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Abstract

Abstract

Design optimization has become one of the most important topics in various engineering
sectors. It has become a major challenge for an engineer to develop the best possible
design keeping necessary constraints in mind. If mathematical model for optimization
is developed carefully incorporating all necessary design variables and with sufficient
accuracy, optimized design promises to bring improved designs than that are followed
for years. The growth of this field is closely related to the development of computer ca-
pabilities, numerical techniques and geometric modelling. However, it has been always
been the foremost goal for integrating all these related fields into a single package. So,
whenever a designer sits to design any product, he/she should have all the necessary
tools namely modelling, analysis and optimization all together. Until the development
of isogeometric analysis, this has been a formidable task.

Isogeometric analysis is a computational method that uses the same geometrical repre-
sentation as used in Computer Aided Design. It not only provides an accurate modelling
of complex geometries but also allows refinement procedure in the CAD representation
of the geometry. This idea of this thesis is to further extend this concept in integrating
with optimization model. As a result, geometric representation used for isogeometric
analysis could be included into the optimization model, thus making it possible to merge
CAD, FEM and optimization process.

Most of the optimization models used in industry is limited to linear sensitivity analy-
sis, which is not accurate for structures involving geometric nonlinearity. Most of them
also use parameterized optimization which has the disadvantage of restricting the design
variable space. In this present model, a numerical formulation is presented for nonpara-
metric shape optimization using isogeometric formulation that allows easy integration of
CAD, FEM and an optimization strategy that combines nonlinear path following meth-
ods with the design changes during the optimization procedure. The adjoint sensitivity
method is used to reduce the numerical effort as in this problem design variables are
much larger than the constraint equations. The mechanics of the beam is described by
using a similar model of thin shells, so that this formulation could be easily extended to
thin shell models.

With the development of such model, it is possible to augment existing nonlinear finite
element analysis codes to calculate design sensitivity of response variables accounting
even for geometric nonlinearity.
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1
Introduction

1.1 Motivation

Over the years, engineers have attempted to improve design of various structural com-
ponents. Methods like Edisonian approach were implemented for several years by means
of trial and error method. However, these methods were mostly based on intuition or
experience, with very less knowledge of improvement by mathematical means. With the
increase in computer power and capacity, there came a scope of developing numerical
techniques for optimizing design. In order to reduce design time and cost, automated
design optimization held a special place for the improvement of engineering design. With
Finite Element Methods coming into its role, structural differential equations could be
solved more efficiently and with better accuracy. As, for structural optimization, a flex-
ible and robust method is needed to describe structural properties, which is very well
supported by the finite element framework. This also brings the possibility of augment-
ing existing Finite Element codes with various structural optimization schemes. Thus
with its tremendous application in civil, aeronautical, mechanical engineering, structural
optimization promises much improved designs saving a significant amount of material,
cost and time.

However, even after years of research, the use and scope of structural optimization is
limited to only certain areas of engineering design. Its lack of use is mainly because of
reasons like:

1. It may be difficult, to formulate one or more simple performance criteria for op-
timization. The designer must be able to clearly define quantifiable objective
function, and identify all important constraints.

1



1 Introduction

Figure 1.1: (a) Poleni’s drawing of Hooke’s analogy between an arch and a hanging chain,
and (b) his analysis of the Dome of St.-Peter’s in Rome [1748] (Block et al.
(2006))

2. Usually in commercial optimization packages, the sensitivities are calculated using
global finite difference or semi analytical method which are mostly computationally
expensive and not very accurate.

3. Mostly the formulations are limited to linear static sensitivity analysis which is
inaccurate and doesn’t produce efficient shapes for nonlinear problems which are
quite common in industry.

4. Most of the commercial software contains paramametrized optimization, which
doesn’t include the full design space and is restricted to prior definition of design
elements whereas, representation with nonparametrized optimization includes all
possible solutions of the design space.

Therefore, there is a need to develop a robust formulation for nonparametric shape
optimization that could be extended to geometrically nonlinear problems. In this thesis
work, thus a numerical formulation is presented for shape optimization of beams with
large deformation in a parameterized free space. The mechanics of beam is described in
a similar way as it is done for shell structures, so that the sensitivities could be easily
extended for thin shell problem.

1.2 Historical Background

In the past, a lot of architects and engineers have developed various methods for obtain-
ing shape optimized design. In 1675, Hooke stated that ’As hangs the flexible chain,

2



1.2 Historical Background

Figure 1.2: Optimized shape of a hole in a plate where elements nodes are used as design
variables. Figures are taken from Braibant and Fleury (1984).

so but inverted will stand the rigid arch’ as quoted in Heymann (1995), which was fa-
mously referred as inverted catenary theorm. The idea of the inverted catenary theorm
became quite popular in designing many civil engineering structures. It was applied by
Polini to prove Saint Peters stability as shown in Fig 1.1 and Antonio Gaudi’s work in
several masonary compression structure. Architect Frei Otto created forms of greatest
structural efficiency and minimum use of materials. The extensive review of historical
use of various methods and their application in comtemporary architecture could be
found in Larena (2009,Cottbus). For two dimensional structure, Isler (2000) exten-
sively used this concept in various problems. These primary concepts of these shape
optimal design could be taken into use as verification problems even with gometrical
nonlinear problems.

The development of shape optimization in a general form was first proposed by Zienkiewicz
and Campbell (1973). In their work, the design variable was taken as the nodal co-
ordinates which most intuitive and directly relates finite element. However, serious
drawbacks were found by Haftka and Grandhi (1986). They showed through an op-
timization problem where the objective was to find the shape of the hole that minimizes
the total weight and for which the stresses in the boundary hole elements do not exceed
a given allowable value (Figure 1.2). It is quite clear from Figure 1.2 that optimized
result produced some wriggly shapes leading to impractical designs.

Thus, in order to attain smooth boundary design, it was important to separate design
model with finite element model. Various researchers, therefore described the design
model by polynomial type functions like used by Pedersen and Laursen (1983)
However, polynomial representation ensured some boundary smoothness but generated
oscillations when the polynomial degree was too high. Moreover, it was difficult to
generate any arbitrary curve. Usually it could only represent curves like quadratic, cubic
etc. falling under a particular family. It was also difficult to control the curve locally, like

3



1 Introduction

changing a single polynomial point would affect the whole geometry, which was not very
much desired by the designers. Therefore, in order to eliminate these problems, the B-
Spline curves were used for shape optimization. Braibant and Fleury (1984) showed
how B-Splines could be used to overcome difficulting dealing with complex shape. Not
only it guaranteed smoothness of curve, but it also had good local control. The design
variable was taken as the control point coordinates, rather than nodal coordinates. This
became a very handy tool for various shape optimization problems. Later, Non Uniform
Rational B-Splines were used to describe the shape of the structures by Schramm and
Pilkey (1993), although the displacement response was approximated by p-version of
finite element method.

The industrial problems are usually in the form of CAD model, which can be effectively
linked with finite element model using isogeometric concepts and can effectively transfer
information smoothly back. There is challenge therefore, to successfully allow easy flow
of information between the finite element model and optimization model, and back to
the CAD model. Figure 1.3 depicts the integration model with isogeometric model.
This integration will bring the analysis using FE and optimization available to a design
engineer into a single package, and allow smooth flow of information between the triads:
design, analysis and optimization.

Recently, few researchers have used the concept of isogeometric shape optimization.
Wall et al. (2008) discussed the shape optimisation of planar elasticity problems.
Though the set of design variables only consisted of the control point co-ordinates, the
validity and efficiency of the approach has been verified also for knot vectors of repeated
internal knots. Cho and Ha (2009) introduced isogeometric shape optimization, where
the geometrical properties of design were embedded in the NURBS basis function and
the changes in control points resulted in shape design. Since the geometry is exactly
encapsulated at the design level, mesh refinement and representation of shape changes
are more easily obtained. Therefore, during the optimization process, without the need
of communicating back to CAD model, design modification of complex structures could
be performed. Instead of taking just the control points as design variables, Qian (2010)
presented an approach for the analytical sensitivity with both position and weights of
the control points as design variable.

Similarly, not only NURBS, lot of researchers have used other discretization techniques
for calculating shape sensitivities. Optimized design was found out by using subdivison
surfaces by Cirak et al. (2002). More recently, Ha et al. (2010) proposed the appli-
cation of T-spline for more efficient computation of shape optimal designs.

In the research discussed so far, most of them were limited to the linear regime of the
structure response. Structural optimization of geometrically nonlinear models incor-
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1.2 Historical Background

Figure 1.3: Integration of CAD, FEM and Optimization model

porates the nonlinear behaviour in the structure while also performing the sensitivity
analysis. Though, many researchers have made attempts to use nonlinear structural
analysis for structural optimization in the past, only some have successfully developed
model using CAD integration. Santos and Choi (1992) derived shape design sen-
sitivities of nonlinear structural systems using the continuum approach. For topology
optimization, design sensivities were found out for displacement load nonlinear struc-
tures by Cho and Jung (2003), where again he continuum based sensitivity method
was used. More recently, parameterized shape optimization of nonlinear structures us-
ing discrete method was done by Firl (2010). The computational cost was significantly
lowered by taking triangular approximation for nonlinear response function. However,
very less number of sample points in the integration of the nonlinear curve decreases
the accuracy of the nonlinear problem. Except few, most of the research done on struc-
tural optimization on nonlinear structures are based on continuum approach and with
parametric design space.

5



1 Introduction

1.3 Thesis Layout

This thesis is organized into seven chapters. Following the motivation and short liter-
ature review, various types of structural optimization is presented in Chapter 2. The
difference in size, shape and topology optimization is also explained briefly.

The isogeomteric concepts are briefly explained in Chapter 3. As, in the present work,
uniform B-splines have been used, its definition, the concept of knot vector and descrip-
tion of basis vector are presented.

Chapter 4 describes the formulation of the beam element used. The presented formula-
tion is quite similar to the shell formulation by Cirak et al. (2000) used for subdivision
shell, with some assumptions valid for Euler-Bernoulli beam.

Chapter 5 follows with the description of various types of sensitivity analysis techniques
used in structural optimization. Comparison between various techniques are made, with
its applicability.

In Chapter 6, the nonlinear analytical sensitivity is derived using adjoint technique. The
objective function is taken as the strain energy with the goal of minimizing it. Sensitivity
analysis of various components are derived one by one in a systematic way.

In Chapter 7, some simple problems of linear and nonlinear beam are taken and analyzed
using isogeometric concepts. Later, shape optimization of simple beam problems are
taken and compared with the catenary curve theorm. Some investigations are made on
the effect of optimal shape on changing parameters, like load, mesh size and length by
thickness ratio.

In Chapter 8, the thesis concludes with a brief summary of the thesis work and an
algorithm of the whole implementation is presented. Some possible extension of the
current work is also suggested.

