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ABSTRACT 

 

This report includes numerical description of Exchange of information's at sliding interfaces by 

interpolation methods. Communication of data at sliding grid interface is crucial for areas of 

computing in relative motion. For example, a fixed computational domain and a second rotating 

inside the first. Such a method is under development for ISIS-CFD solver. Several options of 

communication at interface are studied. Sub program with Fortan 90 programming language is 

implemented in the ISIS-CFD solver developed by "DSPM" "Dynamique des Systèmes Propulsifs 

Marins" of the LHEEA laboratory (Laboratoire de recherche en Hydrodynamique, Energétique et 

Environement Atmosphérique" de l'Ecole Centrale de Nantes). 
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CHAPTER I - INTRODUCTION 

1.1. ISIS CFD RANSE SOLVER 

ISIS-CFD is an incompressible flow solver, that uses incompressible unsteady Reynolds-

averaged Navier Stokes equation (RANSE). The ISIS-CFD flow solver was developed by 

"DSPM" "Dynamique des Systèmes Propulsifs Marins" of the LHEEA laboratory (Laboratoire 

de recherche en Hydrodynamique, Energétique et Environement Atmosphérique" de l'Ecole 

Centrale de Nantes). It’s commercially distributed by Numeca in a software package named 

Fine/Marine including Hexpress, a hexahedral unstructured mesh generator, ISIS-CFD flow 

solver, and a postprocessor CFView. 

 

The solver is based on the finite volume method to build the spatial discretization of the 

transport equations.  The face-based method is generalized to two-dimensional, rotationally 

symmetric, or three-dimensional unstructured meshes for which non-overlapping control 

volumes are bounded by an arbitrary number of constitutive faces. The velocity field is 

obtained from the momentum conservation equations and the pressure field is extracted 

from the mass conservation constraint, or continuity equation, transformed into a pressure 

equation. Free-surface flow is simulated with a multi-phase flow approach: the water 

surface is captured with a conservation equation for the volume fraction of water, 

discretized with specific compressive discretization schemes (Queutey P, 2007) 

The accuracy of the ISIS-CFD RANS solver is obtained using advanced features in turbulence 

modeling (i.e. nonlinear model and rotation correction, high and low Reynolds models, etc.), 

free-surface capturing methods with specific compressive discretization schemes for the 

concentration transport equation. This leads to a sharp capturing of the density discontinuity 

between air and water (NUMECA International)  

The solver also incorporates a mesh deformation algorithm for unstructured grids. 

Furthermore, the solver can handle the free movement of the solid bodies with 6 degrees of 

freedom. The unique adaptive grid refinement method (refinement - de-refinement, parallel, 

unsteady and with load balancing) opens a wide range of opportunities: capturing the free 

surface in time without the need of a fine mesh in the complete domain. Also, other 

refinement sensors such as pressure gradient and vorticity exist to locally refine the mesh.  
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1.2. SCOPE AND MOTIVATION 

When solving numerical problems involving large structures, for example turbo machineries, 

usually the mesh generation is performed separately and combined together to perform the 

3D simulations. This may involve the interactions between moving and sliding grid. The 

interactions of moving entities with fluid flow are common to numerous engineering and 

biomedical applications. A major concern of such applications is to fit all meshes with 

conformal matching interfaces without compromising the geometry.  

Especially in the turbo machineries, there are many complex problems associated like 

accurate prediction of forces and wake flow, physical Modélisation such as cavitation, 

turbulence and ventilation, propeller hull interaction. Among all the complexity mentioned 

earlier, one such study currently under research is to ensure the good communication at the 

interface of the sliding surface of ship propeller (Figure 1).  Here the propeller is modeled 

with the moving grid which is rotating inside a fixed grid (Figure 2).  

 

       

Figure 1: Distribution of the surface pressure     Figure 2: Grid view across the propeller with sliding interface 

               about a ducted propeller 

 

The objective of the work is to propose an interpolation scheme that helps to recalculate the 

mass fluxes at every time step between the moving and fixed grid, so that the coupling 

between the fixed and moving grids are enhanced.  
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Figure 3: Non conformal mesh interface in 2D test case 

 

In (Martin Beaudoin, Hrvoje Jasak, 2008), the authors have proposed a method of adding an 

weighting factor that is termed as Generalized grid interface (GGI) weighting factor, that 

removes the requirement to adjust the topology of the mesh at the two non-conformal 

mesh interfaces. The authors describe a method of adding weighting factors both to master 

and slave surface. These weighting factors are basically the percentage of surface 

intersection between two overlapping faces. These values obviously need to be greater than 

zero; otherwise this would mean no intersection between two given faces and clearly 

indicates a failure of the neighborhood determination algorithm.  This calls for an efficient 

face to face intersection algorithm. To overcome these problems, the authors have used 

Sutherland-Hodgman algorithm which is designed to handle only convex polygons, which 

makes this algorithm only specific to OpenFOAM meshes. This calls a need to investigate on 

a method that is based on global approach. 

1.3. STRUCTURE OF THE REPORT 

The motive of the current work is to investigate on different scattered data interpolation 

methods available on literatures and how to efficiently we can implement one such method 

for our applications.  The conservative nature of the interpolation which is an another point 

of interest for the sliding interface in the context of the finite volume method is not focused 

in this project. 

The objective of this thesis work can be summarized in three parts 

1. Acquire knowledge of interpolation methods through literature review. 

2. Investigate on the possibilities of incorporating selected interpolation method by 

implementing in the Solver by a subroutine 
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3. Determine which interpolation method is best to ensure a good communication of 

data’s between the moving grid and fixed grid interface  

 

In the next chapter a detailed summary of investigated interpolation methods are 

presented. Literature review based on three domains namely Medical imaging, Geostatistical 

interpolation in Geophysical sciences and Meshless methods based on Interpolation 

methods in Computational mechanics field, in which scattered data interpolation is of major 

help is discussed.  

From the detailed literature review, four methods namely, Weighted interpolation methods 

like Inverse distance weighted interpolation, Modified Shepard Interpolation, Artificial 

Network Method with Linear, Multiquadratic and Quadratic functions, are implemented as a 

subroutine in the solver using Fortran Compiler. This implementation is discussed in Chapter 

III. 

Among the interpolation methods implemented, Inverse distance weighted interpolation 

method being the simplest one, is analyzed explicitly based on power functions, different 

time step size and reduced pressure relaxation factors. Artificial neural network 

interpolation being the complicated one, the difficulties faced in implementing the code and 

the sensitivity of the delta function are discussed in Chapter IV. 

