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Example: The convection-diffusion case  

The following report it is focus unsteady convection-diffusion problem. The aim of the document it is to 

show the different behavior of the available schemes (time and space integrators), to solve the problem.  

The solution is for 1D dimension, where the initial condition is propagation of a cosine profile.  

EXERCISE GAUSSIAN HILL 

• Test the problem for different values of viscosity proposed and comment the numerical results.  

 

 

As it can be seen, the influence of the diffusion 

parameter on the equation acts on the high of the 

hill, making it decrease and wider as the diffusion 

parameter increase.  

 

 

 

 

• Implement the Adams-Bashforth scheme  

The implementation was done in a way to include in the same function booth discretization in 

time-space Adam Bashforth with Galerkin. 

function [Sol,Atot,F] = Ad_Gal(T,s,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd1,bccd1) 
% Sol = Ad_Gal(T,s,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd1,bccd1) 
% This function computes solution Sol at each time step using Galerkin formulation  
% 
% Input 
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%   T,s:           time-integration matrices 
%   tau:           stabilization matrix 
%   a,nu:          problem coefficients 
%   f,K,M,G:       matrices obtained by discretizing the different terms of the PDE 

using FEM 
%   xnode:         vector of nodal coordinates 
%   dt:            time step 
%   nstep:         number of time steps to be computed 
%   c:             initial condition 
%   Accd1, bccd1:  matrices to impose boundary conditions using lagrange 

multipliers 
% 

  
%%%%%%%%%T and s are W and w%%%%%%%%%% 

  
% Number of points 
npoin = size(xnode,2); 

  
% Integration matrix 
[n,m] = size(T); 
Id = eye(n,m); 

  
% Computation of the matrix necessary to obtain solution at each time-step: A du = 

F 
Kt  = a*G + nu*K; 

   
A = []; 
for i = 1:n 
    row = []; 
    for j = 1:m 
        row = [row, Id(i,j)*M  + dt*T(i,j)*Kt]; 
    end 
    A = [A; row]; 
end 

     
Mf = M*f; 

   
nccd = size(Accd1,1); 
Accd = []; bccd = []; 
for i = 1:n 
    row = []; 
    for j = 1:m 
        row = [row, Id(i,j)*Accd1]; 
    end 
    Accd = [Accd; row]; 
    bccd = [bccd; bccd1]; 
end 

  
nccd = n*nccd; 
Atot = [A Accd'; Accd zeros(nccd)]; 

  
% Factorization of matrix Atot 
[L,U] = lu(Atot); 

  
Sol = c; 
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% Loop to compute the transient solution 
for i=1 
    aux = dt*(-Kt*c + Mf); 
    F = []; 
    for i =1:n 
        F = [F; s(i)*aux]; 
    end 
    F = [F;bccd*0];     
    dc  = U\(L\F); 
    dc = reshape(dc(1:n*npoin),npoin,n); 
    c = c + sum(dc,2); 
    Sol = [Sol c];    
end 

  
% Second step Adam-Bashforth 
T = 0; 
sn = 3/2; 
sn0 = -1/2; 
[n,m] = size(T); 
Id = eye(n,m); 

  

  
A = []; 
for i = 1:n 
    row = []; 
    for j = 1:m 
        row = [row, Id(i,j)*M  + dt*T(i,j)*Kt]; 
    end 
    A = [A; row]; 
end 

     

Mf = M*f; 

   
nccd = size(Accd1,1); 
Accd = []; bccd = []; 
for i = 1:n 
    row = []; 
    for j = 1:m 
        row = [row, Id(i,j)*Accd1]; 
    end 
    Accd = [Accd; row]; 
    bccd = [bccd; bccd1]; 
end 

  
nccd = n*nccd; 
Atot = [A Accd'; Accd zeros(nccd)]; 

  
% Factorization of matrix Atot 
[L,U] = lu(Atot); 

  

  
% Loop to compute the transient solution 
for i=2:nstep 
    auxn = dt*(-Kt*Sol(:,i) + Mf); 
    auxn0 = dt*(-Kt*Sol(:,i-1) + Mf); 
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%     F=[]; 
    for i = 1:n 
        F = [F(105:end); sn(i)*auxn + sn0(i)*auxn0]; 
    end 
    F = [F;bccd*0];     
    dc  = U\(L\F); 
    dc = reshape(dc(1:n*npoin),npoin,n); 
    c = c + sum(dc,2); 
    Sol = [Sol c];    
End 

 

 

 

Adam Bashforth scheme shows a good accuracy following almost the exact solution. But the range of 

stability it is limited by the courant number <1/6.  
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On this side, the R22 Padé it has the same accuracy apparently as the Adam Bashforth, but taking care 

this is an implicit method, with higher computational cost but with wide range of Courant number. 
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