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Unsteady Convection-Diffusion Problem
KIMEY WAZARE

Ques. Unsteady Pure Convention Problem

A. Compute the Courant number.

B. Solve the problem using the Crank-Nicholson scheme in time and linear finite element
for the Galerkin scheme in space. Is the solution accurate?

C. Implement the Crank-Nicholson scheme in time and the least-squares formulation in
space. Comment the results.

D. Solve the problem using the second-order Lax-Wendroff method. Can we expect the
solution to be accurate? If not, what changes are necessary? Comment the results.

E. Implement the second-order two-step Lax-Wendroff method. Comment the results.

Solution:

Define Problem:  Pure Convection Equation.

u;+au, =0 x€(0,1),te (0,0.6]
u(x,0) = uy(x) x€ (0,1)
u(0,t) =1 t e (0,0.6]

u,(x) =1 ifx < 0.2

uy(x) =0 otherwise

Introduction:  To solve defined problem using formulation such as Crank Nicolson and Lax-
Wendroff method.

a. Courant Number:
At
C=llall 5)
To compute courant number, a = 1, At = 1.5*10%-2 & Ax = 2*10/-2.

1.5%1072
2x1072

c=n1( ) =075

b. Crank Nicolson Scheme:

The given problem is solved for Crank-Nicholson scheme in time and
linear finite element for the Galerkin scheme in space. It is being observed at courant
number C = 0.75, that this method produces many oscillations. So method is
unconditionally stable, but not accurate.
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Fig 1: Crank Nicolson Galerkin Formulation

c. Crank Nicolson — Least Square formulation:
The given algorithm of Crank Nicolson Galerkin formulation is
modified to Crank Nicolson-Least square formulation in time and space respectively.

for i=l:numel
unos = ones (ngaus,l);
h = xnode (1+1)-xnode(i);
xm = (xnode (1)+xnode(i+l))/2;
weight = wpg*h/2;
isp = [i i+l);

AT 2naa rAInte (numarical miadrarirs

for ig=l:ngaus
N =N mef(ig,:);
Nx = Nxi mef(ig,:)*2/h;
w ig = weight (ig);
X = xm 4+ h/2*xipg(ig); % x-coordinate of the current Gauss point

& Marvirese ageamhly

«+WCo QIICHWL

A(isp,isp) = A(isp,isp) + w_ig*(N'*N + dt_2*a*(N'*Nx + Nx'*N + dt 2*a*Nx'*Nx));

B(isp,isp) = B(isp,isp) - w ig*dc*a*(N'*Nx + dt 2*a*Nx'*'Nx);

Fig 2: Implementation of Crank Nicolson- Least Square formulation

The given problem is solved for Crank-Nicholson scheme in time and least
square formulation in space. It is being observed at courant number C = 0.75, that this
method tries to reduce oscillations produced by Crank Nicolson Galerkin scheme.
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Fig 3: Crank Nicolson Least Square Formulation

d. Lax-Wendroff Method:
It is being observed that Lax-Wendroff method is unstable at courant
number C = 0.75. To obtain stability, courant number must to be reduce, as it obtains
stability at C2 < 1/3.
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Fig 4: Lax-Wendroff Method
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e. Two step Lax-Wendroff Method:

The given algorithm of Lax-Wendroff method is modified to Two-step
Lax-Wendroff method.

for i=l:numel
unos = ones (ngaus,l);
h = xnode (i+l)-xnode (i)
Xxm = (xnode (i)+xnode(i+l))/2;
weight = wpg*h/2;
dapy == 4 1$1);

for ig = l:ngaus

¥

Lo

N = N_mef (ig,:):

Nx = Nxi mef(ig,:)*2/h;

w_ig = weight (ig);

X = xm + h/2*xipg(ig); % x-coordinate of the current Gauss point

atrices assemt

Al (isp,isp) = Al(isp,isp) + w_ig* (N'*N):

Bl (isp,isp) - w_ig* ((dt/2*N'*(a*Nx))):
fl(isp) = fl(isp) + w_ig* (N') *SourceTerm(x):

A2 (isp,isp) + w_ig* (N'*N);

B2 (isp,isp) = B2 (isp,isp):

Bl (isp, isp)

A2 (isp,isp)

f2 (isp) = f2(isp) + w_ig* (N') *SourceTerm(x):
C2(isp,isp) = C2(isp,isp) - w_ig* (dt*N'* (a*Nx)):

Fig 5: Implementation of Two-step Lax-Wendroff Method.

It is being observed that Two-step Lax-Wendroff method is unstable at courant
number C = 0.75. To obtain stability, modification is required in Discontinuous Galerkin in
space and Two-step Lax-Wendroff method in time.
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Fig 6: Two-step Lax-Wendroff Method.
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