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1. INTRODUCTION 

The paper is structured as follows: in Section 2 the steady convection-diffusion problem is 

considered. Galerkin method is tested for different Peclet numbers, then different stabilization 

techniques with optimal stabilization parameter were tested. 2D steady convection-diffusion-

reaction problem was solved The section 3 considers unsteady convective transport problems. For 1D 

case Crank-Nicolson method for time and a Galerkin formulation for space was implemented and 

tested for the given initial and analytical solution. Then 2D homogeneous convection equation was 

considered and different time discretization techniques were discussed. 

2. STEADY CONVECTION-DIFFUSION PROBLEMS 

2.1 1D steady convection-diffusion problems 

The first example (                   ) was solved using Galerkin method, using different 

convection velocity  , diffusion coefficient   and number of linear elements. These different sets of 

parameters in turn resulted in different Péclet numbers. 
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Fig.1. Comparison of Galerkin method solution for different cases: (a)      ,        ,    

linear elements; (b)                   linear elements; (c)                   linear 

elements; (d)                   linear elements. 

As a result, the exact nodal values are obtained only in the case of        . At      nodal 

value is not exact, but there are no oscillations, while in other two cases with       big 

oscillations are observed. In these cases of convection-dominated problems with high Péclet 

number Galerkin loses optimality and spurious effects appear. 

In order to eliminate oscillations and obtain exact nodal values at high Péclet numbers, Streamline 

Upwind (SU), Streamline Upwind Petrov-Galerkin (SUPG), Galerkin Least-Squares (GLS) and 

Sub-Grid Scale (SGS) stabilization techniques were used.  
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Fig.2. Solution of convection-diffusion problem                   linear elements case 

using (a) Streamline Upwind ; (b) Streamline Upwind Petrov-Galerkin; (c) Galerkin Least-

Squares; (d) Sub-Grid Scale stabilization techniques.  

Various high Péclet numbers were tested and the solution was exact for all stabilization techniques.  

If the stabilization parameter of Streamline Upwind Petrov-Galerkin is higher than optimal, for 

instance    , then convection becomes significantly underestimated, because we have added too 

much artificial diffusion and made the solution overly diffusive. In case the stabilization parameter 

is less than optimal, oscillations appear and when      we recover the Galerkin solution.  



Quadratic elements were implemented, see Fig.3.  The results of Galerkin approximation for the 

mesh of quadratic elements has spurious node-to-node oscillations 
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Fig.2. Solution of convection-diffusion problem                   linear elements case 

using (a) Streamline Upwind ; (b) Streamline Upwind Petrov-Galerkin; (c) Galerkin Least-

Squares; (d) Sub-Grid Scale stabilization techniques.  

1.2. 1D steady convection-diffusion-reaction problem 

 



 

Fig.3. Solution of convection-diffusion-reaction problem                   linear elements  

case using (a) Streamline Upwind ; (b) Streamline Upwind Petrov-Galerkin; (c) Galerkin 

Least-Squares; (d) Sub-Grid Scale stabilization techniques.  

When Galerkin method is refined on the sharp front it performs better, see Fig.4. 

 

Fig.4. Solution of convection-diffusion-reaction problem                    linear 

elements case using Galerkin method  

2.2 1D steady convection-diffusion problems 

The MATLAB code was modified in order to impose zero Dirichlet boundary conditions on the 

outlet side. 



 

(a)      (b) 

 

(c) 

Fig.5. Galerkin (a), Artificial Diffusion (b) and SUPG (c) solutions of convection-diffusion 

problem with                          linear elements and zero Dirichlet boundary 

conditions on the outlet side. 

2D steady convection-diffusion-reaction problem was solved. The reaction term     was 

considered and the code was modified. The Péclet number in the first case is equal to 250, see Fig.6. 
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Fig.6. Galerkin (a), Artificial Diffusion (b) and SUPG (c) solutions of convection-diffusion-

reaction problem with                            linear elements and zero Dirichlet 

boundary conditions on the outlet side. 

The Galerkin solution is partially stable, because of low convection velocity       and therefore 

low Péclet number. However if the convection velocity is increased    , then fully unstable 

solution is recovered. 

 

Fig. 7. Reaction dominating problem                                linear elements 

2. UNSTEADY CONVECTIVE TRANSPORT PROBLEMS 

2.1. 1D Unsteady Convective Transport 

The code for transient convection equation was modified to solve transient convection-diffusion 

problem with given initial condition, using Crank-Nicolson method for time and a Galerkin space 

approximation. 
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Fig. 8.  Crank-Nicolson solution transient convection equation (a) and transient convection-

diffusion equation 

The code was used to solve an example with given analytical solution and  initial condition: 

                  
    

 
 
 

  

 

Fig. 9.  Crank-Nicolson solution transient convection-diffusion equation (a) and transient 

convection-diffusion equation 

It was observed that for higher Péclet number the oscillations increase. 

2.2. 2D HOMOGENEOUS CONVECTION EQUATION 

2.2.1. Lax-Wendroff with lumped mass matrix + Galerkin 

The pure convection unsteady equation was solved using Lax-Wendroff with lumped mass matrix 

time discretization with Galerkin space discretization. The initial condition of the following type 

was considered: 

        
 

 
                    

                                           

       
    

     

The velocity field is                . A uniform mesh       was used for all simulations and 

the number of steps was chosen to finish full revolution.  



 

Fig. 10.  Isocontours and velocity distribution of transient convection equation using Lax-

Wendroff with lumped mass matrix time discretization with Galerkin space discretization 

In the case of two other proposed types of the velocity                and         
               Lax-Wendroff with lumped mass matrix time discretization with Galerkin space 
discretization also have oscillatory behavior, see Fig. N.  

 

Fig. 11.  Solution of transient convection equation using Lax-Wendroff with lumped mass 

matrix time discretization with Galerkin space discretization 

The advantage of Lax-Wendroff with diagonal mass matrix is low computational costs and bigger 

stability range, but comparing to the Lax-Wendroff with consistent mass matrix it is less accurate, 

which will be seen in the following subsection.  

2.2.2. Lax-Wendroff with consistent mass matrix + Galerkin  

To resolve the upper-mentioned shortcomings of oscillations the method was modified to Lax-

Wendroff time and Galerkin space discretization. However the computational costs of this 
technique are higher. 



 

Fig. 12.  Isocontours and velocity distribution of transient convection equation using Lax-

Wendroff with diagonally dominant mass matrix time and Galerkin space discretization 

2.2.3. Crank-Nicolson + Galerkin 

A consistent mass matrix was utilized. The code with implemented Crank-Nicolson time and 
Galerkin space discretization has high accuracy and low oscillatory behavior, maintaining low 

computational costs at the same time. The  

 

Fig. 13.  Isocontours and velocity distribution of transient convection equation using Crank-

Nicolson time and Galerkin space discretization 

Decrease of the number of the elements leads to higher oscillations for all of the above-mentioned 
techniques for 2D homogeneous convection equation and even more accurate Lax-Wendroff with 

consistent mass matrix and Crank-Nicolson techniques has non-accurate solution. 

 

 

 

 

 

 


