
Name Ahmed Saeed Mohamed Sherif
Course Finite Elements in Fluids
Master MSc Computational Mechanics
Report no. 4
Topics 1D unsteady convection (Cosine profile - Steep front)

1D unsteady convection-diffusion (Gaussian hill)

Contents

Contents i

1 1D unsteady convection 1

1.1 Propagation of a cosine profile . 1

1.1.1 Explicit methods . 1

1.1.2 Implicit methods . 2

1.2 Propagation of a steep front . 4

1.2.1 Crank-Nicholson with linear finite elements for Galerkin formulation . . . 4

1.2.2 Crank-Nicholson with linear finite elements for least-squares formulation 4

1.2.3 Lax-Wendroff with linear finite elements for Galerkin formulation 8

1.2.4 Two-step Lax-Wendroff with linear finite elements for Galerkin formulation 9

2 1D unsteady convection-diffusion 12

2.1 Galerkin and Crank-Nicholson . 12

2.2 Galerkin and R2,2 . 13

2.3 Galerkin and R3,3 . 13

2.4 Galerkin and Adams-Bashforth . 14

2.5 Time-discontinuous Galerkin formulation for the convection-diffusion equation . 17

A Developed codes for 1D unsteady convection 19

A.1 New function system_CN_LS.m . 19

A.2 New function system_LW_2S.m . 20

B Developed codes for 1D unsteady convection-diffusion 22

B.1 Modified function Galerkin.m . 22

References 24

i

1 1D unsteady convection

1.1 Propagation of a cosine profile

In all the following cases, linear finite elements of Galerkin spatial discretization is used,
while different time-integration methods are tested and compared.

1.1.1 Explicit methods

1. Second-order Lax-Wendroff with consistent mass matrix (TG2)

2. Second-order Lax-Wendroff with lumped mass matrix (LW-FD)

3. Third-order Taylor-Galerkin (TG3)

Explicit methods results:

1. The results obtained using the different explicit methods at various values of the Courant
number, C, are shown in Figure 1.

2. For Lax-Wendroff with consistent mass matrix (TG2), it is observed that the method is
unstable at C = 0.75, which agrees with the theory, as the stability limit for this method
is C < 1

3
.

3. To increase the stability limit for (TG2), a lumped mass matrix is used, but this comes
at the cost of accuracy. It is observed that the Lax-Wendroff method with lumped mass
matrix (LW-DF) has lower phase accuracy when compared to the other two methods.

4. As for the third-order Taylor-Galerkin method (TG3), it is observed that the phase ac-
curacy is better, and it is uniform over the entire stable interval 0 < C < 1.

1

Figure 1: Propagation of a cosine profile using explicit methods, (Top): TG2, (Middle): LW-
FD, (Bottom): TG3

1.1.2 Implicit methods

1. Second-order Crank-Nicholson with consistent mass matrix (CN-FE)

2. Second-order Crank-Nicholson with lumped mass matrix (CN-FD)

3. Implicit fourth-order Taylor-Galerkin with consistent mass matrix (TG4)

Implicit methods results:

1. The results obtained using the different implicit methods at various values of the Courant
number, C, are shown in Figure 2.

2. Crank-Nicholson method is unconditionally stable. However, lower accuracy is observed
at higher values of C.

2

3. Again, using lumped mass matrix leads to degradation of the phase accuracy as seen for
Crank-Nicholson with lumped mass matrix (CN-FD).

4. As for the implicit fourth-order Taylor-Galerkin method (TG4), it is showing excellent
phase accuracy at all values of C.

Figure 2: Propagation of a cosine profile using implicit methods, (Top): CN-FE, (Middle):
CN-FD, (Bottom): TG4

3

1.2 Propagation of a steep front

Under those conditions, the Courant–Friedrichs–Lewy (CFL) condition is:

C =
a∆t

∆x
=

1 ∗ 0.015

0.02
= 0.75

1.2.1 Crank-Nicholson with linear finite elements for Galerkin formulation

Employing Crank-Nicholson time integration with linear finite elements for the Galerkin spa-
tial discretization, the obtained solution is shown in Figure 3. It is noted that even though
the method is unconditionally stable, spurious oscillations appear due to the lack of artificial
diffusion, which results in a non-accurate solution.

Figure 3: Propagation of steep front using the Crank-Nicholson scheme with the Galerkin
method.