As the scope of this research is extensive, further investigations on prospective methods like  

implementing Artificial neural network with different functions like exponential function, 

least square interpolation function and differential equation interpolant can be performed 

and results can be validated with real applications. This future prospective of the thesis are 

discussed in the final chapter. 
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CHAPTER II - SCATTERED DATA INTERPOLATION 

 

The goal of scattered data interpolation is to reconstruct the underlying function that may 

be evaluated at any desired set of points. By this the smooth propagation of information 

associated with the scattered data onto all positions in the domain can be done. 

There are three types of scattered data (Nielson, R. Franke and G.M., 1980) physical 

quantities, experimental results and computational values. In most of scientific and 

engineering applications we come across scattered data and the ways to deal with it 

according to the necessity of the application. For example, the most said example is the 

Geostatistical field where the nonuniformly distributed data’s are interpolated to predict the 

weather conditions by using Spatial interpolation. Spatial interpolation is the process of 

using points with known values to estimate values at other unknown points. For example, to 

make a precipitation (rainfall) map of a region, we need to find enough evenly spread 

weather stations to cover the entire region. Spatial interpolation can estimate the 

temperatures at locations without recorded data by using known temperature readings at 

nearby weather stations. This type of interpolated surface is often called a statistical surface. 

Elevation data, precipitation, snow accumulation, water table and population density are 

other types of data that can be computed using interpolation. Finite element solutions of 

partial differential equations is well known example for computational engineers, along with 

data approximations in computer graphics and computer vision. One another prominently 

growing domain is medical field. For instance, in the medical imaging scattered data 

interpolation is very essential to construct a closed surface for CT or MRI images. 

IMAGE interpolation has many applications in computer vision. It is the first of the two basic 

resampling steps and transforms a discrete matrix into a continuous image. Subsequent 

sampling of this intermediate result produces the resampled discrete image. Resampling is 

required for discrete image manipulations, such as geometric alignment and registration, to 

improve image quality on display devices or in the field of lossy image compression wherein 

some pixels or some frames are discarded during the encoding process and must be 

regenerated from the remaining information for decoding. Therefore, image interpolation 

methods have occupied a peculiar position in medical image processing. They are required 

for image generation as well as in image post-processing. In computed tomography (CT) or 

magnetic resonance imaging (MRI), image reconstruction requires interpolation to 

approximate the discrete functions to be back projected for inverse Radon transform. In 

modern X-ray imaging systems such as digital subtraction angiography (DSA), interpolation is 

used to enable the computer-assisted alignment of the current radiograph and the mask 

image. Moreover, zooming or rotating medical images after their acquisition often is used in 

diagnosis and treatment, and interpolation methods are incorporated into systems for 
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computer aided diagnosis (CAD), computer assisted surgery (CAS), and picture achieving and 

communication systems (PACS). 

 

Despite of its wide application, the scattered data interpolation still remains a difficult and 

computationally expensive problem. There are many authors who have proposed an 

efficient algorithms (WILLIAM I. THACKER, 2009), but it’s always a compromise between the 

accuracy and the computational cost. With the accurate models, the problem becomes more 

complex and hence impacting the computational cost. Or the smoothness of the solution is 

affected in simple models. 

2.1. PREVIOUS WORK  

2.1.1. INTERPOLATION METHODS 

In the early years, a great variety of methods with confusing naming can be found in the 

literature. In 1983, Parker, Kenyon, and Troxel published the first paper entitled 

“Comparison of Interpolation Methods” (J.A.Parker, 1983).  Parker et al. pointed out that, at 

the expense of some increase in computing time, the quality of resampled images can be 

improved using cubic interpolation when compared to nearest neighbor, linear, or B-spline 

interpolation. Maeland named the correct (natural) spline interpolation as B-spline 

interpolation and found this technique to be superior to cubic interpolation (Maeland, 1988)  

2.1.2. INTERPOLATION IN MEDICAL IMAGE PROCESSING 

Image interpolation methods are as old as computer graphics and image processing. In the 

early years, simple algorithms, such as nearest neighbor or linear interpolation, were used 

for resampling. In more recent reports, not only hardware implementations for linear 

interpolation and fast algorithms for B-spline interpolation  or special geometric transforms , 

but also nonlinear and adaptive algorithms for image zooming with perceptual edge 

enhancement have been published. However, smoothing effects are most bothersome if 

large magnifications are required. In addition, shape-based and object-based methods have 

been established in medicine for slice interpolation of three-dimensional (3-D) data sets. In 

1996, Appledorn presented a new approach to the interpolation of sampled data. His 

interpolation functions are generated from a linear sum of a Gaussian function and their 

even derivatives. Kernel sizes of 8 8 were suggested. Again, Fourier analysis was used to 

optimize the parameters of the interpolation kernels. Contrary to large kernel sizes and 

complex interpolation families causing a high amount of computation, the use of quadratic 

polynomials on small regions was recommended by Dodgson in 1997. 

 

A detailed literature survey of progress in interpolation methods for image processing was 

given by (Thomas M. Lehmann, 1999). The authors have also compared 1) truncated and 

windowed sinc; 2) nearest neighbor; 3) linear; 4) quadratic; 5) cubic B-spline; 6) cubic; g) 
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Lagrange; and 7) Gaussian interpolation and approximation techniques with kernel sizes 

from 1 X 1 up to 8 X 8. The comparison was done by: 1) spatial and Fourier analyses; 2) 

computational complexity as well as runtime evaluations; and 3) qualitative and quantitative 

interpolation error determinations for particular interpolation tasks which were taken from 

common situations in medical image processing. They have concluded that all interpolation 

methods smooth the image more or less. Images with sharp-edged details and high local 

contrast are more affected by interpolation than others.  Artificial Neural network is gaining 

popularity due to its accuracy in predicting the missing variables. For the first time, Arjun 

Akkala et al (Arjun Akkala, 2011, ) used comparison of the ANN model with conventional 

interpolation techniques to find radon concentrations a region, and showed that the 

proposed technique results in relatively better accuracies 

2.1.3. INTERPOLATION IN GEOPHYSICAL SCIENCES 

Spatial interpolation, or the estimation of a variable at an unsampled location using data 

from surrounding sampled locations, has great importance in all geophysical sciences. 

Geophysical disciplines all share the impossibility of sampling accurately enough, in space or 

in time, their object of study. 

