

1.3 Overview of the thesis

The thesis is structured as follows:
Chapter 2 contains the problem statement, with a few previous defi-

nitions (2.1) followed by the presentation of the governing equations (2.2).
Then the DG formulation (2.3) with solenoidal basis functions (2.4) is stated
and combined afterwards with XFEM (2.5). Finally, the time discretization
(2.6) is explained.

Chapter 3 gives a short explanation about the MATLAB code used in
this thesis (3.1), followed by the numerical validation of the code by means
of the classical benchmark test of the flow past a cylinder (3.2).

Chapter 4 presents the conclusions of the thesis with a summary of all the
work done, highlighting its contributions to the existing formulation (4.1).
Future research in this topic (4.2) and possible applications of the code (4.3)
are also commented.



Chapter 2

Problem Statement

2.1 Previous definitions

Following [26] and [25], let’s consider Ω ⊂ Rnsd an open bounded domain in
a space with nsd spatial dimensions and with boundary ∂Ω. Now divide this
domain into nel disjoint subdomains Ωi,

Ω =

nel∪
i=1

Ωi, Ωi ∩ Ωj = ∅ for i ̸= j

with piecewise linear boundaries ∂Ωi, which define an internal interface Γ

Γ :=
[ nel∪
i=1

∂Ωi

]
\∂Ω

The jump J·K and mean {·} operators are defined along Γ using values
from the elements of both sides of the interface, Ωi and Ωj (with exterior
unit normals ni and nj), and also extended along the exterior boundary ∂Ω:

JpnK =

{
pini + pj nj = ni(pi − pj) on Γ

pn on ∂Ω
(2.1)

{p} =

{
1/2pi + 1/2pj on Γ

p on ∂Ω
(2.2)

for p a scalar.
In some equations, (·, ·) will denote the L2 scalar product in Ω, that is

for scalars

(p, q) =

∫
Ω
p q dΩ (2.3)

Analogously, (·, ·)Υ denotes the L2 scalar product in any domain Υ ⊂
Γ ∪ ∂Ω. For instance,

(p, q)Υ =

∫
Υ
p q dΓ (2.4)

5
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In equations (2.1), (2.2), (2.3) and (2.4), see [25] for the case with vectors
and tensors.

2.2 Governing equations

The equations of the model to be solved are the Navier-Stokes equations for
unsteady incompressible flows, which in the strong form read as follows1

∂u

∂t
− 2∇· (ν∇su) +∇p+ (u ·∇)u = f in Ω×]0, T [ (2.5a)

∇·u = 0 in Ω×]0, T [ (2.5b)

u = uD on ΓD×]0, T [ (2.5c)

−pn+ 2ν(n ·∇s)u = t on ΓN×]0, T [ (2.5d)

u(x, 0) = u0(x) in Ω (2.5e)

where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, f ∈ L2(Ω) is the source term, t
the boundary tractions, u the flux velocity, p its pressure, ν the kinematic
viscosity and ∇s = 1

2(∇+∇T ).

2.3 DG formulation

The problem (2.5) can be discretized following a Discontinuous Galerkin
Interior Penalty Method (DG-IPM) as it is done in [28] for the steady Navier-
Stokes equations and extended afterwards for an unsteady formulation in
[26].

Let’s introduce the discrete finite element spaces

Vh = {v ∈ [L2(Ω)]
nsd ; v|Ωi ∈ [Pk(Ωi)]

nsd ∀Ωi}
Qh = {q ∈ [L2(Ω)] ; q|Ωi ∈ [Pk−1(Ωi)] ∀Ωi}

where Pk(Ωi) is the space of polynomial functions of degree at most k ≥ 1
in Ωi.