6



2
Structural Optimization

This chapter introduces the basic terminologies and concepts in structural optimization.
The objective function and the constraints of the optimization problem are defined. Us-
ing the Lagrangian function, the objective function and the constraints are reformulated
into a single function. In order to define the optimality condition of the Lagrangian func-
tion, the Karush-Kuhn-Tucker Condition (KKTC) is also presented. Further, the basic
classes of defining optimization problem namely size, shape and topology are explained
briefly.

As, optimization in general is a method of finding the best of all possible solutions.
Therefore, structural optimization aims at finding the best structural design within
the given design space and satisfying necessary constraints. However the term best is
quite generic. In order to define some goals, objective functions are defined. This can
be minimizing weight, displacement, energy etc. Therefore, a well defined objective
function is necessary to formulate a optimization problem. The objective function must
be choosen such that it could be easily defined in terms of mathematical functions.
These objective functions depend on certain variables, which is changed in order to
achieve the goal of the optimization problem. They are known as design variables.
They can be nodal coordinates, thickness, fiber angles etc. Next, in order to solve an
optimization problem, it is necessary to define some constraints. This defines a range
where the optimization algorithm, will restrict the design variables to solve the problem.
In order words, a feasible domain to attain an acceptable design. Clearly, there can be
both equality and inequality constraints. In some structural optimization problems, the
design space is restricted in order to attain desired shape. This can be parameters that
define a well defined geometry, density etc. But, restricting the design space doesn’t
always result in a global minimum. However, the results are more visually pleasing in
this case, and are more ready to use for industrial design problems. In this thesis work,

7



2 Structural Optimization

however, nonparametric design space is considered for the optimization problem, where
the full design space is taken into account.

With these definitions in mind, the optimization problem would be therefore written as:

Minimize: ψ(s,u(s)), s ∈ Rns

Subject to:
g(s,u(s)) ≤ 0
h(s,u(s)) = 0
smin ≤ s ≤ smax

(2.1)

Objective function is defined as ψ which is function of the vectors of design variables and
state variables i.e displacements, with the goal of minimizing it. The values of design
variable are limited to smin and smax . Equality constraint g and inequality constraint
h must be followed as well. The usual technique for performing optimization of such
problems is as follows:

1. Starting with a initial guess of design variables, the value of the objective function
is evaluated. Finite element method is used in order to achieve this in structural
optimization problems.

2. The sensitivity of the objective function to the changes in the design variables is
evaluated. This is referred as the design sensitivity analysis and is usually done
calculating the gradients of objective function and constraints.

3. Using mathematical optimization techniques like SQP, interior point, MMA etc.
the values of design variables are changed. Step 1-3 is repeated until the optimized
values are found. In this thesis work, the MATLAB predefined function called
fmincon is used for the optimization algorithm. Specifically,the interior point
method was used in this thesis work.

2.1 Karush-Kuhn-Tucker Conditions

In small scale optimization problem, the objective function could be written in the form
of design variables explicitly. However, problems including nonlinearity don’t have exact
analytical expression of the objective function written in terms of the design variables.
In such cases, the objective function is a implicit function of the design variables, as in
Equation 2.1. u is also a function of s but its not possible to find an analytical expression
of u with terms to s for a nonlinear problem. Here, the value of u is found through
numerical iterative procedures. Optimization involving such objective functions are
usually nonconvex in nature. Therefore, there is always difficulty solving such problems.

8



2.2 Types of Size Optimization

The Karush-Kuhn-Tucker Condition(KKTC) is a powerful method for solving con-
strained optimization. Through this method, the extremum of a function consisting
of several variables is found, satisfying the constraint equations. For nonconvex prob-
lems, these are used as necessary but not sufficient conditions. In order to write the
KKT conditions, first the lagrangian function needs to be defined:

L(s, u, λ, µ) = f (s,u) +
ng∑

i=1
λi · gi(s,u) +

nh∑
j=1

µj · hj(s,u); λi > 0,µj 6= 0 (2.2)

here λ and µ are called the dual variables, and s as the primal variable. λ and µ

measures the change of objective functions with respect to the equality and inequality
constraints. The KKTC conditions are the extension of Lagrangian Multiplier Method
that can be used also for inequality constraints. This is how the conditions look:

∇sf (s,u) +
ng∑

i=1
λi∇xgi(s,u) +

nh∑
j=1

µj∇xhj(s,u) = 0 (2.3)

λi∇λi L(s, u, λ, µ) = λigi(s,u) = 0 (2.4)
∇µj L(s, u, λ, µ) = λigi(s,u) = 0 (2.5)

λi ≥ 0 (2.6)

2.2 Types of Size Optimization

2.2.1 Size Optimization

Historically most of the structural optimization problems were based on size optimiza-
tion. Typically, the design variables include thickness, width or moment of inertia, or
other cross sectional parameters. This is easier to implement as the Finite Element
mesh is affected by the change in design variables. Therefore, integration with FE mesh
and design variables is not required. An example of size optimization problem would be
minimization of cross section area of the truss member.

2.2.2 Shape Optimization

In this case, the design variable includes the form or contour of the boundary that define
the shape of the structural domain. Usually the design variables consist of nodal coordi-
nates or the control points of the CAD model. For shape optimization, the complexity
increases due to its dependency on finite element mesh and also it is more expensive to

9



2 Structural Optimization

calculate the analytical sensitivities. However, most of the problems in shape optimiza-
tion results in more effective results than size optimization. For example, in problem
presented in the introductory chapter (Fig 1.3), the size optimization would result in
change in thickness of the plate whereas shape optimization would result in change in
shape of the hole.

2.2.3 Topology Optimization

In topology optimization, the optimized connectivity of the domain and material layout
is found. Usually, the material density is taken as design variable. The variable takes
either value 0 or 1, and thus the optimized material layout of the structure is obtained,
consisting of optimal location of the material points and voids. For thin structures, the
topology concepts could be applied to attain a truss like structures.

10



3
Shape Representation

As discussed in Chapter 2, coordinates of certain structural nodes can be selected as
design variables for shape optimization problem. But, for complex geometries and fine
mesh, the number of design variables tends to be very high. In order to allow smooth and
efficient solution, the number of design variables should be kept as small as possible but
still allowing enough freedom for general shape. This could be achieved by representing
the shape evolution by B-Splines. This method consisits in dividing a curve of data into
certain number of segments, each one being defined by polynomials of B-Spline, and
to these segments to form a made up curve. The connection of the segments is made
by observing conditions of continuity to control nodes. Any modification of the control
point results only in the local change of the curve, as not disturbing it globally. Even
complex geometries are accurately represented using B-Spline. Remeshing techniques
are also easy without any need to communicate again with the CAD enviroment. For
some of these reasons, B-Splines are quite ideal for using in optimization problems.

As for shape optimization, the nodal sensitivities, i.e. the partial derivatives of the nodal
positions with respect to the design variables are needed. These sensitivities will depend
on how the shape is represented and also on how the finite element mesh is generated.
This chapter presents a short description of Uniform B-Spline, its basis function and
knot vectors.

3.1 Definition

For smooth functions, polynomial approximations provide reasonable accuracy. How-
ever, this may not be possible with large interval sizes. Changing a polynomial point also
has a global influence, which is not desirable. Therefore, it is natural to use functions

11



3 Shape Representation

that are piecewise in nature. Clearly, construction of a local basis is the key to efficient
numerical treatment. A B-Spline curve contains appropriate local basis function, and is
defined by divided difference of truncated power function of certain degree. It is more
complex than the Bezier curves, but allows local control of the shape. It is defined by a
specific set of coordinates called the control points. However, the degree of the curve is
not dependent on the the number of control points.

The B-Spline curve is defined by:

Q(u) =
n∑

j=0
PjBj,d(u) (3.1)

td−1 ≤ tn+1

where Pj is a control point. j is the index of control points. n + 1 is the number of
control points, d is the number of the control points that control a segment. Implying
d − 1 is the degree of the polynomial, for example: d = 2 is linear, d = 3 is quadratic,
d = 4 is cubic etc. The value of n must be larger or equal to d. tj is the knot value. A
few knot values form a knot vector t.

3.1.1 B-Spline’s Basis Function

There are two mathematical definition of B-Spline’s basis function: when d = 1 and
when d > 1. These two definitions depend on the knot vector t, where t = (t0,t1,t2, . . .).
The basis vector are defined by the Cox-de Boor recursion formula: When d = 1

Bj,d(u) =

 1 if tj ≤ u ≤ tj+1

0 otherwise
(3.2)

When d > 1

Bj,d(u) =
(

u − tj

tj+d−1 − tj
Bj,d−1(u)

)
+
(

tj+d − u
tj+d−1

Bj+1,d−1(u)
)

(3.3)

3.1.2 Knot Vector

Each curve segment is divided into n + d intervals by some values for u called the knot
vector. As can be observed in the last two equations, the knot vectors affects the values
of the basis function. Moreover, different ways to build the vector create two different

12



3.1 Definition

types of B-Splines: uniform and non-uniform. The number of the knot values(or the
size of the knot vector is determined by:

m = n + d + 1; (3.4)

Hence, if n = 2 and d = 2 then m = 5, t = (t0,t1,t2,t3,t4).

1. The knot vector for uniform bsplines curve requires the following conditions: tj+1 =
tj + k
where k is any constant scalar value.
Example: n = 2 and d = 2 then k = 1, t = (t0,t1,t2,t3,t4) = (0,1,2,3,4)
In open uniform, multiplicity of knot values at ends are equal to the order of the
Bspline curve and internal knot values are evenly spaced.

2. The knot vector for non-uniform bsplines curve requires the following general con-
dition: tj+1 ≥ tj

One of the forms of non-uniform knot vector is as follows:


tj = 0 if j < d
tj = j − d + 1 if d ≤ j ≤ d
tj = n − d + 2 if j > n

(3.5)

Example:n = 2 and d = 2 produces t = (t0,t1,t2,t3,t4)=(0,0,1,2,2)

In this thesis, uniform knot vectors are used to calculate B-spline curves and basis
functions. The figures shown below illustrates bspline basis function having uniform
knot spaces for linear, quadratic and cubic polynomial approximation.

There are some more important points about B-Splines that are worth mentioning:

1. Convex hull property: the curve is contained inside the convex hull of the control
polygon.

2. The control points are not interpolated, in general.

3. Affine transformations of the B-Spline curve are performed by transforming the
control points correspondingly.

4. The control points have influence on maximum p + 1 sections, allowing local
control.

13



3 Shape Representation

Figure 3.1: Uniform B-Spline Basis Functions (a)Linear (b)Quadratic (c)Cubic

Figure 3.2: Function interpolation with Uniform Cubic B-Splines
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4
Finite Element Discretization of a
Beam with B-Spline Shape Functions

In this section, the beam equations are derived from the weak form of virtual work
principle and then discretized using B-Spline shape functions. Here, it is assumed that
the centerline of the beam is embedded in the two dimensional space and thus the
discretization is needed to be done only over the centerline. Further, the terms for
internal force and tangent stiffness matrix are derived which are needed for nonlinear
analysis of the beam. All the governing equations are formulated in a similar fashion
as done by (Cirak et al. 2000) used for subdivision shell, with assumptions valid for
Euler-Bernoulli beam. The advantage of doing so, is its easy extension to thin shell
model.