1.2.2 Crank-Nicholson with linear finite elements for least-squares formulation

Considering the linear convection equation with source term, the Crank-Nicholson time dis-
cretization is given by:

∆u

∆t
+

1

2
(a ·∇)∆u =

1

2
sn+1 +

1

2
sn − a ·∇un (1)

4

which can be viewed as:
L(∆u)− f = 0 (2)

where L =
1

∆t
+

1

2
a ·∇, and f =

1

2
sn+1 +

1

2
sn − a ·∇un

the least-square weak formulation is written as:(
L(w),L(∆u)− f

)
Ω

= 0 (3)

which yields,(w
∆t

+
1

2
a ·∇w,

∆u

∆t
+

1

2
a ·∇∆u

)
Ω

=
(w

∆t
+

1

2
a ·∇w,

1

2
sn+1 +

1

2
sn − a ·∇un

)
Ω

(4)

further manipulation,

1

∆t2
(
w,∆u

)
Ω

+
1

2∆t

(
w,a ·∇∆u

)
Ω

+
1

2∆t

(
a ·∇w,∆u

)
Ω

+
1

4

(
a ·∇w,a ·∇∆u

)
Ω

=
1

2∆t

(
w, sn+1

)
Ω

+
1

2∆t

(
w, sn

)
Ω
− 1

∆t

(
w,a ·∇un

)
Ω

+
1

4

(
a ·∇w, sn+1

)
Ω

+
1

4

(
a ·∇w, sn

)
Ω
− 1

2

(
a ·∇w,a ·∇un

)
Ω

(5)

assuming that the source term is not time-dependent (sn+1 = sn = s) yields,

1

∆t2
(
w,∆u

)
Ω

+
1

2∆t

(
w,a ·∇∆u

)
Ω

+
1

2∆t

(
a ·∇w,∆u

)
Ω

+
1

4

(
a ·∇w,a ·∇∆u

)
Ω

=− 1

∆t

(
w,a ·∇un

)
Ω
− 1

2

(
a ·∇w,a ·∇un

)
Ω

+
1

∆t

(
w, s

)
Ω

+
1

2

(
a ·∇w, s

)
Ω

(6)

integrating by parts the second term on LHS and the first term on RHS yields:

1

∆t2
(
w,∆u

)
Ω
− 1

2∆t

(
a ·∇w,∆u

)
Ω

+
1

2∆t

(
(a · n)w,∆u

)
Γ

+
1

2∆t

(
a ·∇w,∆u

)
Ω

+
1

4

(
a ·∇w,a ·∇∆u

)
Ω

=
1

∆t

(
a ·∇w, un

)
Ω
− 1

∆t

(
(a · n)w, un

)
Γ
− 1

2

(
a ·∇w,a ·∇un

)
Ω

+
1

∆t

(
w, s

)
Ω

+
1

2

(
a ·∇w, s

)
Ω

(7)

given that the boundary Γ = Γin∪Γout, and recalling that for hyperbolic problems the boundary
conditions are applied only to inflow boundaries. Furthermore, the inflow boundary could be a
Neumann part and a Dirchlet part, i.e. Γin = ΓinN ∪ΓinD . Since w = 0 on the Dirchlet boundary,
therefore the weak form is written as:

1

∆t2
(
w,∆u

)
Ω

+
1

2∆t

(
(a · n)w,∆u

)
Γout +

1

2∆t

(
(a · n)w,∆u

)
Γin
N

+
1

4

(
a ·∇w,a ·∇∆u

)
Ω

=
1

∆t

(
a ·∇w, un

)
Ω
− 1

∆t

(
(a · n)w, un

)
Γout −

1

∆t

(
(a · n)w, un

)
Γin
N
− 1

2

(
a ·∇w,a ·∇un

)
Ω

+
1

∆t

(
w, s

)
Ω

+
1

2

(
a ·∇w, s

)
Ω

(8)

5

particularizing it to the problem at hand (no Neumann boundary) yields,

1

∆t2
(
w,∆u

)
Ω

+
1

2∆t

(
(a · n)w,∆u

)
Γout +

1

4

(
a ·∇w,a ·∇∆u

)
Ω

=
1

∆t

(
a ·∇w, un

)
Ω
− 1

∆t

(
(a · n)w, un

)
Γout −

1

2

(
a ·∇w,a ·∇un

)
Ω

+
1

∆t

(
w, s

)
Ω

+
1

2

(
a ·∇w, s

)
Ω

(9)

neglecting the outflow boundary term, because the wave front doesn’t reach it, yields,