 

Names given to spatial interpolation can differ depending on the field of study. In 

meteorology and oceanography, the process of defining the best estimate of the state of the 

system at a given time (using both observations and the a-priori knowledge of physical 

processes) goes under the name of spatial analysis, or objective analysis to distinguish it 

from the earlier manual charting methods. 

 

As per (Hou, Andrews 1978), piecewise polynomial especially B-splines are often very 

appropriate to define a surface in geophysical applications. Once the parameters of the 

model known by adjustment over the observed values, it provides a value for any 

geographical point P for the area under concern. Least-square fitting of surfaces of 

polynomial type on a global or local scale, thin plate method or Hsieh-Clough-Tocher 

method, are examples of such methods (Hutchinson et al. 1984; Hulme et al. 1995). One of 

their advantages is the degree of continuity of the derivatives of the estimated field. 

 

Kriging is probably the most widely used technique in geostatistics to interpolate data. It was 

formalized in the sixties by the French engineer George Matheron (Matheron, 1963) after 

the empirical work of Danie G. Krige (Krige, 1951).  In the early 1960s, Barnes introduced a 

new convergent weighted-averaging interpolation scheme based on the hypothesis that the 

spatial distribution of the atmospheric variables can be described by a Fourier integral 

representation (Barnes, 1964). Now, Barnes’s technique is usually discussed in the context of 

the Successive Corrections Method (Daley, 1991). 
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2.1.4. INTERPOLATION IN COMPUTATIONAL MECHANICS: 

Implementation of General grid interface was proposed by (Martin Beaudoin, 2008) for 

OpenFoam. Generalized Grid Interface (GGI) uses a set of weighting factors to properly 

balance the flux at grid interfaces and thus removing the requirement to adjust the topology 

of the mesh at the interface. The authors used the generalized grid interface for turbo 

machinery simulations which is validated on numerous test cases, and provides satisfactory 

results. 

 

Meshless method to solve the partial differential equations are equally gaining importance, 

and lots of papers are being published in this domain. This application in partial differential 

equations was encouraged by the pioneer work done by Kansa (Kansa, 1990) Kansa’s 

algorithm was similar to finite difference method (FDM), but node distribution was 

completely unstructured. This was overcome by collocation methods proposed later. One 

another method called, h-p cloud method, proposed by (C Armando Duarte, 1996) is also 

based on radial basis functions. This method can be applied to arbitrary domains and only 

scattered data can be used to employ this method. It was proved by the authors that this 

method exhibits a very high rate of convergence than traditional h-p finite element methods.  

Further do this, lots of papers been published using approximating interpolation functions. 

Another pioneering work was by (J. G. Wang, 2002), in which the authors have employed a 

meshless methos based on combining radial and polynomial basis functions. This helped in 

implementing essential boundary conditions much easier than the Meshless methods based 

on the moving least squares approximation.  This was possible since the singularity 

associated with the polynomial functions were overcome by the radial functions and this 

non singularity aids in constructing a well performed shape functions.  

In recent years artificial neural networks (ANN) have been applied as well for such purposes. 

Artificial Neural Networks have been designed to model the processes in the human brain 

numerically. These mathematical models are used today mainly for classification problems 

as pattern recognition. In the recent years a large number of different neural network types 

have been developed, e.g. the multi-layer perceptron, the radial basis function network, 

networks with self-organizing maps and recurrent networks. A detailed review of this 

method is given by Thomas Most in his report (Most). According to his report, Neural 

networks (ANN) have been applied in several studies for stochastic analyses, e.g. in 

Papadrakakis et al. (1996), Hurtado and Alvarez (2001), Cabral and Katafygiotis (2001), Nie 

and Ellingwood (2004a), Gomes and Awruch (2004), Deng et al. (2005) and Schueremans and 

Van Gemert (2005). In these studies the structural uncertainties in material, geometry and 

loading have been modeled by a set of random variables. A reliability analysis has been 

performed either approximating the structural response quantities with neural networks and 

generating ANN based samples or by reproducing the limit state function by an ANN 

approximation and decide for the sampling sets upon failure without additional limit state 
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function evaluations. The main advantage of ANN approximation compared to RSM is the 

applicability to higher dimensional problems, since RSM is limited to problems of lower 

dimension due to the more than linearly increasing number of coefficients. In Hurtado 

(2002) firstly a neural network approximation of the performance function of uncertain 

systems under the presence of random fields was presented, but this approach was applied 

only for simple one-dimensional systems. A further application in engineering science is the 

identification of parameters of numerical models e.g. of constitutive laws. In Lehky and 

Novhak (2004) the material parameters of a smeared crack model for concrete cracking 

were identified. 

2.2. PROBLEM DEFINITION 

The scattered data interpolation problem can be defined as, given a n set of irregularly 

distributed points,  

   (     )                       (1) 

And scalar values    associated with each point satisfying     (     ) for some underlying 

function  (   ) , look for an interpolating function  ̅   (   ) , such that for   

         )  

 ̅(     )          (2) 

We assume that all the points (also referred to as nodes or mesh points) are distinct, and 

that all the points are not collinear. This formulation can be generalized to higher 

dimensions but in this article, we will concentrate on the two-dimensional case. 

2.3. TYPES OF INTERPOLATION METHODS 

There are different classes of interpolation methods such as geometrical nearness (e.g. the 

Voronoi approach), statistical methods (e.g. natural neighbor interpolation, weighting 

inverse distances, Kriging), using basis functions (e.g. trend surface analysis, regularized 

smoothing spline with tension, method of local polynomials) and the Artificial Neural 

Networks (ANN) method. 

Though there numerous literature available on large family of interpolation methods, we 

specific our study to the point data interpolation for our requirement and the methods that 

concentrate on a small sample data. 

2.3.1. INTERPOLATION BY WEIGHTED AVERAGES 

Usage of weighted averages to interpolates dates back to early stage of Computer era. 

Weighting is assigned to sample points through the use of a weighting coefficient that 

controls how the weighting influence will drop off as the distance from new point increases. 
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The greater the weighting coefficient, the less the effect points will have if they are far from 

the unknown point during the interpolation process. As the coefficient increases, the value 

of the unknown point approaches the value of the nearest observational point. 

 

Mathematical Definition: 

It defines an interpolating function that is the weighted average of the value at the mesh 

points. 

 (   )  ∑     
 
        (3) 

Where n is the number of scatter points in the set,    are the prescribed function at the 

scatter points (e.g. the data set values), and    are the weight functions assigned to each 

scatter point.  