4.1 Kinematics of a beam embedded in 2D

A beam is considered whose undeformed geometry B̄ is characterized by a centerline (Ω).
The beam deforms in the action of applied loads and adopts a deformed configuration
characterized by a deformed center line(Ω). The position vector of material point r̄ ∈ Bo

in the reference and r ∈ Bt in the deformed configurations of the beam body may be
parametrized in terms of arc-length θ1 ∈ ω ⊂ R and the two coordinates θ2 ∈ [−h/2,h/2]
and θ3 ∈ [−b/2,b/2].The later coordinates are orthogonal to the centre line and span
the beam height h and depth b.

r̄(θ1,θ2,θ3) = x(θ1) + θ2a2(θ1) + θ3a3 (4.1)
r(θ1,θ2,θ3) = x(θ1) + θ2a2(θ1) + θ3a3 (4.2)
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4 Finite Element Discretization of a Beam with B-Spline Shape Functions

Figure 4.1: Beam in the reference (left) and deformed (right) configurations

where x and x are the undeformed and deformed center line position vector of the
beam. The unit vectors a2, a2 and a3, a3 are orthogonal to the tangent of the center
line, c.f. Figure 4.1. The tangent vectors to the curve in the reference and deformed
configurations are:

a1 = dx
dθ1 = x′ (4.3)

a1 = dx
dθ1 = x′ (4.4)

In the following it is assumed that only one dimensional beam centre line is embedded
in a two dimensional space. Therefore, the binormal a3 = a3 = e3 may be considered as
the unit vector normal to the embedding space. Hence, the unit normal to the centre
line in the reference and deformed configurations are:

a2 = a3 ×
a1

|a1|
(4.5)

a2 = a3 ×
a1

|a1|
(4.6)

Their derivative with respect to longitudinal parameter θ1 are:

a′2 = a3 ×
a′1
|a1|
− a1 · a′1
|a1|2

a2 (4.7)

a′2 = a3 ×
a′1
|a1|
− a1 · a′1
|a1|2

a2 (4.8)

The covariant basevectors, i.e tangent vectors of the beam body follow from:

gα = dr
dθα with g1 = dr

dθ1 = x′ + θ2a′2 = a1 + θ2a′2 (4.9)

gα = dr
dθα with g1 = dr

dθ1 = x′ + θ2a′2 = a1 + θ2a′2 (4.10)
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4.2 Weak form of governing equations

and the matrix of the co- and contra-variant metrics is defined by:

[gαβ] = [gα · gβ] =


g11 0 0
0 1 0
0 0 1

 and [gαβ] = [gαβ]−1 =


1/g11 0 0

0 1 0
0 0 1

 (4.11)

By restricting the beam motion to the aformentioned model a diagonal matrix is ob-
tained in which only the 11-entry can be a non-unit entry. This entry is in particular:

g11 = g1 · g1 and g11 = g1 · g1 (4.12)

Using these expressions the Green–Lagrange axial strain of the beam, i.e. E11 = 1
2(g11−

g11), is found to be:

E11 = 1
2 (a1 · a1 − a1 · a1)− θ2 (a2 · a′1 − a2 · a′1) (4.13)

whereby the relation a1 · a′2 = −a′1 · a2 is used. The latter can be deduced from their
orthogonality a1 · a2 = 0 and thus (a1 · a2)′ = a′1 · a2 + a1 · a′2 = 0. The quadratic terms
in θ2 have been neglected. The first term in E11 is related to the membrane straining
and the second term to the beam curvature change. Thus what follows is:

E11 = α + θ2β with α = 1
2 (a1 · a1 − a1 · a1) ,

β = −
(
a2 · a′1 − a2 · a′1

)
.

(4.14)

Here, the curvature of the curve is defined by a2 · a′1.

4.2 Weak form of governing equations

The weak form of balance of momentum in the reference configuration is given as:



∫
B

S : δE dV

︸ ︷︷ ︸
δπint

=
∫
B

b̂0 · δr dV +
∫
∂NB

t̂0 · δr dA

︸ ︷︷ ︸
δπext

+
∫
∂NB

λ · δr dV

∫
∂DB

(r− r̂) · δλ dV = 0

(4.15)

Here, the so-called generalised weak form is used to incorporate weak satisfaction of
the Dirichlet boundary conditions. The Lagrange multiplier λ is a traction field on the
Dirichlet boundary. The 2nd Piola–Kirchhoff stress S is related to the Green–Lagrange
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4 Finite Element Discretization of a Beam with B-Spline Shape Functions

strain E with the hyperelastic potential energy density W :

S = ∂W
∂E

(4.16)

The volume integration is carried out on the convected parameters (θ1, θ2, θ3) which
gives ∫

B

(•) dV =
∫
b

∫
h

∫
ω

(•)
√

gdθ1dθ2dθ3 (4.17)

The jacobian determinant is determined as follows:
√

g = det[g1 g2 g3] = g1 · (g3 × g3) = (a1 + θ2a′2) · (a2 × a3)

= (a1 + θ2a′2) · a1

|a1|
= a1 + θ2 a′2 · a1

|a1|
(4.18)

after introducing (4.5) and (4.7). Alternatively, the Jacobian determinant can be derived
using the contra-variant metric coefficients, i.e.

g = det[gαβ] = g11 = |a1|2 + 2θ2a1 · a′2 + (θ2)2
(

a′2 · a′2
|a1|

)2

(4.19)

This form is equivalent, as expected, after realising that the derivative of the normal
base vector is a vector in tangent direction, i.e. a′2 = b1

2a1.
We can use the metric g to express the current infinitesimal arc-length dΩ as:

dΩ =
√

gdθ1 =

1− θ2 a′1 · a2

a1 · a1︸ ︷︷ ︸
η


︸ ︷︷ ︸

µ

|a1|dθ1︸ ︷︷ ︸
dΩ

= µ dΩ (4.20)

The scalar µ(θ1,θ2) = 1− θ2η(θ1) contains the change of the metric on the beam surface
with respect to the initial, curvilinear, convected parameters. In case of an initially
straight beam the factor η is zero. With µ the volume integral is expressed as:∫

B

(•) dV =
∫
b

∫
h

∫
ω

(•)µdΩdθ2dθ3 (4.21)

4.2.1 End-point external traction

A linear traction is applied on the boundary Γ of the beam. The beam model is for thin
beams such that the height h remains unchanged during deformation. This fact can
be also deduced from the Jacobian µ. Consequently, the Cauchy and Piola boundary
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4.2 Weak form of governing equations

traction are equal, i.e. t̂0 = dA
dA

t̂ = t̂ We define a Cauchy traction as:

t̂ = ŝ1e1 + ŝ2e2 − θ2q̂n with n = a1

|a1|
and ŝ1, ŝ2, q̂ = const (4.22)

on Γ. The first term will result in a force in e1-direction. The second likewise determines
a force in e2-direction. The third term defines a follower force couple equivalent to a
torque around the e3 axis. Later on, we discretise the beam with a pure displacement-
based formulation in which rotational degrees-of-freedom do not occur. Thus, the end-
point torque is indeed modelled with a couple of consistent follower forces.

The outward unit normal n on the boundary in the deformed configuration is expressed
in terms of the tangent a1 to the centre line due to the thin beam model.

In case an end-point axial and shear force is sought, the Cartesian base vectors e1 and
e2 in (4.23) must be replaced by n and a2, respectively. These are also follower load.

The equivalent Piola traction t̂0 = t̂ is introduced in the external virtual work expression
yielding∫

Γ

t̂0 · δrdA =
∫
b

∫
h

(
ŝ1e1 + ŝ2e2 − θ2q̂n

)
·
(
δx + θ2δa2

)∣∣∣
θ1=∂ω

dθ2dθ3

=
(

bhŝ1︸ ︷︷ ︸
P̂1

e1 · δx + bhŝ2︸ ︷︷ ︸
P̂2

e2 · δx−
bh3

12 q̂︸ ︷︷ ︸
M̂

n · δa2

)∣∣∣∣∣
θ1=∂ω

(4.23)

The following shear resulants occur: normal force P̂1, shear force P̂2 and torque M̂ .
We take the orthogonality of n and a2 into account, i.e. n · δa2 = −a2 · δn. Using the
orthogonality relation, the virtual external works simplifies to:∫

Γ

t̂0 · δrdA =
(

P̂ · δx + M̂ a2 ·
δa1

|a1|︸ ︷︷ ︸
δφ

)∣∣∣∣∣
θ1=∂ω

(4.24)

a2 · δa1
|a1| is actually the virtual rotation δφ around the e3-axis. Similarly, the body load

density is given by:

b̂ = ŝ1e1 + ŝ2e2 − θ2q̂ a1

|a1|
(4.25)

leads to∫
B

b̂0 · δrdV =
∫
Ω

(
(A− ηI )ŝ1︸ ︷︷ ︸

p1

e1 · δx+ (A− ηI )ŝ2︸ ︷︷ ︸
p2

e2 · δx−

(1− η)I q̂︸ ︷︷ ︸
m

a1

|a1|
· δa2

)
dΩ (4.26)
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4 Finite Element Discretization of a Beam with B-Spline Shape Functions

with cross section area A = bh and 2nd moment of area I = bh3/12. Finally, we denote
it by: ∫

B

b̂0 · δrdV =
∫
Ω

(
p̂ · δx + m̂ 2 ·

δa1

|a1|︸ ︷︷ ︸
δφ

)
dΩ (4.27)

with the distributed forces p̂ (force per length) and torque m̂ (moment per length)

4.3 Discretized Beam Governing Equations

The domain dΩ is discretised with NEL elements. The volume integrals are approx-
imated with the sum over the sub-integrals on the element domains. Moreover, the
position of the centre line is discretised with NNP shape functions N K (θ1) and nodal
position vectors xK and xK in reference and current configuration, respectively:

x(θ1,t) =
NNP∑
K=1

NK (θ1)xK (4.28)

x(θ1,t) =
NNP∑
K=1

NK (θ1)xK (4.29)

Note, the shape functions N K (θ1) are defined on the dimensionless convected parametric
coordinate θ1 ∈ ω co-ordinate.

4.3.1 Internal Forces

Next the interpolation is introduced into the internal virtual work equation(4.15) and
the nodal internal forces follow from:

δπint = fK
int · δxK =

∫
B

S : ∂E
∂xK

dV · δxK (4.30)

Next, we consider the Green–Lagrange strain and 2nd Piola–Kirchhoff stress components
in convected co-ordinates, i.e.