Then the problem to solve is to find uh ∈ Vh×]0, T [ and ph ∈ Qh×]0, T [
such that ∀ v ∈ Vh, ∀ q ∈ Qh and ∀ t ∈]0, T [

(
∂uh

∂t
,v

)
+ a

(
uh,v

)
+ c

(
uh;uh,v

)
+b

(
v, ph

)
+({ph}, Jn ·vK)Γ∪ΓD

= l
(
v
)

b
(
uh, q

)
+ ({q}, Jn ·uhK)Γ∪ΓD

= (q,n ·uD)ΓD

(2.6)

1Notice that, in (2.5a), the constant density has been absorbed into the pressure. In
(2.5e), the initial velocity field u0 is assumed to be solenoidal, as will be seen in section
2.4.
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where

a
(
u,v

)
:=

(
2ν∇su,∇sv

)
+ C11 (Jn⊗ uK, Jn⊗ vK)Γ∪ΓD

−
(
2ν{∇su}, Jn⊗ vK

)
Γ∪ΓD

−
(
Jn⊗ uK, 2ν{∇sv}

)
Γ∪ΓD

, (2.7a)

c
(
w;u,v

)
:=

1

2

[
− ((w ·∇)v,u) + ((w ·∇)u,v)

+

nel∑
i=1

∫
∂Ωi\ΓN

1

2

[
(w ·ni)(u

ext + u)− |w ·ni| (uext − u)
]
·vdΓ

+

∫
ΓN

(w ·n)u ·vdΓ
]
, (2.7b)

b
(
v, p

)
:= −

∫
Ω
q∇·v dΩ (2.7c)

and

l
(
v
)
:= (f ,v) + (t,v)ΓN

+ C11 (uD,v)ΓD
−

(
n⊗ uD, 2ν∇sv

)
ΓD

. (2.7d)

C11 is the penalty parameter and uext denotes the exterior trace of u taken
over the side/face under consideration (for further details see [25]).

2.4 Solenoidal basis functions

Taking as a reference [25, 16, 10], solenoidal approximations can be intro-
duced in the problem by splitting the velocity space Vh into direct sum of
a solenoidal part and an irrotational part Vh = Sh ⊕ Ih, where

Sh =
{
v ∈ [H1(Ω)]nsd | v|Ωi ∈ [Pk(Ωi)]

nsd , ∇·v|Ωi = 0 for i = 1, . . . , nel
}

Ih ⊂
{
v ∈ [H1(Ω)]nsd | v|Ωi ∈ [Pk(Ωi)]

nsd , ∇×v|Ωi = 0 for i = 1, . . . , nel
}

The solenoidal basis in an element Ωi can be expressed as

Sh =
⟨
ϕik

⟩nbfu
k=1

(2.8)

where ϕik are the solenoidal vector bases, with nbfu denoting the number of
basis functions for the interpolation in that element.

As an example, in the case of a 2D triangle with a second-order approx-
imation, nbfu = 9 and the solenoidal basis is

Sh =

⟨(
1
0

)
,

(
0
1

)
,

(
0
x

)
,

(
x
−y

)
,

(
y
0

)
,(

0
x2

)
,

(
2xy
−y2

)
,

(
x2

−2xy

)
,

(
y2

0

)⟩
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with the irrotational complementary part being

Ih =

⟨(
x
0

)
,

(
x2

0

)
,

(
0
y2

)⟩
See for instance [2] for the construction of these spaces.

Under these circumstances, the problem (2.6) can be split in two uncou-
pled problems:

• The first one solves for divergence-free velocities and hybrid pressures:

Find uh ∈ Sh×]0, T [ and p̃h ∈ P h×]0, T [ solution of2
(
∂uh

∂t
,v

)
+ aIP

(
uh,v

)
+c

(
uh;uh,v

)
+ (p̃h, Jn ·vK)Γ∪ΓD

= lIP
(
v
)

(q̃, Jn ·uhK)Γ∪ΓD
= (q̃,n ·uD)ΓD

(2.9)

∀v ∈ Sh, ∀q̃ ∈ P h, ∀ t ∈]0, T [, with the forms defined in (2.7). The
space of hybrid pressures (pressures along the sides) is:

P h :=
{
p̃ | p̃ : Γ ∪ ΓD −→ R and p̃ = Jn ·vK for some v ∈ Sh

}
• The second problem, which requires the solution of the previous one,

evaluates interior pressures:

Find ph ∈ Qh×]0, T [ such that3 ∀v ∈ Ih and ∀t ∈]0, T [

b
(
v, ph

)
= lIP

(
v
)
−

(
∂uh

∂t
,v

)
− aIP

(
uh,v

)
− (p̃h, Jn ·vK)Γ∪ΓD

− c
(
uh;uh,v

) (2.10)

Thus, the discretized solution of the velocity and hybrid pressure ob-
tained with the DG solenoidal formulation reads as follows:

uh(x, t) =

nbfu∑
k=1

ϕik(x)u
i
k(t) for each element Ωi (2.11a)

p̃h(x, t) =

nbfp∑
j=1

Ñ e
j (x)p̃

e
j(t) on each side Γe (2.11b)

where Ñ e
j are the shape functions for the hybrid pressure and nbfp are the

number of shape functions for the interpolation of the hybrid pressure.