2.3.1.1. INVERSE DISTANCE WEIGHTED INTERPOLATION 

One of the most commonly used techniques for interpolation of scatter points by weighted 

average is inverse distance weighted (IDW) interpolation. Inverse distance weighted 

methods are based on the assumption that the interpolating surface should be influenced 

most by the nearby points and less by the more distant points.  

 

Figure 4: Inverse Distance Weighted interpolation based on weighted sample point distance 

The interpolating surface is a weighted average of the scatter points and the weight assigned 

to each scatter point diminishes as the distance from the interpolation point to the scatter 

point increases. Several options are available for inverse distance weighted interpolation. 

The Shepard’s Method is one of the earliest techniques used to generate interpolants for 

scattered data.  By Shepard method, the weight function takes the form, 

 

   
  

  

∑  
 
   

   

       (4) 
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where p is an arbitrary positive real number called the weighting exponent . The weighting 

exponent can be modified and can be compared which was done in the implementation 

stage.      is the distance from the scatter point to the interpolation point. 

 

   √(    )  (    )     (5) 

 

Where (   ) are the co-ordinates of the interpolation point and (     ) are the coordinates 

of each scatter point. The weight function varies from a value of unity at the scatter point to 

a value approaching zero as the distance from the scatter point increases. The weight 

functions are normalized so that the weights sum to unity. 

 

This method is global because the evaluation of the interpolant requires the evaluation of a 

function on all given mesh points. As described by the authors (Jin Li, 2008) in their review, 

the main factor affecting the accuracy of IDW is the value of the power parameter (Isaaks 

and Srivastava, 1989). The choice of power parameter and neighbourhood size is arbitrary 

(Webster and Oliver, 2001). The most popular choice of p is 2 and the resulting method is 

often called inverse square distance or inverse distance squared (IDS). The power parameter 

can also be chosen on the basis of error measurement (e.g., minimum mean absolute error, 

resulting the optimal IDW) (Collins and Bolstad, 1996). The smoothness of the estimated 

surface increases as the power parameter increases, and it was found that the estimated 

results become less satisfactory when p is 1 and 2 compared with p is 4 (Ripley, 1981). IDW is 

referred to as “moving average” when p is zero (Brus et al., 1996; Hosseini et al., 1993; 

Laslett et al., 1987), “linear interpolation” when p is 1 and “weighted moving average” when 

p is not equal to 1 (Burrough and McDonnell, 1998). However, this form of the weight 

functions accords too much influence to data points that are far away from the point of 

approximation and may be unacceptable in some cases. 

2.3.1.2. MODIFIED SHEPARD’S INTERPOLATION METHOD 

Franke and Nielson (Franke. R., 1980) developed a modification that eliminates the 

deficiencies of the original Shepard’s method. They modified the weight function   ( )to 

have local support and hence to localize the overall approximation, and replaced  ( ) with a 

suitable local approximation   ( ). This method is called the local modified Shepard method 

and has the general form 

 

 (   )  
∑   ( )  ( ) 

   

∑   ( ) 
   

     (6) 

 

where   ( ) is a local approximant to the function  ( )  centered at   ( ), with the property 

that   (  )    . The choice for the weight functions   ( ) used by Renka (J., 1988) was 

suggested by Franke and Nielson (Franke. R., 1980) and is of the form 
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  ( )  [
(  

    ( ))
 

  
   ( )

]

 

     (7) 

 

where   ( )  ‖    ‖  is the Euclidean distance between   and    and the constant 

  
    is a radius of influence about the point    chosen just large enough to include    

points. The data around    only influences  ( )  values within this radius. 

 

There are several variations of the original Shepard algorithm based on polynomial and 

trigonometric functions for   ( ). 

 

The polynomial function    is written as a Taylor series about the point    with constant 

term  ( )    (  ).  and coefficients chosen to minimize the weighted sum of squares 

error 

 

∑    [  (  )    ]
  

   
   

     (8) 

 

with weights 

 

    [
(  

    (  ))
 

  
   (  )

]

 

      (9) 

 

And   
    defining a radius about    within which data is used for the least squares fit.    

and    are taken by Franke and Nielson (Franke. R., 1980) as 

 

 

   
 

 
√(

  

 
) ,    

 

 
√(

  

 
)    (10) 

 

Where         ‖ ( )   ( )‖  is the maximum distance between any two data points, 

and    and    are arbitrary positive integers. The constant values for    and    are 

appropriate assuming uniform data density. 

 

Though the method above proposed by Thacker et al. (WILLIAM I. THACKER, 2009) provides 

statistically robust least squares fits as required by most applications like local 

approximations in image processing, linear interpolation proposed by (Franke. R., 1980) is 

implemented for our application. This simple model is initially implemented just to compare 

the solution with other methods, as theoretically this model cannot suit our application since 
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its used to interpolate the function based on set of data at radial domain. According to 

(Franke. R., 1980), the weight function for Modified Shepard interpolation takes the form 

   
[
    
   

]
 

∑ [
    

   
]

 
 
   

      (11) 

Where    is the distance from the interpolation point to scatter point i,   is the distance 

from the interpolation point to the most distant scatter point, and n is the total number of 

scatter points. This equation has been found to give superior results to the classical Shepard 

equation (Franke. R., 1980) 

The weight function is a function of Euclidean distance and is radially symmetric about each 

scatter point. As a result, the interpolating surface is somewhat symmetric about each point 

and tends toward the mean value of the scatter points between the scatter points.  

Both the Shepard's method and Modified Shepard Method has been used extensively 

because of its simplicity. 

2.3.2. ARTIFICIAL NEURAL NETWORK INTERPOLATION 

Artificial Neural Networks (ANNs) are information processing systems that have the ability to 

implement new information formation and discovery automatically using the mode of 

learning of human brain and neural biology. ANNs are generally used for classification, 

prediction, identification, recognition and interpolation problems. The basic processing 

elements of an ANN are the neurons (units). The multi-layer ANN model is typically 

composed of three parts: input, one or many hidden layers or basis functions, and an output 

layer Figure 5. 

 

Figure 5: Artificial neural network 

 

In the approach discussed in this report, the outputs of the network are determined by 

linear combinations of these basis functions. The effectiveness of basis functions from Radial 

basis functions and the Artificial neural network methodology for non-radial applications are 
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combined together and the results are analyzed. Accordingly, the interpolant will be of the 

form, 

 

 ( )  ∑     ( ) 
        (12) 

 

Where where  ( ) denotes the required output value and    represents the synaptic weight 

from the jth basis function (or hidden node) to the output and   ( )  ‖    ‖ 

Basis function neural network training has the following two-stage procedure. In the first 

stage to find the weight function, the interpolant is forced to undergo a condition, 

 

 (  )  ∑     (  )
 
        (13) 

 

Where,   (  )  ‖     ‖. As the functions  (  ) from the given set of data is known, 

weight function    can be found from this conditions is back substituted in equation 12 to 

find the required interpolation function.  