E = Eαβgα ⊗ gβ and S = Sαβgα ⊗ gβ (4.31)

By assumption, except S11 all the stress components are zero. This implies

fK
int =

∫
Ω

∫
h

∫
b

S11∂E11

∂xK
µdθ3dθ2dΩ (4.32)
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4.3 Discretized Beam Governing Equations

As the strains are assumed to be small, St.Venant–Kirchhoff constitutive equation can
be used:

S11 = C 1111E11 with C 1111 = Eg11g11 = E
g11g11

=: C (4.33)

where E is Young’s modulus and g11 is the 11-entry of the contra-variant metric co-
efficients. Note, g11 depends in general on θ1 and θ2. The linear material relation is
introduced in the internal forces and gives:

fK
int =

∫
Ω

∫
h

∫
b

E11C ∂E11

∂xK
µdθ3dθ2dΩ

=
∫
Ω

∫
h

∫
b

(α + θ2β)C ( ∂α
∂xK

+ θ2 ∂β

∂xK
)µdθ3dθ2dΩ (4.34)

=
∫
Ω

∫
h

∫
b

(
αC ∂α

∂xK
+ θ2(βC ∂α

∂xK
+ αC ∂β

∂xK
) + (θ2)2βC ∂β

∂xK

)
µdθ3dθ2dΩ

Note that the integrals over the cross section can be evaluated analytically, which leads
to

fK
int =

∫
Ω

(
CAα ∂α

∂xK
+ CIβ ∂β

∂xK

)
dΩ +

∫
Ω

(
CIβ ∂α

∂xK
+ CIα ∂β

∂xK

)
dΩ (4.35)

where A = bh is the area of the cross section and I = 1
12bh3 is the moment of inertia of

the cross section. The second integral is neglected, it is only present in initially curved
beams. Further, the membrane force is defined as n = CAα and the couple force as
m = CAβ. Introducing these notations the internal forces become:

fK
int =

∫
Ω

(n ∂α

∂xK
+ m ∂β

∂xK
)dΩ (4.36)

The derivatives of the strain type variables with respect to the deformed nodal positions
are:

∂α

∂xK
= a1 ·

∂a1

∂xK
(4.37)

∂β

∂xK
= − ∂a2

∂xK
· a′1 − a2 ·

∂a′1
∂xK

(4.38)

The variation of the tangent vector yields to:
∂a1

∂xK
= N ′J ∂xJ

∂xK
= N ′JI or ∂ai

1

∂x j
K

= N ′J ∂x i
J

∂x j
K

= N ′Kδi
j (4.39)
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4 Finite Element Discretization of a Beam with B-Spline Shape Functions

and the normal vector result in
∂a2

∂xK
= 1
|a1|

a3 ×
∂a1

∂xK
− a2

(
a1

|a1|2
· ∂a1

∂xK

)
(4.40)

The variation of the derived tangent vector is straight forward
∂a′1
∂xK

= N ′′J ∂xJ

∂xK
= N ′′JI or ∂ai

1

∂x j
K

= N ′′J ∂x i
J

∂x j
K

= N ′′Kδi
j (4.41)

4.3.2 Stiffness matrix of internal forces

The nodal Hessian of the potential energy is:

kKJ
int = ∂fK

int
∂xK

=
∫
Ω

(
∂n
∂xL

∂α

∂xK
+ n ∂2α

∂xK∂xL
+ ∂m
∂xK

∂β

∂xK
+ m ∂2β

∂xK∂xL

)
dΩ (4.42)

The second derivatives of the strain type variables with respect to the deformed nodal
positions are:

∂2α

∂xK∂xL
= ∂

∂xL

(
a1 ·

∂a1

∂xK

)
= ∂a1

∂xL
· ∂a1

∂xK
+ a1 ·

∂2a1

∂xK∂xL
(4.43)

∂2β

∂xK∂xL
= − ∂2a2

∂xK∂xL
· a′1 −

∂a2

∂xK
· ∂a′1
∂xL

− ∂a2

∂xL
· ∂a′1
∂xK

− a2 ·
∂2a′1

∂xK∂xL
(4.44)

The second derivative of the normal director is:
∂2a2

∂xK∂xL
= −

(
∂a1

|a1|3
· ∂a1

∂xL

)(
a3 ×

∂a1

∂xK

)
−
(

a1

|a1|2
· ∂a1

∂xK

)
∂a2

∂xL

− 1
|a1|2

(
∂a1

∂xL
· ∂a1

∂xK

)
a2 + 1

|a1|4

(
a1 ·

∂a1

∂xL

)(
a1 ·

∂a1

∂xK

)
a2 (4.45)

4.3.3 External forces

The external forces result from the virtual external work after introducing the approxi-
mation approach:

δπext = fK
ext · δxK =

∫
B

b̂0 ·
∂r
∂xK

dV +
∫
∂NB

t̂0 ·
∂r
∂xK

dA

 · δxK (4.46)
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4.4 Finite Element Approximation with B-Spline Shape Functions

Only linear body loads b̂0 = const and the end-point loads are considered as described
in Section 4.2.1. The work integral simplifies to

fK
ext =

∫
Ω

(
p̂ · ∂x

∂xK
+ m̂ a2

|a1|
· ∂a1

∂xK

)
dΩ +

(
P̂ · ∂x

∂xK
+ M̂ a2

|a1|
· ∂a1

∂xK

)∣∣∣∣∣
θ1=∂ω

(4.47)

4.3.4 Stiffness Matrix of External Forces

The moments are consistently discretised as follower force couples. Therefore, the tan-
gent of these forces with respect to the current node positions does not vanish. The
following external stiffness matrix emerges

kKJ
ext = ∂fK

ext
∂xK

=
∫
Ω

m̂ ∂

∂xL

(
a2

|a1|
· ∂a1

∂xK

)
dΩ + M̂ ∂

∂xL

(
a2

|a1|
· ∂a1

∂xK

)∣∣∣∣∣
θ1=∂ω

(4.48)

with

∂

∂xL

(
a2

|a1|
· ∂a1

∂xK

)
= 1
|a1|

∂a2

∂xL
· ∂a1

∂xK
−
(

a1

|a1|3
· ∂a1

∂xL

)(
a2 ·

∂a1

∂xK

)
(4.49)

4.4 Finite Element Approximation with B-Spline Shape
Functions

For the parametrization of the curve the usual B-spline shape functions are used. A
uniform bspline is a composite of cubic Bezier curve segments as discussed in Chapter
3. Each element has a parametric domain ωe which are a partition of the beam domain
ω = ⋃

e ω
e. The shape functions on one finite element are controlled by four control

points. The uniform B-Spline shape functions are described over the dimensionless
parameter ξ = [0, 1] one each element

N 1(ξ) = 1
6(−ξ3 + 3ξ2 − 3ξ + 1) (4.50)

N 2(ξ) = 1
6(3ξ3 − 6ξ2 + 4) (4.51)

N 3(ξ) = 1
6(−3ξ3 + 3ξ2 + 3ξ + 1) (4.52)

N 4(ξ) = 1
6(ξ3) (4.53)
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4 Finite Element Discretization of a Beam with B-Spline Shape Functions

Boundary Condition u(x)|x=0 or l u′(x)|x=0 or l u′′(x)|x=0 or l u′′′(x)|x=0 or l

Clamped 0 0
Pinned 0 0
Free 0 0
Guided 0 0

Table 4.1: Boundary Conditions of the Beam

Using similar approach as in section 4.3, it can be written as:

x(ξ) = N K (ξ)xK (4.54)
x(ξ) = N K (ξ)xK (4.55)

The summation convention is being used above.

4.5 Transformation due to Boundary Conditions

The transformation required in the beam boundary conditions is a little tricky for uni-
form splines. This is because of the presence of ghost nodes. In this section a simple
method is described in order to apply boundary condition in this kind of problem.

Since the beam is divided into n equally sized elements, there are totally n + 3 spline
parameters to define the displacement functions, including two end spline parameters.
That includes n + 1 usual nodes from x1 to xn+1 and 2 ghost nodes one at beginning
and other at the end. This is because each element is discretized into 4 nodes. Lets say
the ghost nodes are denoted by: x0 and xn+2. In order to apply boundary conditions
in a proper way, the end ghost nodal position vectors are needed to be transformed
accordingly. For example, the displacement vector in a clamped pinned beam looks is
transformed from x = [x0,x1,x2....,xn,xn+1,xn+2] to x̂ = [x0,x ′0,x2....xn,xn+1,x ′′n+1]. By tak-
ing the boundary conditions into consideration, x0,x ′0, /xn+1 and x ′n+1 can be expressed in
terms of correlative spline parameters, x0 = x0/6+2x1/3+x2/6, x′0 = x0/2+x2/2,xn+1 =
xn/6 + 2xn+1/3 + xn+2/6 and x′′n+1 = xn − 2xn+1 + xn+2/6. Therefore the transformation
can be achieved by x̂ = Tx, where T is the transformation matrix. The the trans-
formed stiffness matrix looks like: K̂ = (TT )−1KT−1. For a clamped pinned beam, the
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4.5 Transformation due to Boundary Conditions

transformation matrix looks like:

T =



1/6 2/3 1/6
−1/2 0 1/2

0 0 1
. . .

1 0 0
1/6 2/3 1/6
1 −2 1


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5
Sensitivity Analysis

In a structural analysis problem, the first step is the discretization of the structural
model using finite elements, finite differences etc. The solution is then found out for the
algebric equations. In sensitivity analysis, the means of finding the derivatives of these
solution are studied which is needed for various optimization algorithms.

Sensitivity analysis is divided broadly into two types: Discrete and Continuum. The
difference lies in the step when the differentiation with the design variable is performed.
In the discrete approach, first the discretization is done and then differentiation is per-
formed, whereas in the variational approach or continuum approach, governing equa-
tions are first differentiated followed by discretization. In addition, under each category
there are two general ways of performing sensitivity analysis: the direct method and
the adjoint method. The discrete type sensitivity can also be calculated sensitivity
using global finite differences. Further direct and adjoint formulations could be subdi-
vided into semi-analytical and analytical methods. Figure 5.1 illustrates all methods of
sensitivity analysis briefed above.

5.1 Discrete Sensitivity Analysis by Global Finite
Differences

In this method, the derivatives of the response function with respect to the design
variables are found with the help of finite difference scheme. This is conceptually very
simple, however, could be computationally very expensive when the numbers of design
variables are too high. The finite difference scheme using forward difference could be
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5 Sensitivity Analysis

Figure 5.1: Methods for Sensitivity Analysis

shown as the following:
∂ψ(s)
∂si

≈ ∆ψ(s1,...sns)
∆si

= ψ(s1,...,si + ∆si ,...sns)− ψ(s1,...,si ,...sns)
∆si

+ O(∆si)(5.1)

where O(∆si) is the truncation error given by:

O(∆si) = − ∆si

2
∂2ψ

∂s2
i

∣∣∣∣∣
(s1,...si+ε∆si ,...sns)

(5.2)

with 0 ≤ ε ≤ 1

It can be deduced from (5.1) that it is necessary to evaluate for an additional perturbed
design with si + ∆si , in order to compute sensitivity ∂ψ(s)/∂si . The global finite
difference method requires ns additional analysis of perturbed designs, if sensitivities of
ψ are to be computed with respect to ns design variables. Thus, this method is quite
computationally expensive.

