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Assignment 1 

Steady convection-diffusion (1D) 
1D convection-diffusion equation with constant coefficients and Dirichlet boundary conditions: 

�
𝑎𝑎𝑢𝑢𝑥𝑥 − 𝜗𝜗𝑢𝑢𝑥𝑥𝑥𝑥 = 𝑠𝑠    𝑥𝑥 ∈ [0,1]
𝑢𝑢(0) = 𝑢𝑢0;𝑢𝑢(1) = 𝑢𝑢1          

� 

Let us consider case when 𝒔𝒔 = 𝟎𝟎,𝒖𝒖𝟎𝟎 = 𝟎𝟎,𝒖𝒖𝟏𝟏 = 𝟏𝟏. Solving this equation using Galerkin method with 
different parameters, the following results will be obtained.  

 

Fig.1. a = 1, 𝝑𝝑 = 0.2, 10 linear elements  

 

Fig. 2. a = 20, ϑ = 0.2, 10 linear elements 
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Fig. 3. a = 1, ϑ = 0.01, 10 linear elements 

 

Fig. 4. a = 1, ϑ = 0.01, 50 linear elements 

It is seen in figures 2 and 3 that Galerkin solution is corrupted by oscillations. It happens when Peclet 

number �𝑃𝑃𝑃𝑃 = 𝑎𝑎ℎ
2𝜗𝜗
� greater than 1. Galerkin methods has its best approximation property only when 

𝑃𝑃𝑃𝑃 < 1. It loses this property when the non-symmetric convection operator dominates the diffusion 
operator in the equation, and consequently oscillations appear. There are stabilization techniques which 
allow to stabilize approximation result when Peclet number is big.  

Solving the equation with Streamline Upwind, Streamline Upwind Petrov-Galerkin (SUPG), Galerkin least 
squares (GLS) and Sub-grid scale (SGS) methods with a = 1, ϑ = 0.01,10 linear elements and optimal 

stabilization parameter 𝜏𝜏 = ℎ
2𝑎𝑎
�coth𝑃𝑃𝑃𝑃 −  1

𝑃𝑃𝑃𝑃
�, we receive the similar result for all four methods.  
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Fig. 5. Streamline Upwind, SUPG, GLS and SGS methods; a = 1, ϑ = 0.01, 10 linear elements, optimal 𝝉𝝉 

For these methods solution stable and close to exact solution when Peclet numbers are large. In this 
case stabilization parameter 𝜏𝜏 = 0.040005. If stabilization parameter is chosen in different way, there 
will be oscillations or even solution can be completely different from exact one. Let us consider solution 
when 𝜏𝜏 = 0.01 and 𝜏𝜏 = 1. 

 

Fig. 6. SUPG, τ=1 

 

Fig. 7. SUPG, τ=0.01 

It is seen from figures that for 𝜏𝜏 = 0.01 some oscillations can be observed while for 𝜏𝜏 = 1 the SUPG 
solution does not match with exact solution. The more stabilization parameter differs from optimal one, 
the more solutions differ from exact solution. Moreover, if stabilization parameter is equal to zero, 
methods behave as Galerkin method which is shown on the following graph. 
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Fig.8. SUPG, τ=0 

These examples reflect how it is important to choose correct stabilization parameter. 

Let us consider the previous example solving it with SUPG method and quadratic elements. 

 

Fig.9. SUPG; a = 1, ϑ = 0.01, 10 quadratic elements, optimal τ 

Comparing this figure with Fig. 5, we can see that use of quadratic elements instead of linear ones 
improves the solution which becomes closer to the exact solution. 

Repeating all these experiments for case 𝒔𝒔 = 𝐬𝐬𝐬𝐬𝐧𝐧𝝅𝝅𝝅𝝅 ,𝒖𝒖𝟎𝟎 = 𝟎𝟎,𝒖𝒖𝟏𝟏 = 𝟏𝟏, we will see the similar behavior 
and results. 

