FINITE ELEMENTS IN FLUIDS

ASSIGNMENT3- 2D STEADY TRANSPORT PROBLEM

-By Anurag Bhattacharjee

GLS METHOD

Modified the FEM_system to add GLS method. Pretty straight forward by following the theory in slides-

65 -	elseif method==3
66	%GLS
67 -	Pe = a*h/(2*nu);
68 -	$tau_p = h*(1 + 9/Pe^2)^{(-1/2)}/(2*a);$
69 -	<pre>disp(strcat('Recommended stabilization parameter = ',num2str(tau_p)));</pre>
70 -	<pre>tau = cinput('Stabilization parameter',tau_p);</pre>
71 -	if isempty(tau)
72 -	<pre>tau = tau_p;</pre>
73 -	end

For the loop on gauss points, added a reaction variable, set to zero for the initial computation.

144 -	elseif method== 3	
145 -	reaction=0;	
146 -	<pre>Ke = Ke + (nu*(Nx'*Nx+Ny'*Ny) + N_ig'*(ax*Nx+ay*Ny) +</pre>	
147	<pre>((ax*Nx+ay*Ny)-nu*(Nxx+Nyy)+reaction*N_ig)'</pre>	
148	<pre>*tau*((ax*Nx+ay*Ny)-nu*(Nxx+Nyy)))*dvolu;</pre>	
149 -	<pre>f_ig = SourceTerm(aux);</pre>	
150 -	<pre>fe = fe + (N_ig+tau*(ax*Nx+ay*Ny))'*(f_ig*dvolu);</pre>	
151 -	end	

The shape functions provided with the code were incomplete for the double derivates of the quadratic shape functions wrt *xi* and *eta*. The following derivatives were added for p=2 for quadrilateral and triangular elements.

Triangular element

50 -	elseif p ==2
51 -	N = [xi.*(2*xi-1), eta.*(2*eta-1), (1-xi-eta).*(2*(1-xi-eta)-1),
52	4*xi.*eta, 4*eta.*(1-xi-eta), 4*(1-xi-eta).*xi];
53 -	Nxi = [4*xi - 1, zeros(size(xi)), 4*eta + 4*xi - 3,
54	4*eta, -4*eta, 4 - 8*xi - 4*eta];
55 -	Neta = [zeros(size(xi)), 4*eta - 1, 4*eta + 4*xi - 3,
56	4*xi, 4 - 4*xi - 8*eta, -4*xi];
57 -	N2xi = [4*ones(size(xi)), zeros(size(xi)), 4*ones(size(xi)),
58	<pre>zeros(size(xi)), zeros(size(xi)), -8*ones(size(xi))];</pre>
59 -	N2eta = [zeros(size(xi)), 4*ones(size(xi)), 4*ones(size(xi)),
60	<pre>zeros(size(xi)), -8*ones(size(xi)), zeros(size(xi))];</pre>

Quadrilateral element

16 -	elseif p == 2		
17 -	<pre>N = [xi.*(xi-1).*eta.*(eta-1)/4, xi.*(xi+1).*eta.*(eta-1)/4,</pre>		
18	<pre>xi.*(xi+1).*eta.*(eta+</pre>	-1)/4, xi.*(xi-1).*eta.*(eta+1)/4,	
19	(1-xi.^2).*eta.*(eta-1)/2, xi.*(xi+1).*(1-eta.^2)/2,	
20	(1-xi.^2).*eta.*(eta+1)/2, xi.*(xi-1).*(1-eta.^2)/2,	
21	(1-xi.^2).*(1-eta.^2)]		
22 -	Nxi = [(xi-1/2).*eta.*(et	a-1)/2, (xi+1/2).*eta.*(eta-1)/2,	
23	(xi+1/2).*eta.*(eta+1)	<pre>/2, (xi-1/2).*eta.*(eta+1)/2,</pre>	
24	<pre>-xi.*eta.*(eta-1),</pre>	(xi+1/2).*(1-eta.^2),	
25	<pre>-xi.*eta.*(eta+1),</pre>	(xi-1/2).*(1-eta.^2),	
26	-2*xi.*(1-eta.^2)];		
27 -	Neta = [xi.*(xi-1).*(eta-1	/2)/2, xi.*(xi+1).*(eta-1/2)/2,	
28	<pre>xi.*(xi+1).*(eta+1/2)/</pre>	2, xi.*(xi-1).*(eta+1/2)/2,	
29	(1-xi.^2).*(eta-1/2),	<pre>xi.*(xi+1).*(-eta),</pre>	
30	(1-xi.^2).*(eta+1/2),	<pre>xi.*(xi-1).*(-eta),</pre>	
31	(1-xi.^2).*(-2*eta)];		
32 -	N2xi = [eta.*(eta-1)/2,	eta.*(eta-1)/2,	
33	eta.*(eta+1)/2,	eta.*(eta+1)/2,	
34	-eta.*(eta-1),	(1-eta.^2),	
35	-eta.*(eta+1),	(1-eta.^2),	
36	-2*(1-eta.^2)];		
37 -	N2eta = [xi.*(xi-1)./2,	xi.*(xi+1)./2,	
38	xi.*(xi+1)./2,	xi.*(xi-1)./2,	
39	(1-xi.^2),	-xi.*(xi+1),	
40	(1-xi.^2),	-xi.*(xi-1),	

Changes made to make u=0 (zero dirichlet boundary) on the outlet boundary, the zero value was assigned to nodes_x1 and nodes_y1 as well.

```
66 % nodes on which solution is u=1
67 - nodesDir1 = nodes_x0( X(nodes_x0,2) > 0.2 );
68 % nodes on which solution is u=0
69 - nodesDir0 = [nodes_x0( X(nodes_x0,2) <= 0.2 ); nodes_y0];
70 %for 0 on the outlet boundary
71 % nodesDir0 = [nodes_x0( X(nodes_x0,2) <= 0.2 ); nodes_y0; nodes_x1; nodes_y1];</pre>
```

RESULTS

For quadrilateral and triangular elements, the following results are obtained for p=2(quadratic elements) and 5 nodes.

We can see from the results that the code is working for quadratic elements.

Problem variables

The comparisons have been made for both boundary conditions with the following variables

Convection -reaction dominated ||a||=1/2, $v=10^{-4}$, $\sigma=1$ Number of elements in each direction = 20 Quadrilateral element, p=2 Method= GLS

Reaction dominated $||a|| = 10^{-3}$, $v=10^{-4}$, $\sigma=1$ Number of elements in each direction = 20 Quadrilateral element, p=2 Method= GLS

We can see from both the cases, that the reaction dominated simulation gives a smoother profile than the convection-reaction dominated which is in accordance to the theory. The difference is especially prominent for zero dirichlet boundary where the reaction dominated profile gives a smoother transition to zero velocity compared to convection-reaction dominated.