 

Several forms of a basis function have been considered, the most common being the 

Gaussian, and recently, Multiquadratic and Quadratic basis functions are also gaining 

popularity. 

 

Gaussian function, 

 

  (  )             (14) 

 

Multiquadratic function,  

 

  (  )  √            (15) 

 

Quadratic function, 

 

  (  )              (16) 

 

Inverse Quadratic function, 

 

  (  )  
 

      
      (17)  

 

Inverse Multi Quadratic function, 

  (  )  
 

√      

      (18) 
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Where, 

    (     )
 

 (     )
 

 (     )
 
   (19) 

 

For our case Quadratic and multiquadratic cases are implemented and results are compared. 

Though there is lot of papers available on this method, only very few articles are found 

explaining the   properties. Its used to smooth the function, which is an mere mathematical 

approximation.  

2.3.3. KRIGING INTERPOLATION 

The Kriging method assumes that the distance or direction between sample points reflects a 

spatial correlation that can be used to explain variation in the surface. Kriging is a multi-step 

process; it includes exploratory statistical analysis of the data, variogram modeling, creating 

the surface, and optionally, exploring a variance surface. Inverse Distance Weighted and 

Spline are referred to as deterministic interpolation methods because they are directly 

based on the surrounding measured values or on specified mathematical formulas that 

determine the smoothness of the resulting surface. A second family of interpolation 

methods consists of geostatistical methods such as Kriging, which are based on statistical 

models that include autocorrelation (the statistical relationship among the measured 

points). Because of this, not only do these techniques have the capability of producing a 

prediction surface, but they can also provide some measure of the certainty or accuracy of 

the predictions. There are two important Kriging methods used; Ordinary Kriging and 

Universal Kriging. Ordinary Kriging is the most general and widely used of the Kriging 

methods. It assumes the constant mean is unknown. Universal Kriging assumes that there is 

an overriding trend in the data and it can be modeled by a deterministic function, a 

polynomial. This polynomial is subtracted from the original measures points, and the 

autocorrelation is modeled from the random errors. Once the model is fit to the random 

errors, before making a prediction, the polynomial is added back to the predictions to give a 

meaningful result. 

 

As it gives more accurate prediction for 3D case, rather than 2D case, this method was not 

tested for our application, as it requires robust algorithm for computations. 
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CHAPTER III  IMPLEMENTATION 

In this chapter the method of interface interpolation implementation in the ISIS-CFD solver is 

explained. Investigation of related exchange of information between the sliding Grids by a 

appropriate methodology is analyzed and the development of communication 

methodologies based on sliding grid to enable the connection from a fixed reference frame 

to the relative flow in the rotating system of reference based on different interpolation 

functions and how the different methods of interpolation executed in the code was 

discussed.  

 

To get into the subject in detail, one can find it very useful to know the basic grid structure in 

computational fluid dynamics and ways of interactions between neighbor cells. 

 

Grid: It is the real entity of the mesh and provides residence 

for variables. Due to the pressure decoupling phenomenon, 

it is necessary to maintain several groups of grids for storing 

different variables. The mesh composited of these grids is 

called staggered mesh.  

 

 Cell-centered grid  

 Edge-centered grid  

 Vertex grid  

Figure 6: Basic elements of mesh  

Cell: It describes the connectivity’s among grids by grouping the indices of vertex grids. Cell 

is surrounded by edges and has several neighbor cells.  

 Internal cell  

 Boundary cell:  It is equipped with unit normal vector to judge whether a point is 

inside or outside the domain. The dimension of it is less than the internal cell one. 

And it has the boundary class attribute which is used for boundary condition.  

Edge: It may be a point (1D), line (2D), or face (3D). Vertex indices are stored, and also the 

unit normal vector.  

 

 

 

 

 

 

 

http://www2.imm.dtu.dk/~pch/Projekter/Shock/main/node17.html


 
 
 

Antoine Kinnia Catherine  Master thesis Report | 19  

 

3.1. RECONSTRUCTION ON FACES 

As along with the other complications involved in the Computational fluid dynamics 

calculations of turbo machinery applications as discussed in the previous chapters, its vital to 

get an accurate description of a density discontinuity with a coherent treatment for the 

variable coefficient pressure equation in presence of interfaces where both the variable 

coefficients and the solution itself may be discontinuous. To overcome this problem a 

specific numerical algorithm and discretization schemes were proposed by (Queutey P, 

2007) based on reconstruction of fluxes at faces (Figure 8). The same methodology can be 

used for grid interface at moving and fixed grid domain, where there is discontinuity in the 

solution. 

 In the face reconstruction, according to the authors, (Queutey P, 2007) the face fluxes are 

computed from the quantities in the cell centres reconstructed to the faces. For the diffusive 

fluxes and the coefficients in the pressure equation, the quantities on a face and the normal 

derivatives are computed with central schemes using the L and R cell centre states; if these 

centres are not aligned with the face normal, then non-orthogonal corrections are added 

which use the gradients computed in the cell centres. For the convective fluxes, the 

AVLSMART scheme Przulj and Basara (2001) was used in the NVD context for unstructured, 

where limited schemes are constructed based on a weighted blending of the central 

difference scheme and an extrapolation using the gradient in the upwind cell. For our case, 

rather to use the fluxes at the inside cell center, we create a ghost point which is linear to 

the outside cell and whose functions are interpolated (Figure 8) 

 

 

 

 

 

 

 

Nodes 

Interpolation 

function 

Current cell 

Neighbour cell 

Figure 8: General outline of Grids  

and interpolation function 
 

icell_i 

𝑄𝑖
     

𝑄𝑖𝑛𝑡
         

𝑄𝑛𝑏
        

Figure 8: Face reconstruction 
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3.2. TEST CASE 

2D test case with farfield velocity of 10m/s that uses the K-w SST model, is used to study the 

identified interpolation methods used for analyze the mass fluxes transfer at the sliding grid 

interface (Figure 9). ½ Sinusoidal ramp profile is used for the motion parameter definition of 

the hydrofoil. Water density is 998.4 kg/m3. Dynamic viscosity of the fluid is set at 

0.00104362 kg/ms and with the reference velocity of 1 m/s that gives the Reynolds no of 

9.56675. Calculations are done at timestep size of 0.01s of total time 10s and for specific 

cases, different timestep sizes of 0.002s, 0.005s, 0.001s are used . 