The step size chosen for the design variable affects the accuracy of the results. The
smaller the step size better is the approximation, and more accurate the results comes
out to be. However, for very small size step, round off errors may creep in. It should
be also be noted that for the correct functioning of this method, one should check that
there should convergence in the solution after a certain size step.

This method was used widely in the past because of its simple implementation. However,
with the development of more accurate and fast techniques, its use has been formidably
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5.2 Discrete Direct Sensitivity Analysis

reduced. But, it still remains a reference method for validating other implementations.
One of the other popular alternatives to global finite difference is Discrete Direct method
and Adjoint Method, which is discussed in the following sections.

5.2 Discrete Direct Sensitivity Analysis

In the discrete sensitivity approach, also known as implicit sensitivity approach, the
governing equations are first discretized and then differentiated analytically with respect
to the design variables. In the discretization process geometry and displacements are
approximated by a linear combination of global shape functions.

A general objective function in a sensitivity analysis looks like:

ψ = ψ(s,u) (5.3)

where s = si , i = 1...ns is the vector of design variables and u is the vector of dis-
placements. The objective ψ may represent stresses, strains, displacements, reaction
forces, etc. Therefore, after discretization, i.e. using Equation 5.1, the functional ψ is
approximated by :

ψ = ψ(s,
∑

a
Na · ua) (5.4)

In sizing and shape optimization problems,the design variables are geometrical quanti-
ties. Thus, the global stiffness matrix and the load vector are functions of these design
variables, as in equation below. In order to show the concepts of direct and adjoint
optimization, the sensitivity analysis is performed for a linear problem : The governing
equations of a linear problem are written as:

K(s) · u(s) = F(s) (5.5)

the vector of displacements obtained as solution to the structural analysis also depends
on the design variables,that is u = u(s) Considering this, the derivative of the functional
ψ as in Equation (5.3) with respect to the vector of design variables s using chain rule
is given by:

dψ
ds

= ∂ψ

∂s
+ ∂ψ

∂u
.
∂u
∂s

(5.6)

It should be noted that here the shape functions doesn’t depend upon the design vari-
ables, and its derivative with respective to design variable will be zero. Derivatives
∂ψ/∂s and ∂ψ/∂u are determined explicitly. The computation of derivatives of the
state variables, that is ∂u/∂s, is the main task of discrete sensitivity analysis.
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5 Sensitivity Analysis

Based on the way to organize the operations, it can be distinguished between direct and
adjoint sensitivity analysis. In both cases, the computation of the so-called pseudo load
vector, which will be introduced next, is required. Depending on the way the pseudo load
vector is computed, semi-analytical and analytical sensitivities can be distinguished.

For discrete direct sensitivity analysis, the system equilibrium equation 5.6 must be
differentiated with respect to the design variable si .

K · du
dsi

+ dK
dsi
· u = dF

dsi
(5.7)

We define ’Pseudo force’ as:

K
du
dsi

= F∗i (5.8)

where:

F∗i = dF
dsi
− dK · u

dsi
(5.9)

5.3 Discrete Adjoint Sensitivity Analysis

The alternative approach of adjoint sensitivity is defined in terms of the adjoint variable
λ. Using Equation 5.8 into Equation 5.6 could be written as:

dψ
dsi

= ∂ψ

∂si
+ ∂ψ

∂u
·K−1(s) · F∗i (5.10)

The vector of adjoint variables is defined as:

λ = K−1(s) · ∂ψ
∂u

(5.11)

K(s) · λ = ∂ψ

∂u
(5.12)

The total derivative of functional ψ is given by:
dψ
dsi

= ∂ψ

∂si
+ λF∗i (5.13)

Therefore, a clear distinction can be drawn between the direct and the adjoint method.
The difference lies merely in the order in which matrix multiplications in equation (5.12)
are executed. In the direct method, first the product K−1(s) · F∗i is evaluated, whereas
in the adjoint approach the product ∂ψ/∂si ·K−1(s) is evaluated first. This can have a
significant effect on the numerical efficiency, depending on the number of design variables
compared to the number of response functions. The adjoint method is more efficient
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5.4 Semi-Analytical Sensitivity Analysis

if there are more design variables than response functions, which is usually the case in
shape optimization problems. The above pseudo force vector can be calculated using
analytical differentiation or numerically. Both the methods are discussed in the next
section.

5.4 Semi-Analytical Sensitivity Analysis

The pseudo force vector described above can be calculated both analytically or through
finite difference method. As, calculating analytically is a cumbersome process as it might
contain complex derivatives, it might be easier to find the derivatives numerically using
finite difference with reasonable accuracy. It can be therefore seen as an intermediate
technique between the global finite difference scheme and the analytical approach. Many
finite differences schemes have been used for numerical evaluation of the pseudo load
vector. In the case of forward finite differences, the pseudo load vector is given by :

F∗i = dF
dsi
− dK · u

dsi

≈
F(s1,...,si + ∆si ,...snd)− F(s)−

(
K(s1,...,si ,...sns)−K(s)

)
· u

∆si

(5.14)

where ∆si is a small but finite increment in design variable si . It should be noted that
the global pseudo load vector is computed by assembling the individual contributions of
the elemental pseudo load vectors.

The basic advantage of semi-analytical sensitivity analysis is that with small program-
ming effort, much better computational efficiency than global finite difference method
can be attained. It is slightly difficult to implement than global finite differences, but
definitely much easier than analytical method as the complex derivatives of pseudo force
terms are not needed to be calculated. Moreover, the semi-analytical approach does not
depend on the finite element formulation used. In this context, this is more advanta-
geous than analytical approach that does depend on the finite element formulation used,
and therefore, it has to be implemented for each finite element of the code.

However, as it is known, the drawback of finite difference method are approximation
errors and round-off errors. Whenever the perturbation si is too large, the derivative
suffers from approximation errors. When the perturbation is very small, round-off errors
disturb the result. Usually, the range of suitable perturbations has to be investigated
for each application. Olhoff and J. (1991) , naming one out of few, had discussed
about the inaccuracies of this method and devised numerical techniques to reduce or
eliminate them.
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5 Sensitivity Analysis

5.5 Analytical Sensitivity Analysis

In this method, the pseudo vector is differentiated analytically. The main advantages
of this method are its computational efficiency and reliability, and is the most superior
among all the methods discussed. As it was already mentioned, sensitivity parameters
are needed for the prediction of the structural response of the modified system design in
various optimization algorithms. Therefore, accurate sensitivities are important factor
to ensure convergence of optimization algorithm and to improve the convergence rate.

A drawback of this approach is that formulation and implementation are more difficult
than for the semi-analytical method, and depend on the particular type of finite element
used. The analytical differentiation becomes more complex for more complex finite
elements. Moreover, in shape optimization, the domain of integration of the also depends
on the design variables which introduces additional difficulties. However, once this
differentiation is done and implemented in the code, the efficiency and reliability of the
computed analytical sensitivities have clear advantage with respect to those computed
by the semi-analytical method or global finite difference method. The sensitivities are
more complex and difficult for systems where geomterically nonlinearity is included.
For those systems,an addition loop for finding equilibirium point is also needed. In
Chapter 6, the analytical design sensitivity for the nonlinear beam derived i n Chapter
4 is presented.

32



6
Analytical Sensitivity of Geometrically
Non-linear Problem

In Chapter 5, a review of the different sensitivity analysis methods was presented. The
need for more accurate and reliable sensitivity coefficients legitimates the use of the
analytical approach. In the previous chapter, the adjoint coefficient was derived for a
linear case. However, if even slight nonlinearity in the structural system is introduced,
the linear analytical sensitivity doesn’t hold valid. With comprehensive application of
nonlinear finite element methods nowadays and with advanced computer capabilities, a
formulation of nonlinear shape optimization is definitely desired. In order to develop
optimal designs of nonlinear structures, it is necessary to formulate design sensitivities
of nonlinear structures. Obviously, this method must be efficient and stable for all ap-
plications. In order to do so, an understanding of nonlinear finite element procedure is
also needed. In this chapter, the design sensitivities for nonlinear structures are derived
analytically. Here, the governing equations of nonlinear finite element are solved itera-
tively until the internal forces are equal to external forces. Newton Raphson method is
used to solve such nonlinear problem. The St. Venant-Kirchhoff constitutive equations
are used assuming small strains. In addition, the adjoint sensitivity technique is pre-
sented with relevance to nonlinear shape optimization. This approach clearly involves
higher mathematical complexity but is more efficient and has lower computational costs.
With the development of such formulations, the augmentation with existing commercial
nonlinear finite element software is easily possible.
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6 Analytical Sensitivity of Geometrically Non-linear Problem

6.1 Algorithm

The gradient based approach is used to calculate minimization of objective function. In
this thesis, the interior point alogorithm is used to find the optimal shape. ’Interior-
point’ also referred as barrier method, can be used to solve both linear as well as non-
linear constrained optimization problems. Interior point methods are usually solved by
applying Newton’s method into a sequence of equations containing KKT conditions.

The algorithm satisfies bounds at all iterations, and can recover from Infinite results.
The algorithm can use special techniques for large-scale problems. As described in Weis-
stein “Current efficient implementations are mostly based on a predictor-corrector tech-
nique by Mehrotra (1992), where the Cholesky decomposition of the normal equation
or LDLT factorization of the symmetric indefinite system augmented system is used
to perform Newton’s method (together with some heuristics to estimate the penalty
parameter). All current interior point methods implementations rely heavily on very
efficient code for factoring sparse symmetric matrices”.

The implementation of interior point is not done explicitly, rather, the predefined func-
tion in MATLAB called fmincon is used in order to calculate the optimal solution. The
mathematical details therefore are not discussed this thesis report. The sensitivity in-
formation along with the value of objective function is feeded as input variables in the
predefined optimization function.

6.2 Analytical Sensitivities

In Chapter 4, the beam element similar to thin shell formulation was studied in detail. In
order to use this element for shape optimization, its analytical sensitivities are needed
to be computed. Here, the analytical procedure to obtain derivatives are explained.
Throughout the section, a continuous reference to matrices and vectors involved in the
computation of the element stiffness matrix is made. The objective function is taken as
the Strain Energy with the goal of minimizing it. The design variables are the control
points of the B-Spline curve.

