FINITE ELEMENTS IN FLUIDS
ASSIGNMENT2- 1D UNSTEADY TRANSPORT PROBLEM

-By Anurag Bhattacharjee

LEAP FROG METHOD

The galerkin formulation for the leap-frog method is presented below-
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Changes in the code (System.m) made to accommodate this code is given below-
Zho= case 5 $ Leap-Frog

22 M

7 2*a*dt*C;

24 — methodName = 'LF';
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The following changes were made to the main.m

gé — if method==

87 — for n= 1:nStep

g8 — if n==

g9 — [A&,B,methodName]= System(i,M,K,C,a,dt):
a0 - Du = &\ (B*u(1:nPt,n) + £):

91 — u(l:nPt,n+l) = u(l:nPt,n) + Du;

2 S clear 4,B;

934 1= else

94 — [Z,B,methodName]= System(5,M,K,C,a,dt):
95 — Du = B\ (B*u(1l:nPt,n) + £):

96 — u(l:nPt,n+l) = u(l:nPt,n-1) + Du;

S end

98 = end

It should be noted that as for n=1, u(n-1) doesn't exist, Leap frog formulation is ineffective. So
we need to implement another method to initialize the Leap-Frog then from n=2, Leap frog takes over
further computation. Here | have used Lax-Wendroff + Galerkin formulation to initialize the Leap-Frog
formulation.

Results obtained-

t=1.5 t=1.5
1.25 3
; 1 [~ Exact solution
---------- Exact solution i
17 i —LF solution
—LF solution 05
0.751 ’
05+t 0
025/ 0.5
0 E
%
-0.25
0 0.5 1 1:5 2 2.5 3 0 0.5 1 1.5 2 25 3
Problem-1 Problem-2

The simulation has been done for 2 problems C=0.5 and the code seems to be working. To check
the stability of the method the following results were obtained by varying the courant number for
problem 1 which seems to be consistent with the theory. Leap frog method is stable for courant number
C%<=(3/4), which is consistent with the results. It is unstable for C=1 but stable for values less than 0.8.
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THIRD ORDER TAYLOR-GALERKIN

As per the theory given in the slides, the following changes were made to the system.m file-

25 = case 6 $ TG3

26 — A =M+ 0.16667*dt"2*a"2*K;
27 o= B = —axdt*C- 0.S5%a"2*dtr"2*K;
28 — methodName = 'TG3';

Results obtained-
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The simulation has been done for 2 problems C=0.5 and the code seems to be working. To check

the stability of the method the following results were obtained by varying the courant number for

problem 1 which seems to be consistent with the theory. TG3 method is stable for courant number

C%<=1, which is consistent with the results. It is unstable for C>1 but stable for values less than equal to

1.



t=1.5 t=1.5

1.25 1.25
"l Exact solution ,||[~Exact solution
—TG3 solution —TG3 solution
0.75 0.75 ¢
0.5 057
0.25 0.25¢1
0 0
-0.25 -0.25
0 B85 1 15 2 25 o 05 1 15 2 25 3
C=1.33 Cc=1

THIRD ORDER TAYLOR-GALERKIN 2-STEP
The galerkin formulation for the TG3-2S method is presented below-
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From here we can get the value for U"(bar) and substitute it in the second step of formulation which is
presented below-



This can be clearly seen from the two step code in (main.m) given below-
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Changes in the code (System.m) made to accommodate this code is given below- TG3-l and TG3-II
represent the two steps-

29 — case 7 £ 2 step TIG3-I

30 - A =M;

I = B = —-(1/3)*dt*a*C-(1/9) *dt~2*a"2*K;
2 methodName = 'TIG3';

33| I= case 8 £ 2 step TG3-II

34 - A =M;

3 = B = —a*dt*xC;

36 = methodName = 'TIG3';

The following changes were made to the main.m

95 = else if method==7

100 — = for n= 1l:nStep

101 - [&,B,methodName]= System(7,M,K,C,a,dt);

102 - Du = A\ (B*u(1:nPt,n) + £f):

303 u_bar= u(l:nPt,n) + Du;

104 - clear L,B;

105 - [&,B,methodNane]= System(8,M,K,C,a,dt);

106 — Du = A\ (B*u(l1:nPt,n)- .5*a”2*dr”2*K*u bar + f):;
307 = u(l:nPt,n+l) = u(l:nPt,n) + Du;

108 — : end

TS = else



Results obtained-
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The simulation has been done for 2 problems for C=0.5 and the code seems to be working. To
check the stability of the method the following results were obtained by varying the courant number for
problem 2 which seems to be consistent with the theory. TG3-2S method is stable for courant number

C’<=1, which is consistent with the results. It is unstable for C>1 but stable for values less than equal to
1.
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For one dimensional computations both TG3 and TG3-2S are expected to give similarresults.

However because of the higher dissipative nature of TG3-2S, it is expected to perform better for two-
dimensional computations.



