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1. Cavity Flow Problem

The cavity flow problem is a standard benchmark test for incompressible flows. The
goal of this exercise is to analyse the results obtained when adopting either the Stokes
or the Navier-Stokes equations. Using the code in (HW2FilesCavity) to compute the
finite elements approximation of these problems the tasks given in the Homework are
completed.

(1) Using the script mainStokes.m the solution of the Stokes problem is computed using
a uniform, structured mesh of Q2Q0, Q2Q1, P1P1 and MINI (P+

1 P1) elements, with
20 elements per side. Fig. 1.1, 1.2, 1.3 and 1.4 show the various plots obtained for
these cases.

The Q2Q0 is a quadrilateral element in which the velocity is approximated using
biquadratic interpolation polynomials, while the pressure is approximated to a
constant within each element (see Fig. 1.1a and 1.1c). This element satisfies
the LBB condition. It can be seen from Fig. 1.1b and 1.1d that both velocity
and pressure profiles are devoid of any spurious non physical oscillations. Since
pressure is approximated using constants per element, pressure is discontinuous
between elements.

The Q2Q1 is a quadrilateral element in which the velocity is approximated using
biquadratic interpolation polynomials, while the pressure is approximated to a
bilinear interpolation polynomials within each element (see Fig. 1.2a and 1.2c).
This element satisfies the LBB condition. It can be seen from Fig. 1.2b and 1.2d
that both velocity and pressure profiles are devoid of any spurious non physical
oscillations. Unlike with the case with Q2Q0 element, the pressure is a continuous
as it is approximated using bilinear polynomials.

The P1P1 is a triangular element in which the velocity and pressure are both
approximated using linear interpolation polynomials (see Fig. 1.3a and 1.3c). This
element does not satisfy the LBB condition. It can be seen from Fig. 1.3b and
1.3d that while the streamlines of velocity look to be without much disturbance,
the pressure field is full of spurious non physical oscillations. This kind of element
needs stabilisation to obtain pressure fields that are physical. Also though the
streamlines of velocity seem to be correct, there are some non physical oscillations
near the walls.

Finally The MINI (P+
1 P1) is a triangular element in which the velocity and pressure
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are both approximated using linear interpolation polynomials (see Fig. 1.4a and
1.4c). However the velocity interpolation is complemented with a cubic bubble
function which ensures that this element satisfies the LBB condition. It can be
seen from Fig. 1.4b and 1.4d that while the streamlines of velocity and the pressure
field are devoid of any spurious non physical oscillations.

(a) Mesh for velocity (b) Streamlines

(c) Mesh for pressure (d) Pressure

Figure 1.1: Results with Q2Q0 elements
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(a) Mesh for velocity (b) Streamlines

(c) Mesh for pressure (d) Pressure

Figure 1.2: Results with Q2Q1 elements
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(a) Mesh for velocity (b) Streamlines

(c) Mesh for pressure (d) Pressure

Figure 1.3: Results with P1P1 elements

5



Finite Elements in Fluids: HW2 Cavity Flow Problem

(a) Mesh for velocity (b) Streamlines

(c) Mesh for pressure (d) Pressure

Figure 1.4: Results with MINI P+
1 P1 elements

(2) The solution of the Stokes problem considering (i) a structured, uniform mesh of
Q2Q1 elements with 20 elements per side (ii) a structured mesh of 20 × 20 Q2Q1

elements refined near the walls are computed and compared.

Fig. 1.2a and 1.2c show the mesh used for approximating velocity and pressure
while using a structured, uniform mesh, while Fig. 1.5a and 1.5c show the mesh
used for approximating velocity and pressure while using an adaptive mesh refined
near the boundaries. The streamlines and pressure field for the case with the
uniform structured mesh are shown in Fig. 1.2b and 1.2d, while Fig. 1.5b and
1.5d show these for the adapted mesh. While the streamlines appear to be more or
less similar, there is a stark contrast in the plots of the pressure fields. While using
the mesh with adaptive refinement around the boundaries, the discontinuities in
pressure at the boundaries are captured much more clearly. The pressure field in
this case has a much more sharper discontinuity at the boundaries than the case
when elements of uniform size are used throughout the mesh. This can also be seen
from the magnitude of the pressure at the boundaries (in the case of the adaptive
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mesh it is of the order of ±1000, while it is of the order of ±100 in the case of the
uniform mesh). Since both the meshes have same number of elements, and hence
degrees of freedom, their computational costs are the same. Hence, it is definitely
better to use a mesh with adaptive refinement around the boundaries to solve the
calvity problem as the solution obtained in this case for the pressure field is more
accurate.