ψ(s,u) = 1
2

∫
B̄

(S : E) dV (6.1)
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6.2 Analytical Sensitivities

where the strain energy can be written as:

ψ = 1
2

∫
B̄

(S : E) dV = 1
2

∫
Ω̄

∫
h

∫
b

E11C 1111E11µdθ3dθ2dΩ̄ (6.2)

= 1
2

∫
Ω̄

∫
h

∫
b

(α + θ2β)C (α + θ2β)µdθ3dθ2dΩ̄ (6.3)

= 1
2

∫
Ω̄

∫
h

∫
b

(α2)C + θ2(2.Cαβ) + (θ2)2(Cβ2)µdθ3dθ2dΩ̄ (6.4)

= 1
2

∫
Ω̄

(CAα2 + CIβ2)dΩ̄ (6.5)

The equilibrium equations in a nonlinear setting can be written as:

fint(s,u)− fext(s,u) = 0 (6.6)

Using the KKT conditions discussed in Chapter 2, the objective function ψ(s,u) is
therefore written as:

ψ(s,u) = ψ + λ(fint − fext) (6.7)
dψ(s,u)

dsi
= ∂ψ

∂si
+ ∂ψ

∂xk

∂xk

∂si
+ λ

(
∂f int

∂si
+ ∂f int

∂xk

∂xk

∂si
− ∂f ext

∂si

)
(6.8)

We choose λ such that ∂xk/∂si is eliminated. Collecting terms with ∂xk/∂si coefficient

dψ(s,u)
dsi

= ∂ψ

∂si
+ λ

∂f int

∂si
− λ

∂f ext

∂si
+ ∂xk

∂si

(
∂ψ

∂xk
+ λ

∂f int

∂xk

)
(6.9)

∂ψ

∂xk
+ λ

∂f int

∂xk
= 0 (6.10)

∂ψ

∂xk
+ λKt = 0 (6.11)

λ = −K−1
T
∂ψ

∂xk
(6.12)

In direct method we first multiply K−1
T (∂f int/∂si − ∂f ext/∂si) and for adjoint method

we first compute −K−1
T ∂ψ/∂xk . However, in this case, as the number of design variables

are much larger than the constraints,therefore adjoint method must be used.
If the objective is taken as Strain Energy as described in equation 6.1, the λ turns out
to be:

λ = −K−1
T f int (6.13)
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6 Analytical Sensitivity of Geometrically Non-linear Problem

Substituting λ into 6.8, we get:

dψ(s,u)
dsi

= ∂ψ

∂si
−K−1

T f int
(
∂f int

∂si
− ∂f ext

∂si

)
(6.14)

Therefore, in order to computer the sensitivity of Strain Energy, ∂ψ
∂si

,
∂f int

∂si
and ∂f ext

∂si
needs to be computed.

Calculation of ∂ψ/∂si :

ψ = 1
2

∫
B̄

(S : E) dV = 1
2

∫
Ω̄

∫
h

∫
b

E11C 1111E11µdθ3dθ2dΩ̄

= 1
2

∫
Ω̄

∫
h

∫
b

E11C 1111E11µdθ3dθ2|a1|dθ1 (6.15)

∂ψ

∂si
=1

2

∫
Ω̄

∫
h

∫
b

∂E11

∂si
C 1111E11µ|a1|dθ3dθ2dθ1+

1
2

∫
Ω̄

∫
h

∫
b

E11
∂C 1111

∂si
E11µ|a1|dθ3dθ2dθ1+

1
2

∫
Ω̄

∫
h

∫
b

E11C 1111∂E11

∂si
µ|a1|dθ3dθ2dθ1+

1
2

∫
Ω̄

∫
h

∫
b

E11C 1111E11
∂µ

∂si
|a1|dθ3dθ2dθ1+

1
2

∫
Ω̄

∫
h

∫
b

E11C 1111E11µ
∂|a1|
∂si

dθ3dθ2dθ1

(6.16)

As mentioned in Chapter 4 (Equation 4.20 ), µ is taken as 1 and therefore ∂µ/∂si is
taken as zero. Therefore the above equation simplifies to:

∂ψ

∂si
=
∫
Ω̄

∫
h

∫
b

∂E11

∂si
C 1111E11µ|a1|dθ3dθ2dθ1+

1
2

∫
Ω̄

∫
h

∫
b

E11
∂C 1111

∂si
E11µ|a1|dθ3dθ2dθ1+

1
2

∫
Ω̄

∫
h

∫
b

E11C 1111E11µ
∂|a1|
∂si

dθ3dθ2dθ1

(6.17)
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6.2 Analytical Sensitivities

where∫
Ω̄

∫
h

∫
b

∂E11

∂si
C 1111E11µ|a1|dθ3dθ2dθ1 =

∫
Ω

∫
h

∫
b

(α + θ2β)C ( ∂α
∂si

+ θ2 ∂β

∂si
)µ|a1|dθ3dθ2dθ1

=
∫
Ω

∫
h

∫
b

(
αC ∂α

∂si
+ θ2(βC ∂α

∂si
+ αC ∂β

∂si
) + (θ2)2βC ∂β

∂si

)
µ|a1|dθ3dθ2dθ1

(6.18)

Note that the above functon integrals over the cross section can be evaluated analytically,
which leads to

=
∫
ω

(
CAα∂α

∂si
+ CIβ ∂β

∂si

)
|a1|dθ1 +

∫
ω

(
CIβ ∂α

∂si
+ CIα ∂β

∂si

)
µ|a1|dθ1 (6.19)

Similarly the second term of eq 6.17 can be simplified as follows:

1
2

∫
Ω̄

∫
h

∫
b

E11
∂C 1111

∂si
E11µ|a1|dθ3dθ2dθ1 = 1

2

∫
Ω̄

∫
h

∫
b

E11
∂

∂si

(
E

g11g11

)
E11µ|a1|dθ3dθ2dθ1

(6.20)

where E is Young’s modulus and g11 is the 11-entry of the contra-variant metric coeffi-
cients. Note, g11 depends in general on θ1 and θ2. As, derived in Section 4.2 (Equation
4.19), g11 can be written as:

g11 = |a1|2 + 2θ2a1 · a′2 + (θ2)2
(

a′2 · a′2
|a1|

)2

(6.21)

Neglecting the quadratic term, we find the derivative of the term E/g11g11 with respect
to design variable:

∂

∂si

(
E

g11g11

)
= −2E

g113

(
2|a1|

∂|a1|
∂si

+ 2θ2
(
a1 ·

∂a′2
∂si

+ a′2 ·
∂a1

∂si

))
(6.22)

The above equation can be written in a simplified form say:

∂

∂si

(
E

g11g11

)
= X + θ2Y

X = −4E
g113

(
|a1|

∂|a1|
∂si

)
(6.23)

Y = −4E
g113

(
a1 ·

∂a′2
∂si

+ a′2 ·
∂a1

∂si

)
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6 Analytical Sensitivity of Geometrically Non-linear Problem

On substituting the Equation 4.14 containing the components of Green Lagrange strain
and using 6.23, Equation 6.20 can be written as:

1
2

∫
Ω̄

∫
h

∫
b

E11
∂C 1111

∂si
E11µ|a1|dθ3dθ2dθ1 =

1
2

∫
ω

∫
h

∫
b

(α + θ2β)(X + θ2Y )(α + θ2β)µ|a1|dθ3dθ2dθ1
(6.24)

This could be further expanded as:

= 1
2

∫
ω

∫
h

∫
b

(
(α2X + (θ2)2(β2X + 2αβY )) + (θ2)(2αβX + α2Y )+

(θ2)3(β2Y )
)
µ|a1|dθ3dθ2dθ1

= 1
2

∫
ω

(
AXα2 + I (Xβ2 + 2Yαβ)

)
|a1|dθ3dθ2dθ1+

1
2

∫
ω

(
I (2αβX + α2Y )

)
η|a1|dθ3dθ2dθ1

(6.25)

where A = bh is the area of the cross section and I = bh3/12 is the moment of inertia
of the cross section. The second integral is neglected, it is only present in initially
curved beams. Further, the membrane force is defined as n = CAα and the couple force
as m = CAβ. The odd powers of θ2 cancels out as the result in zero on integration.
Therefore, the second term of Equation 6.17 can be finally written as:

1
2

∫
Ω̄

∫
h

∫
b

E11
∂C 1111

∂si
E11µ|a1|dθ3dθ2dθ1 =

1
2

∫
ω

(
AXα2 + I (Xβ2 + 2Yαβ)

)
|a1|dθ3dθ2dθ1

(6.26)

where X and Y are defined in Equation 6.23. For the calculation of X and Y, the
sensitivities of |a1|,a1 and a2 needs to be calculated. For this the Appendix as well as
section 6.3.1 must be referred.
Next, the third term in Equation 6.17 is needes to be computer. This is quite simple
as only ∂|a1|/∂si needs to be computed, which is shown in Appendix A and rest of the
terms are already known.

38



6.2 Analytical Sensitivities

Calculation of ∂f int/∂si : Using Equation 4.20 in 4.34 and then taking the derivative
of Equation 4.34 with the design variable, the obtained equation takes the form:

∂f int

∂si
= ∂

∂si

∫
ω

∫
h

∫
b

E11C ∂E11

∂xK
µ|a1|dθ3dθ2dθ1 (6.27)

= ∂

∂si

∫
ω

∫
h

∫
b

(α + θ2β)C ( ∂α
∂xK

+ θ2 ∂β

∂xK
)µ|a1|dθ3dθ2dθ1

Differentiating all the terms,
∂f int

∂si
=
∫
ω

∫
h

∫
b

( ∂α
∂si

+ θ2 ∂β

∂si
)C ( ∂α

∂xK
+ θ2 ∂β

∂xK
)µ|a1|dθ3dθ2dθ1

+
∫
ω

∫
h

∫
b

(α + θ2β)∂C
∂si

( ∂α
∂xK

+ θ2 ∂β

∂xK
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As the design parameters are taken as initial nodal coordinates, the term ∂/∂si
(
∂α/∂xK +

θ2∂β/∂xK
)
is zero

The first term of Equation 6.29 can be simplified as:∫
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The second term comes to be zero as et is zero for straight beams. Now, the second
term of Equation 6.29 can be written as:∫
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∫
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Here calculation of ∂|a1|/∂si can be found in Appendix.

6.2.1 Sensitivity of Strain Components

Differentiation of different strain component with design variable is found out to be:
∂α

∂si
= −a1 ·

∂a1

∂si
∂β

∂si
= a2 ·

∂a′1
∂si

+ a′1 ·
∂a2

∂si

(6.31)

The sensitivity of the tangent vector yields to:
∂a1

∂si
= N ′JI (6.32)

and the normal vector result in
∂a2

∂xK
= 1
|a1|

a3 ×
∂a1

∂si
− a2

(
a1

|a1|2
· ∂a1

∂si

)
(6.33)

The sensitivity of the derived tangent vector is straight forward
∂a′1
∂si

= N ′′JI (6.34)

With this, all the terms in Equation 6.14 can be computed and thus the sensitivity of
the objective function can be calculated. In order to correctly find the derivatives, each
terms were checked with finite differences.
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7
Results

In this Chapter, numerical examples are presented on isogeometric analysis using uni-
form B-Splines and on nonlinear shape optimization of beams for large deformations.
This Chapter is divided broadly into three parts: Linear Analysis, Nonlinear Analysis
and Optimization. The code is first validated by taking some examples of linear and
geomterically nonlinear beam problems. Then, in the final section, some beam problems
are taken where the optimized shapes are found for some general load cases. A valida-
tion of the formulation is performed by camparing the shape with the inverted catenary
curve. The effect of optimized shape is also studied on changing different parameters
like number of elements, thickness to length ratio and on increasing load. To study the
shape of a beam in the geometrical nonlinear regime, a problem of beam buckling on a
point load is taken.