2Observe that this problem, which has to be solved at each time step, shows an impor-
tant reduction in the number of degrees of freedom with respect to the problem (2.6), as
explained in [28].

3It is important to note that equation (2.10) can be solved element by element and
pressure is its only unknown.
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2.5 DG-XFEM formulation

In this section, the XFEM formulation is combined with the DG solenoidal
approximation presented in sections 2.3 and 2.4 in order to obtain the flow
around an undeformable solid with a simpler mesh that also does not need
to be updated in time. First, the level-set method —usually related with
XFEM to define the interface— is explained in section 2.5.1. Second, the
treatment of the solid as a void is stated in section 2.5.2. Finally, in section
2.5.3, the modification of the integration in the elements affected by the
interface is presented.

2.5.1 Interface tracking: level-set method

Considering that our domain of study Ω is a fluid with a solid material
inside, let’s name these two regions as Ωf and Ωs respectively, such that
Ω = Ωf ∪ Ωs and Ω̄f ∩ Ω̄s = Γs. A level-set function [7] is any continuous
function φ(x),x ∈ Ω, that is negative in one subdomain and positive in
the other, while the zero-level is the position of the closed interface Γs.
The signed distance function [29] is a particularly useful level-set function,
defined as

φ(x) = ± min
x∗∈Γs

∥x− x∗∥, ∀x ∈ Ω (2.12)

where ∥ · ∥ denotes the Euclidean norm. The sign is different on the two
sides of the interface; in our case:

φ(x)


> 0 if x ∈ Ωf

= 0 if x ∈ Γs

< 0 if x ∈ Ωs

For a discretized domain, the values of the level-set function are stored
at the nodes φi = φ(xi), and the function is interpolated as

φh(x) =
∑
i∈I

Ni(x)φi (2.13)

using standard FE shape functions Ni(x) as interpolation functions, where
I is the set of all nodes in Ω. The representation of the discontinuity as
the zero-level of φh(x) is only an approximation of the real position, which
improves with mesh refinement.

If the interface Γs moves during the simulation, as it is commented in
section 4.2, φ(x) is also a function of time φ(x, t) and the level-set function
needs to be updated at each time-step. If the solid moves due to the inflow
velocity, a simple transport equation is solved to update the level-set.



CHAPTER 2. PROBLEM STATEMENT 10

2.5.2 Treatment of voids

If we consider now our domain Ω ⊂ Rnsd discretized with a structured mesh
of nel elements and the solid object placed in its interior, it is clear that there
will be some elements cut by its interface Γs. In our case, the treatment of
this problem differs a little from the general XFEM formulation.

In a general XFEM formulation, the interpolation would need to be en-
riched for velocity and hybrid pressure in the nodes of the elements affected
by the interface, being expressed as the summation of the DG solenoidal
part from equation (2.11) and another part containing the enrichment func-
tion ψ(x). This function incorporates information about discontinuities and
other singularities into the approximation space. In this case, this function
separates the fluid (where all the calculations are done) and the solid (in
which no calculations are considered), and its expression is given by Suku-
mar et al. in [34]:

ψ(x) =

{
1 if x ∈ Ωf

0 if x ∈ Ωs
(2.14)

(a) Elements classification (b) Integration cells

Figure 2.1: Discretized fluid domain with a solid object inside

In this work, since the solid part is not taken into account in the calcu-
lations, it is treated as a void. Thus, we will not enrich the interpolation
but modify the integration to consider only the fluid region in the elements
cut by the interface. According to this, the elements can be classified into
different categories, as shown in figure 2.1a:

(i) Fluid elements: standard integration is done following the DG solenoidal
formulation presented in sections 2.3 and 2.4.
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(ii) Solid elements: the degrees of freedom associated with their nodes are
removed from the system of equations.