(a) Mesh for velocity (b) Streamlines

(c) Mesh for pressure (d) Pressure

Figure 1.5: Results with Q2Q1 elements refined near the walls

(3) The Stokes code is modified to solve the problem using a GLS stabilized formulation
with P1P1 elements. The stabilization of the Stokes problem is obtained by adding
to the Galerkin weak form of the Stokes equations, the equations emanating from
the least-squares form, which are{

(−ν∇2w,−ν∇2v + ∇p− b) = 0 ∀w ∈ V
(∇q,−ν∇2v + ∇p− b) = 0 ∀q ∈ Q

To avoid additional continuity requirements due to the presence of second spatial
derivatives, the terms added to the Galerkin weak form act on the element interiors
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only. These terms depend on the residual of the momentum equation and therefore
ensure the consistency of the stabilized formulation.

For linear elements the GLS stabilization does not affect the weak form of the
momentum equation because the terms involving the second derivatives of the
weighting function w vanish. The GLS weak formulation then reduces to the
following variational problem: find vh ∈ Sh and ph ∈ Qh, such that, for all
(wh, qh) ∈ Vh ×Qh

a(wh,vh) + b(wh, ph) = (wh, bh) + (wh, th)ΓN
,

b(vh, qh)−
nel∑
e=1

τe(∇qh,∇ph)Ωe = −
nel∑
e=1

τe(∇qh, bh)Ωe

Note that the second term in the second equation indicates that a Poisson equation
has been generated for the pressure field. A consequence of the GLS stabilization
of the Stokes problem is that elements with equal order interpolations, which are
unstable in the Galerkin formulation, now become stable.

The stabilization parameter chosen in the code is

τe = α
h2
e

4ν

In the tests, different values of α are chosen to see the effect of GLS stabilisation
on the solution. Fig. 1.6 and 1.7 show the plots of streamlines and pressure field
obtained for values of α = 2, 20, 200, 2000. From the figures it can be clearly seen
that as the value of the stabilization parameter is increased, there is a degradation
in the streamlines. It appears that the streamlines start to get convected upon
increasing the stabilization. However, pressure field shows that increasing the
stabilization makes it more and more accurate. For α = 2, the pressure field has
non physical oscillations, while for α = 200 and 2000, the streamlines are not
physical solutions to the cavity problem. Thus it is important to choose a value of
α in τ which gives enough stabilization to pressure while retaining the true value
of velocity.
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(a) α = 2 (b) α = 20

(c) α = 200 (d) α = 2000

Figure 1.6: Streamlines obtained by solving cavity problem using GLS stabilized formu-
lation with P1P1 elements with different values of α in stabilization parameter
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(a) α = 2 (b) α = 20

(c) α = 200 (d) α = 2000

Figure 1.7: Pressure field obtained by solving cavity problem using GLS stabilized for-
mulation with P1P1 elements with different values of α in stabilization parameter

(4) The script mainNavierStokes.m is used to solve the Navier-Stokes equations with
Picard method after writing a Matlab function ConvectionMatrix.m to evaluate
the matrix arising from the discretization of the convective term. The Navier-
Stokes equations is solved using a structured mesh of Q2Q1 elements with 20
elements per side, considering the Reynolds numbers Re = 100, 500, 1000, 2000.
The results obtained from the run of the code are shown in Fig. 1.9 and 1.10. The
number of iterations required for convergence of Picard method are tabulated in
Table 1.1
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Table 1.1: Number of iterations required for convergence of Picard method

Re Number of Iterations

100 13
500 29
1000 35
2000 69

From Table 1.1 it can be seen that upon increasing Re, the number of iterations
required for the convergence of Picard Method go on increasing. From Fig. 1.9 it
can be seen that as Re is increased the position of the main vortex moves towards
the center of the cavity. Also the strength of the main vortex goes on decreasing
with increase in Re. The development of a secondary vortex in the right bottom
corner of the cavity becomes progressively apparent and a third vortex appears at
the lower left corner as seen in 1.9a, 1.9b and 1.9c. Elevated velocity gradients
develop near the cavity walls for large values of the flow Re. This generates non-
physical oscillations in the Galerkin solution for the velocity (see Fig. 1.9d). A
stabilized formulation would then be required.

These results are in excellent agreement with the results obtained from literature
(see Donea and Huerta, Finite Element Methods for Fluid Flow Problems, Wiley
2003). Fig 1.8 for the solution given in the reference.

Figure 1.8: Reference Solution
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(a) Re = 100 (b) Re = 500

(c) Re = 1000 (d) Re = 2000

Figure 1.9: Streamlines obtained by solving cavity problem using Navier-Stokes equa-
tions with Picard method with Q2Q1 elements with different values of Reynold’s number,
Re
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(a) Re = 100 (b) Re = 500

(c) Re = 1000 (d) Re = 2000

Figure 1.10: Pressure field obtained by solving cavity problem using Navier-Stokes equa-
tions with Picard method with Q2Q1 elements with different values of Reynold’s number,
Re
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