7.1 Linear problem

In this section, some simple analysis problems were solved using the beam equations
formulated with uniform B-Splines in Chapter 4. This was done in order to check the
proper functionality of the code for linear cases. The beam was discretized with 4 and
16 elements, and for various support cases, as shown in Fig 7.1. The finite element
solution was then compared with the analytical solution.

The mesh in both the cases: 4 and 16 elements is depicted in Figute 7.2. As for B-
Splines, additional ghost nodes one at the beginning and other at the end, are needed
for the interpolation. This is because a single element is described by four points. So,
for the first and last element, extra nodes are required. The geometric properties are:
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E = 1000, A = 0.02, I = 1.333× 105, p̂ = 0.0002, L = 4.

Table 7.1 shows the comparision of displacement at x = L/2 using finite element result
with 4 and 16 elements and with the analytical solution. Figure 7.1. In Fig 7.3 to Fig
7.5, the support conditions are as follows:

clamped − free u0 = u′0 = 0.0 u′′L = u′′′L = 0.0 (7.1)

clamped − clamped u0 = u′0 = 0.0 uL = u′L = 0.0 (7.2)

clamped − pinned u0 = u′0 = 0.0 uL = u′L = 0.0 (7.3)

The analytical equation for the deflection at any length x from the beginning of the
beam for clamped at one end and free in another is given by:

u(x) = p
24EI (x4 − 4Lx3 + 6L2x2) (7.4)

Similary to clamped-clamped boundary condition, the analytical solution for the deflec-
tion is as follows:

u(x) = p
24EI (x4 − 2Lx3 + L2x2) (7.5)

and for clamped pinned, the analytical solution is given as:

u(x) = p
48EI (2x4 − 5Lx3 + 3L2x2) (7.6)

The solution from the isogeometric solution was then compared with these analytical
solution for these particular cases. Its is quite clear from the comparision that, even for
just 4 elements, the B-Spline discretization gives quite accurate results. This validates
the code of isogeometric analysis using uniform B-Splines in a linear static case.

Figure 7.1: Single-span meshes: (a) mesh with 4 and (b) with 16 uniform elements
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7.1 Linear problem

Figure 7.2: Problem definition for Linear single span systems

System Analytical Value Figure 7.1(a) Figure 7.1(b)

Figure 7.1(a) -0.05 -0.05 -0.05
Figure 7.1(b) -0.17 -0.17 -0.17
Figure 7.1(c) -0.02 -0.02 -0.02
Figure 7.1(d) -0.09 -0.09 -0.09
Figure 7.1(e) -0.01 -0.01 -0.01

Table 7.1: Results for E = 1000, A = 0.02, I = 1.333.105, p̂ = 0.0002, L = 4 at x = L/2

43



7 Results

Figure 7.3: Clamped-Free: (a) mesh with 4 and (b) with 16 uniform elements

Figure 7.4: Clamped-Clamped: (a) mesh with 4 and (b) with 16 uniform elements
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Figure 7.5: Clamped-Pinned: (a) mesh with 4 elements and (b) with 16 uniform elements

7.2 Nonlinear Problems

7.2.1 Truss

In order to validate the code for geometrically nonlinear problems, few examples were
taken involving large deformations. First, the geometric nonlinear analysis of the truss
member is performed and then analytically verified. The exact problem is illustrated
in Fig 7.7. Both cases of uniform load p̂ and point load P̂ were taken one by one. For
different values of α, the nonlinear truss was analyzed. The mesh used is depicted in
Figure 7.6. Table 7.2 shows the end deflection after the nonlinear analysis for point load
with both an uniform mesh of 4 elements. Table 7.3 shows for end deflection for uniform
loading case. For both point and uniform loading, the deflection matches quite closely
with the analytical values.

Figure 7.6: Uniform mesh for inclined truss
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Figure 7.7: Inclined truss-geomterically nonlinear

System α Mesh:Figure 7.1(a)

Figure 7.5(a) 0 0.52138
Figure 7.5(b) 0 0.52138
Figure 7.5(a) 30 0.52138
Figure 7.5(b) 30 0.52138
Figure 7.5(a) 135 0.52138
Figure 7.5(b) 135 0.52138

Table 7.2: Results for E = 1000, A = 1, I = 1/12, P̂ = 1000, L = 1 ; reference solution
w = 0.52138

System Mesh α

Figure 7.5(a) 0 0.30356
Figure 7.5(b) 0 0.30356
Figure 7.5(a) 30 0.30356
Figure 7.5(b) 30 0.30356
Figure 7.5(a) 135 0.30356
Figure 7.5(b) 135 0.30356

Table 7.3: Results for E = 1000, A = 1, I = 1/12, p̂ = 1000, L = 1 ; reference solution
w = 0.305428

7.2.2 Buckling of Beam

Next, the problem of geometrically nonlinear beam buckling is taken. The problem is
illustrated in Fig 7.8. Analytical methods can’t be used in this case, in order to calculate
the displacements at different load values. Instead, an incremental iterative procedure
is followed, as it is typically done for nonlinear problems. Solutions of this type of
nonlinear equations can be found iteratively by solving linearized equations, gradually
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approaching the displacement at equilibrium point. Newton Raphson method is used in
general to solve the linearized equation, neglecting the higher order terms, to obtain a
guess for a new displacement value. At each iteration, a better value of displacement is
found, until convergence is reached, where the residual attains a very small value.

For this kind of problem, the displacement control is used where displacement is cho-
sen as a control paramater at each step. Load displacement control would stop the
simulation at the limit and turning point. Thus, the displacement control is more suit-
able for this kind of problem. However, other methods like arc length length could
also be used. As, the main subject of this thesis is shape optimization, therefore more
complex methodologies are not used for obtaining the load displacement curve. Using
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displacement control method, therefore the resultant load deformation curve is then
plotted in Figure 7.9 (b). The plot shows the snap through behaviour clearly in the load
displacement curve. The initial and deformed shape of the beam with some intermedi-
ate displacements is also plotted in Fig 7.9 (a). The load deformation plot is quite as
expected.

7.2.3 Buckling of Arch

Next, a problem of deep arch buckling was taken with non symmetrical loads. Figure
7.10 depicts the problem. Load deformation curve was plotted with both vertical load as
well as horizontal load, as shown in Figure 7.11. The nonlinear analysis was performed
using load control method.

Figure 7.10: Deep arch with non-symmetric supports, E = 1.2 · 107 kN/cm2, A = 1cm2,
I = 1/12 cm4, R = 100cm, α = 17.5◦
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Figure 7.11: Load Displacement curve of Geometrical Nonlinear Arch

7.3 Shape Optimization

In this section, the sensitivities derived in Chapter 6 accounting for geometric nonlin-
earities in structure are used to find the optimized shape of the nonlinear structures. In
all the numerical examples hereafter, the objective function is taken as Strain Energy,
with the goal of minimizing it. The design variables are the control points of B-spline
curve.

7.3.1 Catenary Curve: Verification problem

In this code verification example, a thin beam pinned at the ends is optimised for a
vertical pressure load and compared with a catenary curve.
It has been known since the work of Leibniz, Huygens and Johann Bernoulli in 1691
that the shape of a curve assumed by a loose string hung freely from two fixed points is
a catenary the general form of which is as follows:

y = αcosh
(

x + β

α

)
+ γ (7.7)

The unknown parameters α, β and γ are determined based on the location of the
supports and length of the string l0. The supports are at equal height and the horizontal
distance between the supports is 10. Initially, the shape of beam is taken as straight
connecting the supports with length equal to the distance between the supports. Width
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7 Results

Figure 7.12: Comparision of the optimized shape with the catenary curve

and thickness are taken as constant, and doesn’t change in the optimization process.
As, it is in this example, a uniform loading of py = −0.02 is applied with the geometric
properties as: E = 105, h=0.01, L=1000. It can been be seen that the catenary curve
profile obtained using equation 7.7, and the optimized shape obtained for this conditions
described matches quite well as shown in Figure 7.12. As the length by thickness ratio
is very small (1000), there is significantly very small bending taking place, as a result
the beam majorly has axial forces, making it ideal for validating with a catenary curve.
Therefore the analytical sensitivities of a nonlinear beam problem is validated very well.

7.4 Effect of Optimized Shape by Changing Various
Parameters

After validating the code with the example above, a study is made on how the optimized
shape looks as various parameters are changes. Some conclusions and remarks are made
at the end of each case.

7.4.1 Variation with Load

In case of a thin initially straight beam, a study is made for how the optimized shape
looks like for different loads. As earlier, the objective function is minimizing the Strain
Energy and the design variables are the B-spline control points. Initially, the optimized
shape found for a very small load is shown in Figure 7.13. It is seen that as the load
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is quite small, the optimized shape is close to the shape as it could be imagined for a
linear case. This is obviously because the displacements are quite small, and falls in the
linear regime of the load deformation curve. It is seen the cost funciton i.e the strain
energy is reduced to about 73%.

Similarly for higher loads, the optimized shape is found in Figure 7.14, where the cost
function decreses by 99.6% and in Figure 7.15 by 99.7%. In all the calculated optimized
shapes, the cost functions thus reduces significantly.

It is quite clear that with the increasing load, the effect of nonlinearity is prominent and
therefore a different shape is attained as expected from a linear case. In Figure 7.15, the
shape goes in the positive y axis, because of the geometric nonlinear effects. Here, as the
deformations are large, therefore, optimized shape calculated using linear sensitivities
would not produce the most efficient shape. Hence, for large displacements, nonlinear
analytical sensitivities are necessary and thus in this case this is how the optimized
shape looks like.

