Lab Report - 1

Steady Convection Diffusion Equation

- Sanath Keshav

1 Quadratic Finite Elements

$$
\begin{aligned}
N_{1}(\xi) & =\frac{\xi^{2}-\xi}{2} \\
N_{2}(\xi) & =-\xi^{2}+1 \\
N_{3}(\xi) & =\frac{\xi^{2}+\xi}{2} \\
x & =x_{1}\left(\frac{\xi^{2}-\xi}{2}\right)+x_{2}\left(-\xi^{2}+1\right)+x_{3}\left(\frac{\xi^{2}+\xi}{2}\right) \\
\frac{d x}{d \xi} & =\frac{x_{3}-x_{1}}{2} \\
\frac{d \xi}{d x} & =\frac{2}{h} \\
\frac{d^{2} \xi}{d x^{2}} & =0 \\
\frac{\partial N_{i}}{\partial x} & =\frac{\partial N_{i}}{\partial \xi} \frac{d \xi}{d x} \\
\frac{\partial^{2} N_{i}}{\partial x^{2}} & =\frac{\partial N_{i}}{\partial \xi} \frac{\partial^{2} \xi}{\partial x^{2}}+\frac{\partial^{2} N_{i}}{\partial \xi^{2}}\left(\frac{d \xi}{d x}\right)^{2}=\frac{4}{h^{2}} \frac{\partial^{2} N_{i}}{\partial \xi^{2}}
\end{aligned}
$$

The cordinates of the nodes and the mesh connectivity matrix were changed as follows.

$$
\begin{aligned}
& \mathrm{X}=(\operatorname{dom}(1): \mathrm{h} / 2: \operatorname{dom}(2))^{\prime} ; \\
& \mathrm{T}=[1: 2: \mathrm{nPt}-2 ; \quad 2: 2: \mathrm{nPt}-1 ; \quad 3: 2: \mathrm{nPt}]^{\prime} ;
\end{aligned}
$$

For SUPG stabilization, the second derivative of the shapefunction was used and the Element Stiffness matrix was modified as follows.

$$
\begin{aligned}
& \text { N2xi }=\text { referenceElement. N2xi; } \\
& \mathrm{N} 2 \mathrm{x} _\mathrm{ig}=\mathrm{N} 2 \mathrm{xi}(\mathrm{ig},:) * 4 / \mathrm{h}^{\wedge} 2 \text {; }
\end{aligned}
$$

For GLS stabilization, the second derivative of the shapefunction was used and the Element Stiffness matrix was modified as follows.

$$
\begin{aligned}
& \text { N2xi }=\text { referenceElement. N2xi; } \\
& \text { N2x_ig }=\text { N2xi(ig ,:) } * 4 / h^{\wedge} 2 \text {; } \\
& \mathrm{Ke}=\mathrm{Ke}+\mathrm{w}_{\mathrm{i}} \mathrm{ig} *\left(\mathrm{~N}_{-} \mathrm{ig}{ }^{\prime} * \mathrm{a} * \mathrm{Nx}_{\mathrm{f}} \mathrm{ig} \ldots\right. \\
& + \text { Nx_ig'*nu*Nx_ig) + w_ig*tau*... } \\
& \text { (a*Nx_ig -nu*N2x_ig)'*... } \\
& \text { (} \left.\left(a * N x _i g\right)-n u * N 2 x _i g-s\right) ;
\end{aligned}
$$

1.1 Numerical Results - Quadratic Elements

$$
\begin{aligned}
a u_{x}-\nu u_{x x} & =f(x) \quad \text { in } \Omega \in[0,1] \\
u(x=0) & =0 \\
u(x=1) & =1 \\
f(x) & =\sin (\pi x)
\end{aligned}
$$

All cases presented are for $a=1, \nu=0.01$, Peclet number 5 and 10 quadratic elements.

The Galerkin case provides a nodally oscillating solution (observe the midpoint node values) and the rest of the stabilization methods provide a stable solution.

2 Linear Finite Elements

For linear Finite elements, SUPG and GLS are the same because the diffusive part of the stabilization term is 0 . The following change was made to the element stiffness matrix for SUPG and GLS stabilization.

$$
\begin{aligned}
& +\mathrm{w}_{-} \mathrm{ig} *\left(\mathrm{tau} * a * \mathrm{Nx}_{-} \mathrm{ig}\right){ }^{\prime} *\left(\mathrm{a} * \mathrm{Nx}_{-} \mathrm{ig}-\mathrm{s}\right) \text {; }
\end{aligned}
$$

2.1 Numerical Results - Linear Elements

$$
\begin{aligned}
a u_{x}-\nu u_{x x} & =f(x) \quad \text { in } \Omega \in[0,1] \\
u(x=0) & =0 \\
u(x=1) & =1 \\
f(x) & =\sin (\pi x)
\end{aligned}
$$

All cases presented are for $a=1, \nu=0.01$, Peclet number 5 and 10 linear elements.

(a) Galerkin Method

(c) SUPG

(b) SU

(d) GLS

