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Abstract

In this report, the results obtained for five different methods
(Galerkin, SU, SUPG, GLS and SGS) are compared to solve for
the 1D steady convection-diffusion equation with different Peclet
number, stabilization parameter, linear and quadratic elements and
mesh refinement. After that, the code has been improved to account
for the effects of the reaction term and the effects of this term are
studied. Then the 2D convection-diffusion equation is solved with
Neumann and Dirichlet boundary conditions and the performance of
the different methods tested is compared. Finally, a reaction term is
added to the 2D problem and a convection-reaction dominated case
and a reaction dominated problem are studied.

1 1D convective diffusion equation

1.1 Linear elements

First, I used Galerkin’s method for different values of a, υ, no of elements
and s=0 (Fig. 1) The results obtained show that the Galerkin method
provides good results for diffusion dominated problems (Pe ≤ 1). How-
ever, for Pe > 1, the method is unstable and the results obtained are not
acceptable.

In order to improve the results for convection-dominated problems, sta-
bilization methods are needed. Below you can find the results obtained
using SU, SUPG, GLS and SGS methods for a=1, υ=0.01 and 10 linear
elements and using the optimal stabilization parameter (Fig. 2). For these
methods, the exact solution is obtained at the nodes. However, with the
number of elements used, the evolution of the solution at the boundary
layer cannot be captured.

The effect of the stabilization parameter for the SUPG method is stud-
ied next. As can be seen, the stabilization parameter can change the solu-
tion completely, ranging from a solution with too much artificial diffusion
(Fig. 4a) to the solution obtained for Galerkin’s method (Fig. 4c).
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(a) a=1,υ=0.2 and 10 elements (b) a=20,υ=0.2 and 10 elements

(c) a=1,υ=0.01 and 10 elements (d) a=1,υ=0.01 and 50 elements

Figure 1: Results for Galerkin’s method with linear elements

(a) SU method (b) SUPG method

(c) GLS method (d) SGS method

Figure 2: Results for a=1,υ=0.01 and 10 linear elements using different
stabilization methods
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(a) τ=1 (b) τ=0.01

(c) τ=0 (d) Optimal value of τ

Figure 3: Result for a=1,υ=0.01 and 10 linear elements and the SUPG
method with different values of τ

1.2 Quadratic elements

In this section quadratic elements are studied. To use the stabilization
methods seen above, two different τ must be defined:

At the middle node:

βm = cothPe− 1

Pe

τm = βm
h

2a

At the corner nodes:

βc =
(2Pe− 1) + (−6Pe+ 7) e−2Pe + (−6Pe− 7) e−4Pe + (2Pe+ 1) e−6Pe

(Pe+ 3) + (−7Pe− 3) e−2Pe + (7Pe− 3) e−4Pe − (Pe+ 3) e−6Pe

τc = βc
h

2a

The problem is solved again for a=1, υ=0.01 and 10 linear elements using
the 5 different methods studied above (see Fig. 4). The results obtained
show that the oscillations obtained with Galerkin’s method are smaller and
the shape of the result obtained with the 4 stabilization methods is more
similar to the shape of the exact solution. However, the results obtained
at the nodes are not exact and nodal results obtained in the region with a
higher gradient are worst than those obtained with linear elements.
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(a) Galerkin (b) SU

(c) SUPG (d) GLS

(e) SGS

Figure 4: Result for a=1,υ=0.01 and 10 quadratic elements

Figure 5: Result using Galerkin’s method for a=1,υ=0.5, σ=0 and refined
sharp front
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1.3 Galerkin’s method improvement: Refinement of
the sharp front

Galerkin method’s results can be improved if the sharp front is refined. The
results obtained for a=1, υ=0.01, linear elements and using an element size
of 0.01 in the sharp front are depicted in Fig. 5. The improvements are
obvious if compared with the results obtained without refining the mesh in
the sharp front (see Fig. 1).

1.4 Source term

In this section, the problem is solved adding the following source term:

s = sin (πx)

The results obtained are depicted in Fig. 6. Since Pe = 5, Galerkin’s
method provides unstables results. The rest of the methods provide stable
results, but the SU methods does not provide the exact solution at the
nodes.