(iii) Elements cut by the interface: integration is done only in the region
belonging to the fluid part, as explained next in section 2.5.3.

2.5.3 Integration for high-order elements

As mentioned in section 2.5.2, a modification of the integration is required
in the elements cut by the interface (figure 2.1b shows the different inte-
gration cells inside the elements). A standard approach is to use a linear
approximation of the interface inside each element and integrate only in the
area containing the fluid (figure 2.3b). For high-order elements, as it is our
case, this is not enough. Figure 2.2 shows the integration error committed
with this approach.

Figure 2.2: Integration error committed with the standard linear approxi-
mation of the interface

To improve the approximation of the interface, there are several options,
as shown in figure 2.3:

• Möes et al. [19] consider a piecewise linear approximation inside each
element, which consists of the linear approximation of the interface
commented before, but with recursive refinements within each element
(figure 2.3c). The problem is that the level of refinement depends on
the size of the element. In fine meshes, the approximation of the
interface also needs to be refined in each element.

• Cheng and Fries [11] consider the possible curvature of the interface by
using curved integration cells with a p-th degree approximation (2.3d),
where p is the order of the polynomials used to approximate the inter-
face, which is the same as the degree of the elements.
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(a) Real interface (b) Standard linear (c) Piecewise linear (d) p-th degree

Figure 2.3: Curved interface inside a fourth-order element and different ways
to approximate it

In this thesis, the strategy used is similar to the one proposed in [11],
but taking into account that the interface inside high-order elements can be
quite complex. This consideration means that, if necessary, the elements
can be subdivided in order to better approximate the interface. After that,
integration is done in the cells belonging to the fluid.

The points defining the p-th degree polynomial inside an element are not
only used to define the integration cells, but they are also used as the nodes
of a one-dimensional mesh needed to compute contributions along the inter-
face. Note that this good approximation of the interface not only improves
integration results inside the element, but also affects the imposition of the
boundary conditions.

2.6 Time discretization

The spatial discretization using the solenoidal DG-XFEM formulation of the
unsteady incompressible Navier-Stokes problem (2.5) can be written as{

Mu̇+Ku+C(u)u+Gp = f1

GTu = f2
(2.15)

where M is the mass matrix, K the diffusion matrix, C the convection
matrix, G the discrete gradient/divergence matrix, u and p the vectors of
nodal values, u̇ denotes the time derivative, and f1 and f2 vectors taking into
account force term and boundary conditions. This system of ndof degrees of
freedom can also be written as{

Mu̇ = F(t,u,p)

0 = G(t,u)
(2.16)

with t ∈]0, T [ and where

F(t,u,p) = f1 −Ku−C(u)u−Gp,

G(t,u) = GTu− f2.
(2.17)
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The system of equations (2.16) is stated as a system of Differential Al-
gebraic Equations (DAEs), corresponding to the conservation of momentum
equation plus the incompressibility constraint. Navier-Stokes equations are
an index-2 DAE system. For this reason, following [26], the time discretiza-
tion is done with a 4-stage ROSI2Pw method, which belongs to the family
of the Rosenbrock methods. At each time step, u and p are updated as in
a standard s-stage Runge-Kutta method, which for the system of equations
(2.16) reads

un+1 = un +∆t

s∑
i=1

bili

pn+1 = pn +∆t
s∑

i=1

biki

(2.18)

where li and ki are the solution of a linearized system of equations. For
further details of this time integration method, see [26].



Chapter 3

Numerical Validation

3.1 Numerical code

The results shown in this section have been obtained with a numerical code
implemented in MATLAB. Originally, this code was developed by Montlaur
in [24], with subsequent improvements in [26], to solve problems involving
incompressible flows using a DG formulation with solenoidal approximations,
as explained in sections 2.3, 2.4 and 2.6. In this thesis, the code has been
adapted to solve the incompressible Navier-Stokes equations for unsteady
flows with this formulation, adding the XFEM formulation for voids shown
in section 2.5. Conceptually, the main modifications introduced in the code
are:

(i) Substitution of the existing non-structured mesh —constrained to be
adapted around the solid object— by a structured one without this
requirement. To better appreciate the differences, figure 3.1 shows
the mesh used in this thesis compared with the one used in the case
of having only a DG formulation. The interface is treated with the
level-set method, seen in section 2.5.1.