The Galerkin method gives good solution when Peclet number is less than 1 and oscillations otherwise. 
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Fig. 10. a = 1, ϑ = 0.2, 10 linear elements 

 

Fig.11. a = 1, ϑ = 0.01, 10 linear elements 

Using stabilization techniques we can improve the solution if Peclet number is larger than 1. However, if 
stabilization parameter differs from optimal one, we receive oscillations and even wrong solution. 

 

Fig. 12. optimal τ=0.040005 

 

Fig. 13. τ=0.01 
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Fig. 14. τ = 1 

However, we receive better solution if use quadratic elements instead of linear ones. 

 

Fig. 15. Quadratic elements 

 

Steady convection-diffusion-reaction (1D) 
Now let us consider a 1D steady convection-diffusion-reaction problem  

�
𝑎𝑎𝑢𝑢𝑥𝑥 − 𝜗𝜗𝑢𝑢𝑥𝑥𝑥𝑥 + 𝜎𝜎𝜎𝜎 = 𝑠𝑠    𝑥𝑥 ∈ (0,1)

𝑢𝑢(0) = 𝑢𝑢0;𝑢𝑢(1) = 𝑢𝑢1          
� 

Where 𝑠𝑠 = 0,𝑢𝑢0 = 0,𝑢𝑢1 = 1,𝑎𝑎 = 1,𝜗𝜗 = 0.01,𝜎𝜎 = 20. Solving this problem with different methods 
with 10 linear elements, we will receive following results. As we do not know exact solution for current 
problem, there are only graphs of methods. Stabilization parameter is counted as 

 𝜏𝜏 = ℎ
2𝑎𝑎
�1 + 9

𝑃𝑃𝑃𝑃2 +  � ℎ
2𝑎𝑎
𝜎𝜎�

2
�
−1/2

. 
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Fig. 16. Galerkin method 

 

Fig. 17. SUPG method, optimal τ = 0.032547 

 

Fig. 18. GLS method, optimal τ = 0.032547 
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Fig. 19. SGS method, optimal τ = 0.032547 

As we can see from Fig. 16, Galerkin method has oscillations because Peclet number is greater than 1. 
SUPG and GLS give more accurate solution however with slight fluctuations. The qualitative influence of 
each term of stabilization term 𝒫𝒫(𝑤𝑤) = ℒ(𝑤𝑤) = 𝑎𝑎 ∙ ∇𝑤𝑤 − ∇ ∙ (𝜗𝜗∇𝑤𝑤) + 𝜎𝜎𝜎𝜎 for GLS method where 
𝑎𝑎 ∙ ∇𝑤𝑤 corresponds to SUPG method and 𝜎𝜎𝜎𝜎 is a Galerkin weighting. For linear elements and a constant 
positive reaction, GLS and SUPG with Galerkin weighted 1 + 𝜎𝜎 τ times more. This means that the 
instabilities introduced by Galerkin are little more amplified in GLS to compare with SUPG. This 
instability is overcome in SGS method. As 𝒫𝒫(𝑤𝑤) = −ℒ∗(𝑤𝑤) = 𝑎𝑎 ∙ ∇𝑤𝑤 + ∇ ∙ (𝜗𝜗∇𝑤𝑤) − 𝜎𝜎𝜎𝜎, in this case 
Galerkin term is weighted by 1 - 𝜎𝜎 τ and thus has less influence than SUPG. 

To improve results of Galerkin method, we can improve mesh. For example, it is enough to use more 
elements in a mesh. Increasing the number of linear elements to 70, we receive a Pe = 0.71429. In this 
case Galerkin method provides solution which is close to exact one. 

 

Fig. 20. Galerkin method, 70 linear elements 

 
Steady convection-diffusion-reaction (2D) 

Let us consider 2D steady convection-diffusion equation in domain [0,1 ]x[0,1] where ‖𝑎𝑎‖ = 1,𝜗𝜗 =
0.0001 . Let us impose zero Dirichlet boundary conditions on the outlet boundary condition. The 
solution now involves a thin boundary layer. 