 

 

Figure 9: Meshed 2D test case 

3.3. PROBLEM DEFINITION 

Let icell_i be the current cell, whose flow function    has to be interpolated       based on 

the neighbor cells and the external cell on the other side of the interface icell_e (Figure 10) 

 
 

 

 

Figure 10: Interpolation function at sliding grid interface 
 

icell_i 

𝑄𝑖
     

𝑄𝑖𝑛𝑡
         

𝑄𝑒
      

icell_e 
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Complexity with moving cell: 

With the automatic grid refinement and with changing time space, the cell reference will be 

updated for every time step. (Figure 11) Hence to implement the interpolation scheme and 

to find the function in the moving grid interface, it’s necessary to address the neighbor cells 

associated with it in an array.   

 

Figure 11: Different neighbors with change in time 

The neighbors of the current cell (already implemented in the Solver, and called into the 

subroutine to perform the calculation), is calculated using existing algorithm developed by 

the ISIS CFD team. The main interest of this work is to propose a interpolation method, 

which can give an accurate mass transfer at interfaces. Hence only the array definition is 

presented in this report for implementation purpose. 

This was done with the help of Index connector array (Indcon_CC) and Index pointer array 

(Ipnt_CF) arrays.  These arrays gives the correlation between the connection between cells 

and faces or between the cells and themselves.  

 

Figure 12: Indcon_CC array and its pointers 
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If ith cell index denotes the current cell, then the pointer of its neighbor cells are stored in 

the subsequent cells, which is clearly depicted in the Figure 12 

 

 

Figure 13: IpntCF_CC array and its pointers 

 

If IpntCF_CC(i) gives the index of the current cell and IpntCF_CC(i+1) gives the index of the 

next cell number then [IpntCF_CC(i+1)-1] gives the index of the last neighbor of the current 

cell or the last data of the current cell Figure 13. 

3.4. IMPLEMENTATION 

Fortran 90 programming language is used to create the subroutines for ISIS-CFD Solver. 

Dynamic libraries are set locally to call for the main program and computations are run 

parallel in 2 CPU’s. Global naming conventions are used for input and output file arguments. 

Input arguments called in for the sub routine are array’s IpntCF_CC , Indcon_CC, current cell 

coordinates, (        ) and mass function  . Along with the scalar quantities, ghost point 

coordinates (                 ), current cell index         , outer cell index        , and the 

output variable     . The algorithm for the different interpolation method is discussed 

below. 
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3.4.1. INVERSE DISTANCE WEIGHTED INTERPOLATION 

Initialization 

1) Determine weighting function at icell_i 

 

       (‖(  (       )       )‖
 
)

   

  (20) 

Where for power, value of 1,2 and 4 were compared 

 

2) Determine interpolant function at icell_i 

 

         (       )     (21) 

Calculation: 

Start the loop 

3) calculate the weighting function with the Euclidean distance  from each neighbors to the 

ghost cell 

 

       (‖(  (    )       )‖
 
)

   

   (22) 

where      =IndCon_CC(i),..., IndCon_CC(i+1) -1. This calls in for the index of the 

neighbor cells. 

4) compute the interpolant function at ivnb and perform the summation 

 

              (    )    (23) 

 

5) compute the summation for weighting function to calculate the interpolant 

 

                   (24) 

End the loop 

6) Evaluate the interpolant function 

 

                    (25) 

Parameters compared: power, time step size and pressure under relaxation 
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Pressure under relaxation: 
 

The under-relaxation of equations, also known as implicit relaxation, is used in the pressure-

based solver to stabilize the convergence behavior of the outer nonlinear iterations by 

introducing selective amounts of   in the system of discretized equations. This is equivalent 

to the location-specific time step.  

 

General approach for under relaxation can be given as  

  
           

     (  
                

   )  (26) 

Where,    denotes the variable in current cell.  Here U is the relaxation factor: 

 U < 1 is under relaxation. This may slow down speed of convergence but increases 

the stability of the calculation, i.e. it decreases the possibility of divergence or 

oscillations in the solutions. 

 U = 1 corresponds to no relaxation. One uses the predicted value of the variable. 

 U > 1 is over relaxation. It can sometimes be used to accelerate convergence but will 

decrease the stability of the calculation. 

3.4.2. MODIFIED SHEPHERD INTERPOLATION 

Initialize 

1) Determine Euclidean distance at icell_i 

 

  (  (       )       )
 

 (  (       )       )
 

 (  (       )       )
 
 (27) 

 

2) To determine the weighting function at icell_i 

 

As the weighting function takes the below form in MSM,  

 

   
[
    
   

]
 

∑ [
    

   
]

 
 
   

      (28) 

 

It’s simplified as below, to reduce the computation effort 

   √         (29) 

 

  
(         )

   
      (30) 

3) To Determine interpolant function at icell_i 
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        (       )     (31) 

 

4) Initialize summation for weighting function 

 

            (32) 

Calculation 

Start the loop 

5) Determine Euclidean distance at distance  from each neighbors to the ghost cell 

 

  (  (    )       )
 

 (  (    )       )
 

 (  (    )       )
 
  (33) 

where      =IndCon_CC(i),..., IndCon_CC(i+1) -1. This calls in for the index of the 

neighbor cells. 

6) Same steps as in initialization is repeated for to determine the weighting function, but 

only if (   ) 

   √         (34) 

 

  
(         )

   
      (35) 

7) compute the interpolant function at ivnb and perform the summation 

 

             (    )    (36) 

 

8) compute the summation for weighting function to calculate the interpolant 

           (37) 

End the loop 

9) Evaluate the interpolant function 

                   (38) 

Compared for different values of r 
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3.4.3. ARTIFICIAL NEURAL NETWORK WITH BASIS FUNCTION 

Initialization:  

1) Determine a number n of basis functions of the network structure 

2) Allocate the index of neighbor cells to an array Iadr,, such that the index of Iadr array is 

indexed from         which facilitates to calculate the weight functions, which the 

Euclidean distance between all the neighbor cells, rather from the current cell icell_i 

 

Calculation: 

 

3) Calculate the interpolation matrix A(I,j) which is   (  ) 

4) Inverse the matrix using Generalized Inverse matrix method. Pseudo Moore approach is 

followed. G is the generalized matrix, such that  

 

            (39) 

This is a special case, and classical inverse matrix cannot be followed, as it’s a matrix of 

Euclidean distance for which diagonal elements are zero. A real symmetric matrix     

matrix A is called Euclidean distance matrix (EDM) if there exist points             

   such that 

    (     )
 
(     )                 (40) 

With Euclidean distance matrix, when    , the matrix become non invertible, which has 

to be resolved. 