(ii) Detection of all the cut points between the mesh and the object’s in-
terface and classification of the elements and edges depending if they
are completely inside the object, outside, or cut by the interface (see
figure 2.1a). Definition of the object’s faces in each element cut by the
interface.

(iii) Modification of the quadrature (2D or 1D) in the elements and edges
cut by the interface (see figure 2.1b). The elements and edges inside
the object are not taken into account in the calculations, while the
ones belonging to the fluid are treated like before in the original code
(for more details see section 2.5.3). The object’s faces are treated as
exterior faces of the domain, without modifying the quadrature.

14
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(a) Whole domain of study (DG-XFEM) (b) Close-up (DG-XFEM)

(c) Whole domain of study (DG) (d) Close-up (DG)

Figure 3.1: Domain discretization with fourth-order elements. Comparison
between DG and DG-XFEM formulations

In order to check this code, it has been applied to the solution of a well-
known benchmark test. It is the classical problem of the flow past a cylinder,
shown in section 3.2.

3.2 Benchmark test: flow past a cylinder

The simulation of the vortices behind a fixed circular cylinder is a popular
benchmark problem to test the performance of numerical algorithms for
solving the unsteady Navier-Stokes equations. The simplicity of this problem
is that its characteristics are determined solely by the Reynolds number,
which is defined by

Re =
u∞D

ν
(3.1)

where u∞ is the inflow velocity, D is the diameter of the cylinder and ν the
kinematic viscosity. Herein, it is established a constant velocity u∞ = 1.

The domain of simulation is a rectangle of dimension 20x12 with the
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cylinder of diameter D = 1 centered vertically and separated by a horizontal
distance of 4.5 from the left side, which is the inflow. Dirichlet boundary
conditions are imposed on the inflow, uD = (u∞, 0), and circle, uD = (0, 0);
while null Neumann conditions are set on the outlet, top and bottom of the
domain. Initial conditions are prescribed in all the domain with a velocity
field u0 = (u∞, 0), except on the cylinder, where u0 = (0, 0).

The surface of the domain is discretized with a structured mesh of 1026
fourth-order elements1, whose sizes are set by regions, having smaller ele-
ments near the cylinder to better capture the behaviour of the flow and also
behind it, where the wakes will appear (see figures 3.1a and 3.1b). For veloc-
ity, fourth order solenoidal approximations are used; for pressure, standard
approximations of third order.

(a) Re = 1 (b) Re = 20

(c) Re = 40

Figure 3.2: Vortices comparison at low Reynolds numbers. Velocity vectors
field with a fourth-order velocity approximation

Analyzing the flow patterns, it has been checked that for very low Reynolds
numbers (Re = 1 ÷ 10) the flow is symmetric and steady, surrounding the
cylinder without generating any eddies behind it (figure 3.2a). Increasing

1Recall that the addition of the XFEM features is done also with high-order interpo-
lation methods, which allow to follow curved edges —like the cylinder boundary— and
achieve also high-order integration in the elements affected by the interface, as explained
in section 2.5.3.
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the value until Re = 20, small vortices appear behind the cylinder (figure
3.2b). As exposed in [20], at Reynolds numbers around Re = 40, the steady
solution for the flow starts to be unsteady and the vortices become wider,
separating from the cylinder (figure 3.2c). Figure 3.3 also shows the mean
velocity field for these cases. For higher Reynolds numbers an unsteady
solution with periodic behaviour appears.

