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1. Introduction 

 

The equation we want to solve to solve is: 

 

 

 

We have to solve it with linear finite element for the Galerkin scheme in space 

and the following methods in time: 

1) Crank-Nicholson scheme. (CN) 

2) Second-order Lax-Wendorff method. (TG2) 

3) Third-order explicit Taylor-Galerkin method. (TG3) 

 

 

 

 

 

 

 



2. Code modifications 

 

In order to follow the instructions of the report, presented in the introduction, some 

modifications where made to the provided code, in the function System.m, and 

are shown in the Annex. 

In this function we need to provide matrices 𝐴 and 𝐵 to solve the finite element 

method system: 

A · ∆u =  f +  B · u 

Using the FEM matrices 𝑀, C and K: 

𝑀𝑎b  =  ∫ 𝑁𝑎𝑁𝑏𝑑𝑥 , C𝑎b  =  ∫ 𝑁𝑎

𝜕𝑁𝑏

𝜕x
𝑑𝑥 , K𝑎b  =  ∫

𝜕𝑁a

𝜕x

𝜕𝑁𝑏

𝜕x
𝑑𝑥 

This is already done for the CN method in the class notes and it was provided in 

the given function. CN scheme reads: 

∆u

∆t
+

1

2
(𝑎 · ∇)Δ𝑢 =

1

2
(𝑠𝑛+1 + 𝑠𝑛) − 𝑎 · ∇𝑢𝑛 

Where 𝑠 is the source term, zero in this case. Using weighted residual method, 

with Galerkin formulation: 

(𝜔,
Δ𝑢

Δ𝑡
) +

1

2
(𝜔, (𝑎 · ∇)Δ𝑢) =

1

2
(𝜔, 𝑠𝑛+1 + 𝑠𝑛) − (𝜔, 𝑎 · ∇𝑢𝑛) 

The FEM system would read: 

(
1

Δ𝑡
𝑀 +

1

2
· a · 𝐶) Δ𝑢 = 𝑓 − a · 𝐶𝑢𝑛 

And then A =
1

Δ𝑡
𝑀 +

1

2
· a · 𝐶 and B = −a · 𝐶. To modify the code, I proceeded in 

a similar way for TG2 and TG3. 

TG2 method reads: 

∆u

∆t
= 𝑠𝑛 +

Δ𝑡

2
(𝑠𝑡

𝑛 − 𝑎 · ∇𝑠𝑛) − 𝑎 · ∇𝑢𝑛 +
Δ𝑡

2
(𝑎 · ∇)2𝑢𝑛 

Using weighted residual method, with Galerkin formulation, integration by parts 

and the boundary conditions: 

(𝜔,
Δ𝑢

Δ𝑡
) = (𝜔, 𝑠𝑛 +

Δ𝑡

2
(𝑠𝑡

𝑛 − 𝑎 · ∇𝑠𝑛)) − (𝜔, 𝑎 · ∇𝑢𝑛) - 
Δ𝑡

2
· (𝑎 · ∇𝜔, (𝑎 · ∇)𝑢𝑛 ) 

The FEM system would read: 

1

Δ𝑡
𝑀Δ𝑢 = 𝑓 − 𝑎 · 𝐶𝑢𝑛 − 𝑎2 ·

Δ𝑡

2
· 𝐾𝑢𝑛 

And then A =
1

Δ𝑡
𝑀 and B = −a · 𝐶 − 𝑎2 ·

Δ𝑡

2
· 𝐾. 



TG3 reads: 

[1 −
Δ𝑡2

6
(𝑎 · ∇)2]

∆u

∆t

= 𝑠𝑛 +
Δ𝑡

2
(𝑠𝑡

𝑛 − 𝑎 · ∇𝑠𝑛) +
Δ𝑡2

6
(𝑠𝑡t

𝑛 − 𝑎 · ∇𝑠𝑡
𝑛) − 𝑎 · ∇𝑢 

+
Δ𝑡

2
(𝑎 · ∇)2𝑢𝑛 

Using weighted residual method, with Galerkin formulation, integration by parts 

and the boundary conditions: 

(𝜔,
Δ𝑢

Δ𝑡
) −

Δ𝑡2

6
· (𝑎 · ∇𝜔, (𝑎 · ∇)

Δ𝑢

Δ𝑡
)

= (𝜔, 𝑠𝑛 +
Δ𝑡

2
(𝑠𝑡

𝑛 − 𝑎 · ∇𝑠𝑛) +
Δ𝑡2

6
(𝑠𝑡t

𝑛 − 𝑎 · ∇𝑠𝑡
𝑛)) − (𝜔, 𝑎 · ∇𝑢𝑛)

−
Δ𝑡

2
· (𝑎 · ∇𝜔, (𝑎 · ∇)𝑢𝑛) 

 

The FEM system would read: 

(
1

Δ𝑡
𝑀 +

Δ𝑡2

6
· 𝑎2 · 𝐾) Δ𝑢 = 𝑓 − 𝑎 · 𝐶𝑢𝑛 − 𝑎2 ·

Δ𝑡

2
· 𝐾𝑢𝑛 

And then A =
1

Δ𝑡
𝑀 +

Δ𝑡2

6
· 𝑎2 · 𝐾 and B = −a · 𝐶 − 𝑎2 ·

Δ𝑡

2
· 𝐾. 

 

In the implementation, both sides of the equations are multiplied by Δ𝑡, obtaining 

the formulas seen in the Annex. 

 

 

3. Results 

 

For the proposed problem, the Courant number was 𝐶 =  𝑎 · 𝛥𝑡/𝛥𝑥 =  1.5/2 =

 0.75, and then 𝐶2  =  0.5625. From the class notes, we know that CN is 

unconditionally stable, that TG2 stability limit is 𝐶2 = 1/3 and that TG3 stability 

limit is 𝐶2 = 1. We can predict that with the Courant number of the proposed 

number, both CN and TG3 methods will be stable, but TG2 will be unstable. For 

TG2 to be stable we would need a smaller time step or a bigger element size in 

order to obtain stability. One could also expect the TG3 method to be more 

precise that the CN method, since the order of convergence in higher. In the 

following figures, the obtained results are shown. All the results are compatible 

with what was expected. 



 

 





 

 

 

 



Annex 

 

function [A,B,methodName] = System(method,M,K,C,a,dt) 

switch method 

    case 1 % Crank-Nicolson + Galerkin 

        A = M + 1/2*a*dt*C; 

        B = -a*dt*C; 

        methodName = 'Crank-Nicolson + Galerkin'; 

    case 2 % Second-order Lax-Wendroff + Galerkin 

        A = M; 

        B = -a*C*dt - 1/2*a^2*dt^2*K; 

        methodName = 'Second-order Lax-Wendroff + Galerkin'; 

    case 3 % Third-order explicit Tayor-Galerkin 

        A = M + 1/6*a^2*dt^2*K; 

        B = -a*C*dt - 1/2*a^2*dt^2*K; 

        methodName = 'Third-order explicit Tayor + Galerkin'; 

    otherwise 

        error('not available method') 

end 

 