8 
 



 

Fig.1. Galerkin method 

 

Fig. 2. Artificial diffusion method 

 

Fig. 3. SUPG method 

The Peclet number is equal to 5 and as it greater than 1, Galerkin method have big oscillations. Its 
solution does not have any similarity with exact solution. Meanwhile the case when Neumann boundary 
conditions were imposed, although Galerkin solution had some oscillations, it was closer to exact 
solution. Artificial diffusion and SUPG methods provide better results. Artificial diffusion method 
introduces excessive numerical diffusion. 

Now let us consider convection-reaction dominated problem with zero Dirichlet boundary conditions on 

the boundary with ‖𝑎𝑎‖ = 1
2

,𝜗𝜗 = 0.0001,𝜎𝜎 = 1. 
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Fig. 4. Galerkin method 

 

Fig. 5. Artificial diffusion method, optimal 𝝉𝝉 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖 

 

Fig. 6. SUPG method, optimal 𝝉𝝉 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

As Peclet number is still very high, Galerkin method demonstrates wild oscillations. Artificial diffusion 
and SUPG methods provide the similar results which are close to exact solution. There are only some 
oscillations near the boundary layers. 

Now let us consider reaction dominated problem with zero Dirichlet boundary conditions on the 
boundary with ‖𝑎𝑎‖ = 0.001,𝜗𝜗 = 0.0001,𝜎𝜎 = 1. 
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Fig. 7. Galerkin method 

 

Fig. 8. Artificial diffusion method, optimal τ=8.2479e-12 

 

Fig. 9. SUPG method, optimal τ= 0.99268 

In this case Pe=0.5 which leads that Galerkin method provides solution close to exact one. All methods 
show similar results with some fluctuations near the boundary layers. 
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Unsteady transient convective problem (1D) 
Solving the transient convection-diffusion dominated equation   

𝑢𝑢𝑡𝑡 + 𝑎𝑎𝑢𝑢𝑥𝑥 + 𝜗𝜗𝑢𝑢𝑥𝑥𝑥𝑥 = 0 
With BC: 

𝑢𝑢(𝑥𝑥, 0) =
5
7
� – �

𝑥𝑥 − 𝑥𝑥0

𝐿𝐿
�

2
� 

Analytical solution: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) =
5

7𝜎𝜎
� – �

𝑥𝑥 − 𝑥𝑥0 − 𝑎𝑎𝑎𝑎
𝜎𝜎𝜎𝜎

�
2
� 

Where 

𝜎𝜎 = �1 +
4𝜈𝜈𝜈𝜈
𝐿𝐿2 , 𝑥𝑥0 =

2
15

,     𝐿𝐿 =
7√2
300

 

 
Using Crank-Nicolson method for time and a Galerkin for space with different Courant and Peclet 
numbers, receive: 

 

Fig. 1. C=0.5, Pe=0.0625, diffusion parameter 𝜗𝜗 = 𝟎𝟎.𝟎𝟎𝟏𝟏 

 

Fig. 2. C=1.0417, Pe=0.3, diffusion parameter 𝜗𝜗 = 𝟎𝟎.𝟎𝟎𝟏𝟏 
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Fig. 10.C=0.5, Pe=6.25, diffusion parameter ϑ=0.001 

As Crank-Nicolson method is a particular 𝜃𝜃-method whith 𝜃𝜃 = 1/2, it is unconditionally stable. Stability 
of method does not depend on Courant number for 𝜃𝜃 ≤ 1/2. However we can observe oscillations 
which are caused by Galerkin method which is conditionally stable and its stability depends on Peclet 
number. 

Let us consider transient problem  
𝑢𝑢𝑡𝑡 + 𝑎𝑎𝑢𝑢𝑥𝑥 = 0 

 

Solving this equation with Leap-Frog method, receive following results. 

 

Fig. 11. C=0.5 

 

Fig. 12. C= 1.05 
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1D Leap-frog method provides stable solution when 𝐶𝐶2 < 1. As we can see from the Fig. 12 where 
Courant number is 1.05, Leap-Frog solution is wildly unstable. However in the Fig. 11, where C=0.5, 
Leap-Frog solution coincides exact solution. 
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