(a) Re = 1 (b) Re = 20

(c) Re = 40

Figure 3.3: Mean velocity field comparison at low Reynolds numbers with a
fourth-order velocity approximation

In this thesis we have focused on the analysis of the flow for Re = 100
using a time step ∆t = 0.1 in a time interval [0, 100]. Figure 3.4 shows the
evolution of the flow during this time lapse. Starting from a non-physical
situation determined by the initial conditions set before, the solution reaches
a steady state condition as the time integration proceeds, with a symmetric
pair of eddies appearing behind the cylinder in the first time steps, as shown
in figure 3.5 (similar to the behaviour at low Reynolds numbers shown in
figure 3.2). Between t = 15 and t = 20 we can see that the flow begins to
be non-symmetric and at t = 30 the oscillation of the flow is remarkable.
Around t = 40, 50 the instability of the eddies leads to a periodic vortex
shedding from this point onwards, reaching the steady state of this periodic
solution.
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(a) t=15 (b) t=20

(c) t=30 (d) t=40

(e) t=50 (f) t=100

Figure 3.4: Flow evolution in time. Mean velocity field at different time
steps for Re = 100 and fourth-order velocity approximation

The vortices, known as Von Kármán vortices, detach from the top and
the bottom of the cylinder with associated oscillation in the lift forces, as
shown in figure 3.6. The lift coefficient is calculated as,

CL =

∫ 2π

0
τ ydθ (3.2)

where τ y is the y-component of the normal component of the Cauchy stress
tensor τ = −pn+ 2ν(n ·∇s)u.
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Figure 3.5: Symmetric vortices. Velocity vectors field at t = 3 for Re = 100
and fourth-order velocity approximation

From figure 3.6, the period of oscillation can be measured, obtaining an
approximated value of T = 5.9. To observe the vortices and its periodicity,
figure 3.7 shows the velocity vectors at different time steps, corresponding
to consecutive instants with the vortices at the top and at the bottom of
the cylinder. For example, figures 3.7a and 3.7c show the same vortex at
the top of the cylinder at two different moments separated by a time lapse
approximately equal to the period T (same happens with figures 3.7b and
3.7d).

Figure 3.6: Evolution of the lift coefficient in time for Re = 100 with second-
order velocity approximation and first-order for pressure

A usual way to check the results in a periodic problem like this one is con-
sidering the Strouhal number, which is a dimensionless number describing
oscillating flow patterns. The definition is given by

S =
fD

u∞
(3.3)

where f is the frequency of the vortex shedding, D is the characteristic
length of the object (in this case the cylinder’s diameter) and u∞ is the
velocity of the fluid.
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(a) t=72 (b) t=75

(c) t=77.9 (d) t=80.8

Figure 3.7: Flow evolution between periodic time steps. Velocity vectors
field at different time steps for Re = 100 and fourth-order velocity approxi-
mation

Applying equation (3.3) to the results obtained in the simulation we get
a value of S = 0.169, which can be compared to the experimental results of
Roshko in [33]. He found an empirical relation between the Reynolds and
the Strouhal numbers that reads as follows:

S =

{
0.212(1− 21.2/Re) for 50 < Re < 150

0.212(1− 12.7/Re) for 300 < Re < 2000
(3.4)

In our case Re = 100, so the Strouhal number is S = 0.167, which is quite
similar to the one we have obtained.

Having a look at the figures obtained in this section, it is clear that the
behaviour seems to be the appropriate for this kind of flows. In any case,
these have been compared with the ones presented by Montlaur in [24] and
it has come to the conclusion that they seem to be similar.



Chapter 4

Conclusions

4.1 Summary and contributions

In this thesis, a DG-XFEM formulation with solenoidal basis functions has
been proposed to solve the incompressible Navier-Stokes equations for un-
steady flows around an object, allowing the use of high-order elements and
integration schemes.

First, the problem is discretized following a Discontinuous Galerkin In-
terior Penaly Method (DG-IPM).

Second, the addition of the solenoidal basis functions allow to split the
problem in two uncoupled problems, where the velocity and hybrid pressure
can be obtained solving a reduced system of equations, while the interior
pressure is computed in a post-process.

Third, the eXtended Finite Element Method (XFEM) is introduced mak-
ing possible to solve the problem with a fixed structured mesh that covers the
whole domain (both fluid and solid regions), which also does not need to be
updated remeshing at every time step in the case that the object moves. The
interface is defined using the level-set method and three kind of elements are
set: fluid, solid and cut by the interface. Inside the fluid elements, the DG
solenoidal formulation is employed. The solid is treated as a void, so the de-
grees of freedom associated with the nodes belonging to elements completely
inside the solid are removed from the problem. Integration is modified in
the elements affected by the interface in order to calculate only in their fluid
region. Quadratures are modified in these elements to take into account
that the interpolation is of high order, considering curved integration cells
by means of approximating the interface with a polynomial of same degree
as the elements and subdividing them, if necessary, depending on the com-
plexity of the interface. The points defining the p-th degree polynomial are
also used as a one-dimensional mesh to compute the contributions along the
interface.