1

∆t2
(
w,∆u

)
Ω

+
1

4

(
a ·∇w,a ·∇∆u

)
Ω

=
1

∆t

(
a ·∇w, un

)
Ω
− 1

2

(
a ·∇w,a ·∇un

)
Ω

+
1

∆t

(
w, s

)
Ω

+
1

2

(
a ·∇w, s

)
Ω

(10)

which is written in discrete form as:

1

∆t2
M∆U +

1

4
K∆U =

1

∆t
CUn − 1

2
KUn +

1

∆t
v1 +

1

2
v2 (11)

where the appearing vectors are defined as:

MU =
(
w, u

)
Ω
,

CU =
(
a ·∇w, u

)
Ω
,

KU =
(
a ·∇w,a ·∇u

)
Ω
,

v1 =
(
w, s

)
Ω
,

v2 =
(
a ·∇w, s

)
Ω
,

(12)

equation (11) is further simplified to:[
M +

∆t2

4
K
]
∆U =

[
∆tC − ∆t2

2
K
]
Un +

[
∆tv1 +

∆t2

2
v2

]
(13)

and for ease of implementation in Matlab, it is written as:

A∆U = BUn + f

and the corresponding part of the Matlab function (system_CN_LS.m) is:

1 % Matrices assembly
2 A(isp,isp) = A(isp,isp) + w_ig*(N'*N + dt_2^2*(a*Nx)'*(a*Nx));
3 B(isp,isp) = B(isp,isp) + w_ig*(dt*(a*Nx)'*N - (dt^2/2)*(a*Nx)'*(a*Nx));
4 f(isp) = f(isp) + w_ig*(dt*(N')*SourceTerm(x) + ...

(dt^2/2)*(a*Nx)'*SourceTerm(x));

6

Now, using the least-square formulation (linear finite elements) with Crank-Nicholson time
integration scheme gives the solution shown in Figure 4b. It is observed that Crank-Nicholson
with least-squares succeeded in removing the spurious oscillation induced by the Galerkin for-
mulation over the whole computational domain.

There still exist some residual oscillations at the front because Crank-Nicholson scheme is
not a monotone scheme [1]. These could be removed by adding more artificial viscosity that
locally (only) at the front.

(a) CN + Galerkin (b) CN + Least-squares

Figure 4: Propagation of steep front using the Crank-Nicholson scheme with Galerkin formu-
lation (left) and with the least-squares formulation (right).

7

1.2.3 Lax-Wendroff with linear finite elements for Galerkin formulation

Solving the problem using the second-order Lax-Wendroff scheme with consistent mass ma-
trix (TG2) yields unstable solution as seen in Figure 5. The reason is that Lax-Wendroff is
conditionally stable, where the stability condition is C2 < 1

3
, i.e |C| < 0.5774.

Figure 5: Propagation of steep front using the second-order Lax-Wendroff scheme with consis-
tent mass matrix (TG2) and with the Galerkin method.

A way to increase the stability limit to |C| < 1 is to use lumped mass matrix. The results
using the second-order Lax-Wendroff scheme with lumped mass matrix (LW-FD) yields stable
solution as seen in Figure 6.

Figure 6: Propagation of steep front using the second-order Lax-Wendroff scheme with lumped
mass matrix (LW-FD) and with the Galerkin method.

8

1.2.4 Two-step Lax-Wendroff with linear finite elements for Galerkin formulation

The time discretization of the second-order two-step Lax-Wendroff scheme, also called Richt-
myer scheme, is given by:

un+ 1
2 = un +

∆t

2
unt ,

un+1 = un + ∆tu
n+ 1

2
t

(14)

recalling the linear advection equation:

unt = sn − a ·∇un (15)

substituting (15) into (14) yields:

un+ 1
2 = un +

∆t

2
sn − ∆t

2
a ·∇un (16a)

un+1 = un + ∆tsn+ 1
2 −∆ta ·∇un+ 1

2 (16b)

assuming that the source term is not time dependent, then the Galerkin weak form is given by:

(
w, un+ 1

2

)
Ω

=
(
w, un

)
Ω

+
∆t

2

(
w, s

)
Ω
− ∆t

2

(
w,a ·∇un

)
Ω

(17a)(
w, un+1

)
Ω

=
(
w, un

)
Ω

+ ∆t
(
w, s

)
Ω
−∆t

(
w,a ·∇un+ 1

2

)
Ω

(17b)

integration by parts and applying Dirchlet boundary condition at the inlet yields:(
w, un+ 1