For Point Load P at the center and the geometric properties as: E = 105, h = 0.01, L
= 10

Figure 7.13: Initial and Optimized Shape for P=−2× 10−5
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Figure 7.14: Initial and Optimized Shape for P=−0.02

Figure 7.15: Initial and Optimized Shape for P=−0.2

7.4.2 Variation with Elements

In this example, a simply supported beam is taken with E = 105, h = 0.01, L = 10 and
a point load P of −0.0005. Here also the objective function was taken as Strain Energy
with the goal of minimizing it. The design variables are taken as the control points of
the spline curve. Here, the optimal shape for the same problem is found using 8,16,32
elements as shown in Figure 7.16. The variation of the minimum cost function with the
number of elements is plotted in the Figure 7.17. It is seen from Figure 7.17 that the
cost at the optimal shape increses with increase in number of elements. This means that
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Figure 7.16: Initial and Optimized Shape for P=−0.2
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Figure 7.17: Variation of Minimum Cost Function with Number of Elements

for large number of elements, the optimization algorithm doesn’t find a global minima,
rather because of more discretization, the alogorithm stops finding some local minima
solution. Only having the minimal number of design variables ensures convergence to
the correct global minima.
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7.4.3 Variation with L/t ratio

In this section, the effect of optimal shape in the geometrical nonlinear setting is inves-
tigated. A straight simple supported beam is taken with E = 105, and vertical point
load as P = −0.02 was applied. The optimized shape was found for various L/t ratios
and plotted in Figure 7.18. It can be seen that in a very thin beam i.e L/t = 1000,
the beam is almost straight, with a kink near the ends. As compared to thicker beams,
the optimal shape of a thinner beam has much larger length. It is quite reasonable as
the deformation of the thin beam is larger and so optimal shape needs to have a larger
length so that it is more stiffer. One point to note is that, with large deformations as in
the case higher L/t ratio, the effect the nonlinearity is prominent. The obtained curve is
not same with one would obtain for a linear case. Some part of the optimal curve is even
going at the positive part of the y axis. But for a linear case, one would expect some-
thing like as shown in Figure 7.19. As for L/t = 50 where the displacements are smaller
because to its thicker cros-ssection, the optimal shape is close to one would obtain for a
linear case like in Figure 7.19. Obviously, a straight line could not be obtained, because
the use of spline curve, and a curve type shape is inevitable. However, if more elements
are used, a straighter shape could be obtained, but then in that case, the solution might
tend to find a local minima as discussed in section 7.4.2.
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Figure 7.18: Optimal Shapes varying L/t ratio for point load
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Figure 7.19: Optimal Shape expected for a point load in a linear case
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Figure 7.20: Optimal Shapes varying L/t ratio for uniform load

A similar investigation is also done for a uniform load case py = −0.002 with the same
Elastic Modulus. Figure 7.20 shows optimal shapes for uniform load with varying L/t
ratio. A similar argument could be given here also, and its quite clear that with lower L/t
ratio, length of the optimal shape decreases. Table 7.4 and Table 7.5 depicts the initial
and final cost and the percentage reduction for point load and uniform load respectively.
In order to check, how the curves differ from the catenary curve which was calculated
using equation 7.7, a comparison was made in Figure 7.21 for different L/t ratio. As
expected, optimal shape of thin beam (L/t = 1000) has the same shape as that of the
catenary curve. This is because for such a thin beam, the load is primarily carried by
membrane effects. As the thickness is increased, the beam transfers more forces through
bending action, as thus deviates from the catenary curve profile. Thus, it could be said
that the catenary curve profile doesn’t proves to be a good validation for the optimized
shape in case of thicker beams, but behaves very well with thin beams.
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Catenary CurveOptimized Shape

L/t=1000 L/t=500

L/t=50L/t=250

Catenary CurveOptimized Shape

Catenary CurveOptimized ShapeCatenary CurveOptimized Shape

Figure 7.21: Comparison of Optimal Shapes at different L/t ratio with the respective
catenary curve. The red line depicts the catenary curve and the dotted
black line the optimal shape,initially the beam is considered straight

L/t Initial Cost Final Cost % Cost Reduction

50 8.4123e-6 2.498e-7 97.03
100 6.54e-5 1.317e-7 99.79
250 2.3757e-4 8.311e-8 99.96
500 2.6488e-4 9.99e-7 99.62
1000 3.2076e-4 9.867e-7 99.69

Table 7.4: Variation of cost function with L/t ratio for point load

L/t Initial Cost Final Cost % Cost Reduction

50 3.713e-6 2.188e-7 94.10
100 3.07e-5 7.480e-7 97.56
250 1.433e-4 5.488e-8 99.96
500 1.576e-4 6.178e-7 99.61
1000 1.89e-4 3.985e-7 99.78

Table 7.5: Variation of cost function with L/t ratio for uniform load −0.02
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7.4.4 Buckling of Beam

The nonlinear analysis of a thin beam was performed in Section 7.2.2 and the load
displacement curve was illustrated in Figure 7.9(b). A total load of 35 was applied, and
it was seen that the limit point was near to load of 20. Now, the optimal shape of the
beam was found for increasing load as shown in Figure 7.22. It was seen that for load
very near to the limit point, there was drastic change the height of the optimal shape.
This is quite expected as for higher loads the optimal shape should have a high stiffness,
for which it attains a much larger height that loads below the limit point. This also
makes sense, as the structure after the limit becomes softer and undergoes the snap
through phenomenon, involving large deformation. Having a initial shape as found will
result in minimum strain energy at this loading. It is also seen that the attained optimal
shape follows a symmterical geometry.
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Figure 7.22: Optimal Shapes of at Various Load Points
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8
Summary and Outlook

The analytical sensitivity was computed for a nonlinear beam in a parameter free space.
The exact and smooth geometric representation inherent in the isogeometric analysis
model is included into the shape optimization process merging analysis and design model.
Since the geometry is encapsulated at the design level, mesh refinement and representa-
tion of shape changes are easily obtained without the need of subsequent communication
of CAD enviroment. This framework not only unifies geometry and analysis, but is su-
perior over standard polynomial based finite element analysis from numerical aspect
with precise representation of complex geometries, reducing geometric error and higher
order inter element continuity. A isogeometric analysis of linear as well as nonlinear
beam was performed and was compared with the analytical results. Even for very small
number of elements, results are very close to the analytical ones.

Next, for the optimization of the nonlinear beam, the analytical sensitivities were cal-
culated. The objective was to minimize the strain energy with design variable as the
control points of B-Spline mesh. The adjoint method was adopted for discrete sensitivity
analysis, which is more efficient from computational point of view, as in this case the
number of design variables are more than the reponse functions. Once the sensitivities
were calculated for the objective function, it was feeded to the optimization algorithm
in MATLAB. In this work, the interior point method was used, as it quite efficient for
nonlinear optimization problems.

The whole algorithm is illustrated in Fig 8.1 and is discussed below:

1. Initially a guess is made for the design variables i.e control points of the B-Spline
curve
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2. With this initial configuration, the beam problem is solved by Newton Raphson
iterations until the residual become zero. The displacements found are added
iteratively. Finally, the equilibirium state of the beam is found.

3. Once the equilibirium position is attained, the value of the objective function i.e.
Strain Energy is calculated at the current state.

4. The nonlinear sensitivity of the nonlinear beam is then calculated using the for-
mulation followed in Chapter 6.

5. Once, the objective function and its sensitivity is computed, it is feeded to the
optimization algorithm which then finds another better initial configuration.

6. This is then again feed into the Newton raphson loop and 1-5 is followed again
until the final optimized shape is obtained.

Using this algorithm, the optimized shape was found out for various problems. Some
validation was done on the lines of inverted catenary curve usually used in architecture.
The concept used is that the inverted catenary curve gives the most optimized shape
for structures in pure membrane stress state. Therefore, a comparison was made with
the optimal shape for a uniform loading considering geometrically nonlinear behaviour
and the catenary curve. It was seen that for very thin beams, both the curves matched
closely. However, with the increase in thickness, it was seen deviation with the catenary
curve profile. This is because now due to increase in bending stiffness, the beam doesn’t
carry load in pure membrane action.

Further, it was also investigated how the the optimal shape looks when the load was
increased for both uniform and point loads. For all the loads, there was significant
amount of cost reduction.

Another interesting study was done, on how the optimal shape varied with change in
number of elements, or the mesh size. It was found out that, with the increase in number
of elements, the solution tends to find some local minima. Only having minimal number
of design variables, ensure convergence to the correct global minima, thus producing
exact optimal shapes. Similar behaviour was also found for shape optimization of shells
by Bletzinger et al. (1993)

The variation of optimal shape with change in L/t ratio was also studied. First, with
point loads, it was seen that for thicker beams i.e smaller L/t ratio, the optimal shape
looked similar the shape as expected for a linear case. This was because, the displace-
ment was small in that case and the beam was still in the linear regime. As the L/t ratio
was increased, there was prominent deviation from the linear optimal shape because of
large beam deformations. For uniform loads, the variation with L/t ratio was compared
with the respective catenary curve. It was seen that catenary curve profile doesn’t
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Figure 8.1: Flowchart for nonlinear shape optimization

proves to be a good validation for the optimized shape in case of thicker beams, but
behaves very well with thin beams. Thus the catenary curve profile is a good validation
for geometric nonlinear beams but only with thinner cross-section.

Finally, the optimized shape was found for a beam buckling with a point load at the
centre. The geometrical nonlinear analysis was first performed and the load deformation
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curve was plotted. With this the limit point of the beam was also found. The optimized
shape was then found for increasing loads till the load where limit point was attained.
It was seen that for load very near to the limit point, there was drastic increase in
the height of the optimal shape. This is quite expected as near the limit point the
beam becomes more soft and thus with increase in the height, the stiffness of the beam
increases. Through all these numerical studies, the shape optimization for nonlinear
structures thus was very well studied, and a general behaviour of how the optimal shape
varies on changing beam parameters was also demonstrated.

This approach surely involves higher mathematical complexity but is much more efficient
and has lower computational costs that global finite differences and semi-analytical
methods. However, in order to reach a higher load state in the nonlinear analysis, the
computation is quite expensive in order to find the optimal shape design. Therefore,
there is research scope of finding more efficient algorithms for calculating the sensitivities
involving large nonlinearity.

As the beam formulation used is based on the thin shell formulation, this framework
would be easily extended to shape optimization of nonlinear shells.

It is also possible to further exploit the potential idea of isogeometric elements. Opti-
mized design could be found my using NURBS based represention, T-Splines. It could
be also extended by using subdivision surfaces.

Further, material nonlinearities could be taken into account for more realistic shape
designs.

Thus, with these capabilities incorporated in the present model, complex and realistic
systems requiring nonlinear analysis can be designed for optimum performance, which
has always been the foremost goal of all design engineers.
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Appendix

Derivative of a normalized vector

Consider a vector

v = v∗

|v∗|
(1)

The partial derivative with respect to any variable s is given by:

v,s =
v∗,s|v∗| − v∗|v∗|,s

|v∗|2
(2)

where

|v∗|,s = v∗ · |v∗|,s
|v∗|

(3)

Derivative of magnitude of a vector

The magnitude of a vector v∗ is given by:

|v∗| =
√

v∗ · v∗ (4)
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and the derivative of this magnitude with respect to s can be written as:

||v∗|,s = v∗ · |v∗|,s
|v∗|

(5)

Derivative of a cross product

The cross product of two vectors a(s) and b(s) is given by:

a × b =


a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1


where ai and bi are the i th component of the vectors a and b respectively.
The derivative of the cross product with respect to the variables s can be written as:

(a × b),s =


(a2),sb3 − (a3),sb2 + a2(b3),s − a3(b2),s
(a3),sb1 − (a1),sb3 + a3(b1),s − a1(b3),s
(a1),sb2 − (a2),sb1 + a1(b2),s − a2(b1),s



=


a2(b3),s − a3(b2),s
a3(b1),s − a1(b3),s
a1(b2),s − a2(b1),s

 +


(a2),sb3 − (a3),sb2

(a3),sb1 − (a1),sb3

(a1),sb2 − (a2),sb1


= (as × b) + (a × bs) (6)

In (6) it can be said that the product rule applies for the cross product.
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