Finally, the system to be solved can be interpreted as a system of Dif-

21
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ferential Algebraic Equations (DAE), which is discretized in time using a
Rosenbrock method. This method works well for this high-order problem
and the computational cost is lower than with other methods because it
involves the solution of a linearized system of equations.

To solve this problem, a MATLAB code has been implemented and val-
idated. To check it, the classical benchmark test of the flow past a cylinder
has been applied. A structured mesh of fourth-order elements has been used
to discretize the domain. Velocity and pressure have been calculated with
fourth and third order approximations, respectively. Finally, the Strouhal
number has been used as the reference parameter to compare the results
obtained in this thesis with previous ones found in the literature, indicating
the goodness of the code.

To sum up, the contribution of this thesis to the existing DG solenoidal
formulation proposed in [26] is the addition of the XFEM features to be
able to reproduce discontinuities inside elements without the requirement
to adapt the mesh to the outline of the object. This DG-XFEM solenoidal
formulation allows to obtain some significant improvements:

• Structured meshes can be used, simplifying the meshing process.

• There is no need to remesh at every time step in the case that the ob-
ject moves or deforms, with the consequent reduction of computational
cost.

4.2 Future research

The next stage to reach in the development of the MATLAB code is to make
possible to move the cylinder. In [8] there is an excellent reference about the
study of the flow past an oscillating cylinder (perpendicularly with respect
to the flow direction). Actually, this work has already begun but it has not
been finished. The key point in this modelling is how to transfer information
of velocity and pressure between consecutive time steps. Since the interface
moves during the simulation, the geometrical features and the degrees of
freedom change at each step. The main difficulty in the code implementation
is taking into account that a certain element initially belonging to the fluid
domain can be cut by the interface at one step and in the next one become
part of the solid and be excluded from the calculations, but after can be
involved again when becoming a fluid element.

The current MATLAB code is able to consider fluxes around a solid ob-
ject placed inside a fluid. Another possibility to develop the code is to make
it possible to solve two-phase fluid flow, substituting the solid object with
another fluid of different density. To do that, enrichment in the nodes af-
fected by the interface is required. Velocity needs to be enriched with a ridge
function, which allows to describe discontinuities in the derivatives, while for
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pressure the same enrichment or a Heaviside function can be used (some ref-
erences about this can be found in [13, 12, 21]). A typical benchmark test
for this problem is the modelling of a rising bubble.

Another interesting point to consider would be the analysis of the com-
putational cost and accuracy of the code compared with the previous one
used in [26] or with other references. It is possible that for the steady cylin-
der the advantage of the DG-XFEM formulation is negligible, but it is for
the oscillating cylinder when the improvements should appear in terms of
computational cost. In this line, another work to consider may be also the
optimization of the code.

4.3 Applications

With the current code, a first application that is possible to implement is
to change the solid cylinder for any other object. A typical test can be
for example the aerodynamic analysis of the flow around an airfoil or a
study about the drag forces of objects with different shapes, among other
simulations involving steady objects.

Once the development of the oscillating cylinder is ready, this would
allow to introduce any moving object inside the fluid. In this case, a very
interesting application would be to model the insect flight, studying the
aerodynamics of a flapping wing placed inside the fluid. References of this
kind of studies are the work of Ansari et. al in [1] and the research done by
Kurtulus et. al in [23].
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September 2009. http://www.tdx.cat/TDX-0122110-183128.

[25] Montlaur, A., Fernandez-Mendez, S., and Huerta, A. Discon-
tinuous Galerkin methods for the Stokes equations using divergence-free
approximations. International Journal of Numerical Methods in Fluids
57, 9 (2008), 1071–1092.

[26] Montlaur, A., Fernandez-Mendez, S., and Huerta, A. High-
order implicit time integration for unsteady incompressible flows. In-
ternational Journal for Numerical Methods in Fluids (2011). Article
submitted.

[27] Montlaur, A., Fernandez-Mendez, S., and Huerta, A. Méto-
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