2

)
Ω

=
(
w, un

)
Ω

+
∆t

2

(
w, s

)
Ω

+
∆t

2

(
a ·∇w, un

)
Ω
− ∆t

2

(
(a · n)w, un

)
Γout

− ∆t

2

(
(a · n)w, un

)
Γin
N

(18a)

(
w, un+1

)
Ω

=
(
w, un

)
Ω

+ ∆t
(
w, s

)
Ω

+ ∆t
(
a ·∇w, un+ 1

2

)
Ω
−∆t

(
(a · n)w, un+ 1

2

)
Γout

−∆t
(
(a · n)w, un+ 1

2

)
Γin
N

(18b)

particularizing it to the problem at hand (no Neumann boundary) yields:

(
w, un+ 1

2

)
Ω

=
(
w, un

)
Ω

+
∆t

2

(
w, s

)
Ω

+
∆t

2

(
a ·∇w, un

)
Ω
− ∆t

2

(
(a · n)w, un

)
Γout

(19a)(
w, un+1

)
Ω

=
(
w, un

)
Ω

+ ∆t
(
w, s

)
Ω

+ ∆t
(
a ·∇w, un+ 1

2

)
Ω
−∆t

(
(a · n)w, un+ 1

2

)
Γout

(19b)

neglecting the outflow boundary term, because the wave front doesn’t reach it, yields, particu-
larizing it to the problem at hand (no Neumann boundary) yields:

(
w, un+ 1

2

)
Ω

=
(
w, un

)
Ω

+
∆t

2

(
w, s

)
Ω

+
∆t

2

(
a ·∇w, un

)
Ω

(20a)(
w, un+1

)
Ω

=
(
w, un

)
Ω

+ ∆t
(
w, s

)
Ω

+ ∆t
(
a ·∇w, un+ 1

2

)
Ω

(20b)

9

recalling the definitions given by (12), the discrete form is written as:

MUn+ 1
2 = MUn +

∆t

2
v1 +

∆t

2
CUn (21a)

MUn+1 = MUn + ∆tv1 + ∆tCUn+ 1
2 (21b)

further simplification yields:

M (Un+ 1
2 −Un) =

∆t

2
CUn +

∆t

2
v1 (22a)

M (Un+1 −Un) = ∆tCUn+ 1
2 + ∆tv1 (22b)

and for ease of implementation in Matlab, it is written as:

A(Un+ 1
2 −Un) =

1

2
BUn +

1

2
f , (23a)

A(Un+1 −Un) = BUn+ 1
2 + f (23b)

and the corresponding part of the Matlab function (system_LW_2S.m) is:

1 % Matrices assembly
2 A(isp,isp) = A(isp,isp) + w_ig*N'*N;
3 B(isp,isp) = B(isp,isp) + w_ig*dt*(a*Nx)'*N;
4 f(isp) = f(isp) + w_ig*dt_2*(N')*SourceTerm(x);

and the modification made in the Main.m to account for the two-steps is as follows:

1 % SOLUTION AT EACH TIME STEP
2 if meth == 7 || meth == 8 % two-step Lax-Wendroff methods
3 for n = 1:nstep
4 % step 1
5 btot_1 = [0.5*B*u(:,n)+0.5*f; bccd];
6 aux_1 = U\(L\btot_1);
7 u(:,n+1) = u(:,n) + aux_1(1:numnp);
8 % step 2
9 btot_2 = [B*u(:,n+1)+f; bccd];

10 aux_2 = U\(L\btot_2);
11 u(:,n+1) = u(:,n) + aux_2(1:numnp);
12 end
13 else

Using the two-step Lax-Wendroff method with consistent mass matrix yields unstable solution
as seen in Figure 7a. This is expected because the stability limit is exceeded, where the Courant
number is C = 0.75 while the limit is |C| < 0.5774. The solution for the same method but
with lumped mass matrix is shown in Figure 7b. It is observed that the stability is better, but
the solution is still not satisfactory. In fact, the stability limit of the two-step Lax-Wendroff
method applied to the steep-front problem was found to be extremely reduced, see Figure 8
where C = 0.03, 0.0003 and yet the solution is not improving.

10

(a) LW-2S (b) LW-2S-FD

Figure 7: Propagation of steep front using the two-step Lax-Wendroff time integration scheme
with consistent mass matrix (left) and with lumped mass matrix (right) combined with Galerkin
spatial formulation.

