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1 1D convective transport

1.1 Stability analysis

In this section, the stability of four different methods is studied for the 1D
convection equation without source term and simple initial conditions. The
methods studied for time discretization are: Lax-Wendroff (LW) with and
without lumped mass matrix (LW-FD), Crank-Nicolson (CN) and Third
order Taylor-Galerkin. The spatial discretization is done using Galerkin
method. The results obtained using 120 time steps and convection coeffi-
cient a = 1 for three different initial conditions are depicted in the figures
below. The figures show the expected results: LW is stable for C2 < 1

3
,

LW-FD for C2 < 1, CN is unconditionally stable and TG3 for C2 < 1.
Moreover, we can see that the accuracy of the solution depends on C and
the dimensionless wave number. The third order Taylor-Galerkin is the
method that shows better accuracy of the four studied.

1. Initial condition 1:

Figure 1: Initial conditions 1

1



(a) (b)

Figure 2: Lax-Wendrof for C=0.5 and C=0.6

(a) (b)

(c)

Figure 3: Lax-Wendrof with lumped matrix for C=0.5 and C=1 and C > 1
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(a) (b)

Figure 4: Crank-Nicholson for C=0.5 and C=1

(a) (b)

Figure 5: Third order Taylor-Galerkin for C=0.5 and C > 1

2. Initial condition 3:

Figure 6: Initial conditions 3
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(a) (b)

Figure 7: Lax-Wendrof for C=0.5 and C=0.6 and initial conditions 3

(a) (b)

Figure 8: Lax-Wendrof with lumped matrix for C=0.5 and C > 1 and
initial conditions 3

(a) (b)

Figure 9: Crank-Nicholson for C=0.5 and C=0.9 and initial conditions 3
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(a)

(b) (c)

Figure 10: Third order Taylor-Galerkin for C=0.5, C=0.9 and C > 1 and
initial conditions 3

3. Initial condition 4:

Figure 11: Initial conditions 4
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(a) (b)

Figure 12: Lax-Wendrof for C=0.5 and C=0.6 and initial conditions 4

(a) (b)

Figure 13: Lax-Wendrof with lumped matrix for C=0.5 and C > 1 and
initial conditions 4

Figure 14: Crank-Nicholson for C=0.5 and initial conditions 4
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(a) (b)

Figure 15: Third order Taylor-Galerkin for C=0.5 and C > 1 and initial
conditions 4

1.2 Leap-frog method

The leap-frog method has also been implement for a 0 source term:

un+1 = un−1 − 2∆ta · ∇un

The results obtained for different values of C and the initial conditions
studied in section 1.1 are depicted in the following figures. As can be
seen in the figures, the method is stable for C=0.5 but not for C=0.6 (its
theoretical stability limit is C=0.57). Moreover, this method shows better
accuracy than the methods seen in section 1.1 (with exception of the third
order Taylor-Galerkin method), especially for initial conditions 3.

(a) (b)

Figure 16: Leap-frog method for C=0.5 and C=0.6 and initial conditions 1
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(a) (b)

Figure 17: Leap-frog method for C=0.5 and C=0.6 and initial conditions 3

2 1D unsteady convection-diffusion equationt
In this section, a diffusion term has been added to the equation. The initial
solution has been imposed to be:

u (x, 0) =
5

7
exp

(
−
(
x− x0
L

)2
)

The analytical solution for this case is:

u (x, t) =
5

7σ
exp

(
−
(
x− x0 − at

σL

)2
)

σ =
√

1 + 4νt
L2 x0 = 2

15
L = 7

√
2

300

The influence of both Pe and C has been used for Crank-Nicholson method
for time and a Galerkin formulation for space. The values used by default
to obtain Pe = 1 and C = 1 are: a = 0.2, ν = 0.001, no of elements = 100,
time step = 0.05 and end time = 0.3. In order to work with different Pe and
C, the values of the time step and a are changed. The effect of increasing
Peclet number is depicted in Fig. 18 and for Courant number is depicted
in Fig. 19. As is depicted in the figures, increasing the Peclet number we
have a faster transport, but no instabilities are introduced. However, when
increasing Courant’s number, small instabilities appear.

8



(a) (b)

(c)

Figure 18: Effects of Peclet number

(a) (b)

(c)

Figure 19: Effects of Courant number
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3 2D convection equation
A code has been implemented to solve for the 2D convection equation
using a Galerkin spatial discretization and Lax-Wendroff, Lax-Wendroff
with lumped mass matrix and Crank-Nicholson methods for the temporal
discretization. The convection field used is a pure rotation one and the
initial conditions of the problem are:

u = (x, 0) =

{
1
4

(1 + cosπX1) (1 + cosπX2) ifX2
1 +X2

2 ≤ 1,

0 otherwise

The results obtained using a mesh of 20x20 bilinear quadrilateral elements
and a final time tend = 2π are depicted in the following figures. In Fig.
20 it can be apreciated that the Lax-Wendroff method show unstabilites
when using 120 and 150 time steps. When using a lumped mass matrix,
the method does not present unstabilites for these number of time steps,
but the results obtained are very poor (see Fig. 21b). In the case of the
Crank-Nicholson method, no instabilites appear when using 120 time steps
and a good accuracy is obtained. The maximum values of u obtained at
t = 2π are:

For LW and 120 time steps: umax = 0.911601

For LWFD and 120 time steps: umax = 0.624378

For CN and 120 time steps: umax = 0.995201

It can be concluded that the explicit methods used (Lax-Wendroff with and
without lumped mass matrix) are disipative, while the Crank-Nicholson
method does not show dissipation and obtains a value of u very close to 1.
The results obtained could be improved refining the mesh.

10



−0.5

0

0.5

−0.5

0

0.5
−2

−1

0

1

2

x 10
8

LW at t=3.1416

(a) 120 time steps
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(b) 150 time steps

−0.5

0

0.5

−0.5

0

0.5
−0.5

0

0.5

1

LW at t=3.1416

(c) 200 time steps

Figure 20: Results at t = π using Lax-Wendroff method with a mesh of
20x20 bilinear quadrilateral elements
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(a) Lax-Wendroff using 200 time steps
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(b) Lax-Wendroff with lumped mass ma-
trix using 200 time steps
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(c) Crank-Nicholson method using 120
time steps

Figure 21: Comparison of the results at t = 2π for a mesh of 20x20 bilinear
quadrilateral elements
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