This is done by a subroutine Ginv, which is called inside the calculation. Here A is an array 

which is given as an input and the returned inverse is also A. 

 

5) Initialize       

 

6) Evaluate the vector 

 

    (   ( )   (   )) where,          and          (41) 

 

7) Estimate the interpolant function,  

 

        (     ) where,            (42) 

 

8) Perform the summation 

                  (43) 
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CHAPTER IV  RESULTS AND DISCUSSION 

4.1. INVERSE DISTANCE WEIGHT FUNCTION 

Inverse distance weight function which also otherwise called as Shepard Interpolation 

function is a simplest of all point scattered data interpolation which uses deterministic 

approach to evaluate the interpolated function from the nearest points. To begin with the 

evaluation of various interpolation functions, it was considered wise to start with a simple 

approach and to proceed further with complex functions. Since no bench work existed in this 

field, logical reasoning was used to compare the results between different approaches tried.  

Inverse distance weighted (IDW) interpolation explicitly implements the assumption that 

things that are close to one another are more alike than those that are farther apart. To 

predict a value for any unmeasured location, IDW uses the measured values surrounding the 

prediction location. The measured values closest to the prediction location have more 

influence on the predicted value than those farther away. IDW assumes that each measured 

point has a local influence that diminishes with distance. It gives greater weights to points 

closest to the prediction location, and the weights diminish as a function of distance, hence 

the name inverse distance weighted. 

This is implemented in the code using a simple loop by calling the neighbor indexes from 

IndCON_CC array (See section 3.4.1). 

GRIDS WITHOUT INTERACTIONS: 

In the initial stage when the icell_e was not included in the routine to interpolate the values, 

there were no interactions found between the grid interfaces. This is shown in the Figure 14. 

Also the symmetric vortex that forms behind the moving grid space due to the incontinuity 

in the fluid flow was an erroneous result which was corrected in the further calculations. 
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Figure 14: Sliding Grid without interactions 

This was corrected by calling the reference of the external cell to interpolate the value 

between the internal and external cells. This ensured a better communication at the 

interface. This is shown in the Figure 15. 

 

Figure 15: Sliding Grid with interactions 

 

 The results are compared based on three parameters, 

1. With different power functions 

2. With varying time step 

3. With reducing the pressure under-relaxation 
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4.1.1. WITH DIFFERENT POWER FUNCTIONS 

As mentioned above, weights are proportional to the inverse of the distance (between the 

data point and the prediction location) raised to the power value p. As a result, as the 

distance increases, the weights decrease rapidly. The rate at which the weights decrease is 

dependent on the value of p. If p = 0, there is no decrease with distance, and because each 

weight    is the same, the prediction will be the mean of all the data values in the search 

neighborhood. As p increases, the weights for distant points decrease rapidly. If the p value 

is very high, only the immediate surrounding points will influence the prediction. 

Hence the results are compared with different values of p to find how significant the 

changes are when the dependency of the neighbors are reduced or increased. 

 

Figure 16:IDW Force history in x direction for timestep size 0.01 
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Figure 17:IDW Force history in x direction for timestep size 0.002 

 

From the Figure 16 with the timestep size of 0.01, with the power value of 2.0, its observed 

that the force variation with the rotating motion of the aerofoil is well captured, while the 

power 4.0 gives sharp variation and instabilities observed with power 1.0. From the Figure 

17, with the fine timestep size of 0.002, though there are instabilities observed with all the 

three diferent power functions, the solution is significantly better with power 2.0. Hence 

with the close observation with all the plots above show that the power 2.0 is considerably 

stable with other two power values. All it should be noted that for the fine timestep size, 

significant difference among the three different power functions are observed at the later 

stage when the flow is highly turbulent, but for the timestep size of 0.01, significant 

difference observed initially diminishes in the later stage. 
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4.1.2. WITH VARYING TIMESTEP 

Interpolation with different timestep size is compared to analyze the influence of timestep 

size in the accuracy of the solution. Different timestep size of 0.001 to 0.01 is chosen. 

 

 

Figure 18: IDW Force history in x direction for power 1.0 

Its shows with the finer timestep size, the drag force are well captured from Figure 18. 

Though with a very fine timestep size of 0.001s there are some oscillations observed in the 

plot, due to the numerical instability of the solution. This is further analyzed by tuning the 

pressure under relaxation parameter in the following stages. As we could also observe, large 

timestep size of 0.01 doesn’t give better results as when comparing with finer one. 
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Figure 19: IDW Force history in x direction for power 2.0 

Plots shows similar observations as with power 1.0. So bigger power of 4.0 is selected to 

evaluate further. 
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Figure 20: IDW Force history in x direction for power 4.0 

With the power 4.0, for timestep 0.002 there appears to be less noise in the solution initially. 

This instability in the initial stage was considered to be an issue which has to be resolved. 

But even then, with power 4.0, in the later stage, it doesn’t capture the drag force as 

comparing with other two cases. The plot (Figure 20) shows sharp interfaces and high 

instabilities even with timestep size 0.002 

Though the results from power 1.0 is closer to poser 2.0 solutions (Figure 18 and Figure 19), 

closer observations of the plots shows that the power 2.0 plots are with less oscillations or 

instabilities in the peaks in the initial stage. 
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Contour plots: 

 

Figure 21: IDW stream line plot at 1.85s and at at 2s for 0.002 timestep size and for power 1.0 

 

Figure 22: IDW stream line plot at 1.85s and at at 2s for 0.002 timestep size and for power 2.0 

 

Figure 23: IDW s tream line plot at 1.85s and at at 2s for 0.002 timestep size and for power 4.0 

Since there wasn’t any significance conclusion can be drawn from the above plots, 

streamline plots were drawn which did show a significant difference at the trail side of the 



 
 
 

Antoine Kinnia Catherine  Master thesis Report | 35  

 

moving grid domain at the final stage. As observed in Force plots, there wasn’t much 

difference observed in power 1.0 and power 2.0 plots. But as with power 4.0, the noise at 

the trail edge due to the turbulence in flow created by the rotating airfoil is well captured. 