(a) Galerkin (b) SU

(c) SUPG (d) GLS

(e) SGS

Figure 6: Result for a=1,υ=0.01 and 10 linear elements
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2 1D steady convection-diffusion-reaction case
In this section, a reaction term is added to the problem. In the weak form,
this can be done adding the term

∫
Ω
NTσNdΩ. The stabilization coefficient

used is:

τ =
h

2a

(
1 +

9

Pe2
+

(
hσ

2a

)2
)−1/2

The results obtained with the different methods for a=1,υ=0.01, σ=20
and 10 linear elements are depicted in Fig 7. The results obtained with
the Galerkin are totally oscillatory. SUPG and GLS methods show small
oscillations near the boundary layer. SGS is affected by the presence of the
reaction term and does not oscillate.

In the last examples the effects of the reaction could not be seen due
to the high value of the Peclect number. If using Galerkin’s method for
a=1,υ=0.5, σ=-20 and 10 linear elements, the results obtained show the
effects of the reaction (see Fig. 8 ). The first one has reaction, the second
one does not have it).

(a) Galerkin (b) SUPG

(c) GLS (d) SGS

Figure 7: Result for a=1,υ=0.01, σ=20 and 10 linear elements
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Figure 9: Mesh for the 2D case

(a) a=1,υ=0.5, σ=20 (b) a=1,υ=0.5, σ=0

Figure 8: Effects of the reaction term

3 2D steady convection-diffusion equation
In this section, the 2D steady convection-diffusion equation is solved in a
1x1 square domain using the mesh depicted in Fig. 9.

First, the problem has been solved with Dirichlet boundary conditions
in half of the boundary, imposing 1 at the boundary (x = 0, y ∈ (0.2, 1])
and 0 at (x, y = 0) and (x = 0, y ∈ [0, 2]). Homogeneous natural boundary
conditions are imposed at the rest of the boundary (outlet). The results
obtained for ‖a‖ = 1 and υ = 10−4 (Pe = 500) using Galerkin’s, Aritificial
Diffusion and SUPG methods are depicted in Fig 10. As is showed in
the figures, Galerkin method cannot satisfactorily resolve the discontinuity
and produce spurious oscillations and Artificial diffusion method introduces
too much crosswind diffusion. The results obtained with SUPG method are
better.

After that, the problem was solved changing the Neumann boundary
conditions imposed at (x = 1, y = 1) by homogeneous Dirichlet boundary
conditions. The results obtained are depicted in Fig. 11. As is depicted in
the figures, the result obtained with Galerkin’s method is completely un-
stable and does not represent the real solution. The result obtained adding
artificial diffusion is better and smoother, but too much diffusion is added.
The result obtained with SUPG method is better than Galerkin’s and does
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not add too much diffusion, however, the mesh used shows problems to
capture all the details of the solution, especially at the boundaries.

Finally, a reaction term was added to the code.To add the reaction
term, I added

∫
Ω
NTσNdΩ to the global matrix. For SUPG, an extra

term multiplying τ was needed. Two different cases were solved with zero
Dirichlet boundary conditions at the entire boundary and a constant source
term s=1: a convection-reaction dominated problem with ‖a‖ = 1

2
, υ =

10−4 and σ = 1 (Pe = 250) and a reaction dominated case with ‖a‖ =
10−3, υ = 10−4 and σ = 1 (Pe = 0.5). The results obtained for the
convection-reaction dominated case are depicted in Fig. 12. In this case,
srong oscillations appear for Galerkin’s method due to the high Peclet
number, but the results obtained using both artificial diffusion and SUPG
method are acceptable, specially taking into account that a coarse mesh is
being used. The results obtained with the three different methods used for
the reaction dominated case ( Fig. 13 ) are very similar because we are
working with Pe < 1. The results at the boundary should be improved,
either using a finer mesh or a different method.

(a) Galerkin (b) Artificial diffusion

(c) SUPG

Figure 10: Results for υ = 10−4, ‖a‖ = 1, Dirichlet bc of 0 and 1 and
homogeneous Neumann bc at the outlet
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(a) Galerkin (b) Artificial diffusion

(c) SUPG

Figure 11: Results for υ = 10−4, ‖a‖ = 1, Dirichlet bc of 0 and 1 at the
inlet and 0 at the outlet

(a) Galerkin (b) Artificial diffusion

(c) SUPG

Figure 12: Results for the convection-reaction dominated problem
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(a) Galerkin (b) Artificial diffusion

(c) SUPG

Figure 13: Results for the reaction dominated problem
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