But still due to the sharp variation observed in the Force plots, its found optimum to use 

power 2.0. 

4.1.3. WITH REDUCING PRESSURE UNDER RELAXATION 

From the above study with varying power values, as power 2.0 seems to give comparatively 

stable results, it’s further evaluated by reducing the pressure under relaxation between 0.3 

to 0.1.  

 

 

Figure 24: IDW with tuning pressure under-relaxation between 0.3 and 0.1 for power 2.0 and timestep 0.01 
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By reducing the under pressure relaxation oscillations tend to increase in the initial state. 

Under relaxation parameters are defined to reduce these oscillations (Figure 24).  

 

Figure 25: Convergence plot for pressure under-relaxation for power 2.0 and timestep 0.01 

Also from the Figure 25, it’s clear that the pressure under relaxation 0.3 converges fast when 

compared to 0.1 and 0.2 due to the stability that pressure under relaxation offers.  From this 

it can be inferred that minimum of 0.3 pressure under relaxation can be given to increase 

the convergence rate by offering a better stability. But it should be noted many parameters 

contribute to the convergence rate along with this. 

4.2. MODIFIED SHEPARD’S METHOD 

Modified Shepard algorithm is modified classical Inverse distance weighted approach, which 

uses radial domain to select the n set of neighbor data. Due to this reason, though the 

communication between the interfaces is well defined, there wasn’t any significant influence 

of r value in the Figure 26. 

Even with the streamlines that defines the flow, there wasn’t any significant difference 

observed by varying the R value. Obviously, since the domain for the interpolation being no 

radial, this is an expected observation. But the radial function can be replaced by polynomial 

functions to get satisfactory results in the future.  
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Figure 26: Force plot for Modified Shepard method with different R values 

 

Figure 27: Contour plot Modified Shepard method with different R values 2.0, 3.0 and 4.0 at 4.85s 
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4.3. ARTIFICIAL NEURAL NETWORK WITH MULTIQUADRATIC FUNCTION 

With the multiquadratic function, different parameters like influence of delta function and 

pressure under relaxation are compared. 

4.3.1. WITH DELTA FUNCTION 

With small increase in delta function the calculation becomes highly sensitive and initially 

there is a high instability observed which later becomes stabilized. 

 

Figure 28: Sensitivity of delta function comparison plot for Multiquadratic interpolation 

  

Figure 29: Contour plot for Multiquadratic and Quadratic interpolation with delta function 0.01 
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Though there was a well-defined communication at the interface, in the later stage the flow 

behaves as if there is no communication.  But with Quadratic function, gives a normal 

communication at the leading edge, but vortexes at the trailing edge, which can be inferred 

due to the hindrance to the flow.  

4.3.2. WITH REDUCED PRESSURE UNDER RELAXATION 

 

 

Figure 30: ANN MQ with reduced Pressure under relaxation 

Similar to the previous observations, the instability in the beginning of the flow was 

increased when the pressure under relaxation was reduced. Hence its good to ensure the 
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optimum pressure under relaxation factor to get better compromise between computation 

time and accuracy. 

4.4. ARTIFICIAL NEURAL NETWORK WITH QUADRATIC FUNCTION 

With the multiquadratic function there was a significant difference in the delta function, 

which was not the case with Quadratic function. The solution was comparatively stable with 

0.01 delta function (Figure 31) 

 

Figure 31: Multiquadratic vs Quadratic 

 

As with contour plots also, this difference was clearly seen. As in the Quadratic function, the 

communication was not completely lost with the time, which was not the case in 

Multiquadratic. Further to this Quadratic function method was evaluated with increasing 

delta function. By increasing the delta function, the stability was lost (Figure 32), but not as 

sensitive as in case of Multiquadratic approach. 
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Figure 32: Quadratic function with different delta value 
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4.5. COMPARISON OF ARTIFICIAL NEURAL NETWORK WITH MSM AND IDW 

 

Figure 33: Comparison of all three methods ANN, MQ and IDW 

From the Figure 33, it was observed that both MQ and IDW has notable gradients when the 

flow starts and then become stabilized. ANN multiquadratic function has negative peaks and 

IDW has positive peaks. But MSM was observed with a stable flow. As the MSM method 

doesn’t seems be logically applicable to our application, much investigation is required on R 

function. 
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CHAPTER V CONCLUSION AND FUTURE PROSPECTIVE 
 

Different ways of communication at sliding grid interface for moving grid domain was 

discussed and analyzed. Three different approaches, Inverse distance weighted average 

method, Modified Shepard Algorithm and Artificial Neural network with Multiquadratic and 

Quadratic basis function are compared and studied. 

 

Inverse distance method was studied explicitly and it shows better results with fine time 

step and with pressure under relaxation of 0.3.  Also power 4.0 show better results in 

streamline plots. If there are more neighbor cells which is possible with fine mesh, one can 

expect good correlation with power 2.0 also. But, since the mesh size was fixed, this 

behavior can be well studied by having different mesh sizes, and hence the influence of the 

power function on the solution can be understood. Also Inverse distance weighting function 

does not require solving linear system of equations as in ANN. With its simple algorithm and 

similar accuracy with other two methods, Inverse distance method is the most preferred one 

However Point-by-point methods do not rely on connectivity information as they determine 

the displacement of each point in the flow mesh based on its relative position with respect 

to the domain boundary. And as it can’t be further developed as it’s a classical approach, this 

limits its application extensively.  

 

This calls for the further development of other two approaches. Modified Shepard method 

with its simple structure gives more stable results. Only disadvantage of this method is that, 

it can’t be logically suitable for our application as it uses radial domain for selecting n set of 

data points. But by analyzing with different functions like, polynomial based or root mean 

square method based functions, better results can be expected. 

 

As it was referred in the literature, artificial neural network seems to give more accurate 

predictions for Geostatistics and medical image processing industry. But as far as our 

application, it doesn’t seem to give accurate prediction. But with a very robust algorithm for 

inverse matrix or with more detailed definition for delta function, this method can give 

closer results. Also within the time frame of our work, as it was not possible to validate with 

the real test case, it’s possible to get better comparison of all three methods with help of 3D 

experiments. 
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APPENDIX 
Appendix 1: FORTRAN 90 code for Inverse distance weighting 
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Appendix 2: FORTRAN 90 code for Modified Shepard method 

 

 



 
 
 

Antoine Kinnia Catherine  Master thesis Report | 46  

 

Appendix 3: FORTRAN 90 code for Artificial neural network basis function Interpolation 
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