(a) LW-2S, C = 0.03 (b) LW-2S, C = 0.0003

Figure 8: Propagation of steep front using the two-step Lax-Wendroff time integration scheme
with consistent mass matrix combined with Galerkin spatial formulation at very small values
of Courant number.

11

2 1D unsteady convection-diffusion

2.1 Galerkin and Crank-Nicholson

The solution is shown in Figure 9 at Courant number C = 1. It is noticed that the second-order
Crank-Nicholson scheme gives good results at low and moderate values of Peclet number as in
Figures 9a and 9b, but shows significant phase error when the Peclet number is increased, i.e.
convection dominated cases as in Figure 9c, and it becomes more worse as the Courant number
exceeds 1 as in Figure 9d. The reason is that linear finite elements in standard Galerkin
formulation do not work well with the second-order Crank-Nicholson scheme in convection
dominated problems.

(a) (b)

(c) (d)

Figure 9: Gaussian hill: standard Galerkin combined with second-order Crank-Nicholson.

12

2.2 Galerkin and R2,2

The solution is shown in Figure 10 at higher Courant number C = 3. It is noticed that the
higher-order schemes in time provide a gain in accuracy even for convection dominated cases
(high Peclet number). It is also noted that the phase accuracy is reduced as the Courant
number increases as seen in Figure 10d.

(a) (b)

(c) (d)

Figure 10: Gaussian hill: standard Galerkin combined with fourth-order R2,2.

2.3 Galerkin and R3,3

The solution is shown in Figure 11 at even higher Courant number C = 4. Again, It is noticed
that the higher-order schemes in time provide a gain in accuracy even for convection dominated
cases (high Peclet number). It is also noted that the phase accuracy is not significantly affected
as the Courant number increases as seen in Figure 11d.

13

(a) (b)

(c) (d)

Figure 11: Gaussian hill: standard Galerkin combined with R3,3.

2.4 Galerkin and Adams-Bashforth

Adams-Bashforth is a second-order accurate explicit time integration method which is given
by:

un+1 = un +
∆t

2
(3unt − un−1

t) (24)

where ut = s−aux+νuxx. By substituting ut into the previous equation, the scheme is written
for the unsteady convection-diffusion problem as:

2

∆t
∆u = 3sn − 3aunx + 3νunxx − sn−1 + aun−1

x − νun−1
xx (25)

Assuming that the source term is not time dependent yields:

2

∆t
∆u = 2s− 3aunx + 3νunxx + aun−1

x − νun−1
xx (26)

The Galerkin weak form is then written as:

2

∆t

(
w,∆u

)
Ω

= 2
(
w, s

)
Ω
− 3
(
w, aunx

)
Ω

+ 3
(
w, νunxx

)
Ω

+
(
w, aun−1

x

)
Ω
−
(
w, νun−1

xx

)
Ω

(27)

Integrating by parts the diffusion terms and removing the boundary terms because only Dirchlet
boundary conditions exists, the weak form reads:

2

∆t

(
w,∆u

)
Ω

= 2
(
w, s

)
Ω
− 3
(
w, aunx

)
Ω
− 3
(
wx, νu

n
x

)
Ω

+
(
w, aun−1

x

)
Ω

+
(
wx, νu

n−1
x

)
Ω

(28)

14

The discrete form is written as:

M∆U = ∆t(Ms− 3a

2
CUn − 3ν

2
KUn +

a

2
CUn−1 +

ν

2
KUn−1) (29)

where Mij =
(
Ni, Nj

)
Ω
, Cij =

(
Ni, Nxj

)
Ω
, and Kij =

(
Nxi, Nxj

)
Ω
. Here, the source term is

also approximated following the provided code.

It is seen from (29) that Adams-Bashforth is not a self-starting method For this, a self-
starting method is needed in the first time step, the explicit forward Euler method is used with
very small time step value. The discrete form of forward Euler scheme for convection-diffusion
equation can be shown as:

M∆U = ∆t(Ms− aCUn − νKUn) (30)

and the modification made in the Main.m to account for the two-steps is as follows:

1 if d_temp == 3 % Adams-Bashforth
2 M_reduced = M(2:end-1,2:end-1);
3 Sol = c;
4 for i=1:nstep
5 if i == 1 % use forward Euler for 1st step
6 rhs = dt*(M*f - a*C*c - nu*K*c);
7 dc = M_reduced\rhs(2:end-1);
8 c(2:end-1) = c(2:end-1) + dc;
9 Sol = [Sol c];

10 else % use Adams-Bashforth for the rest of steps
11 rhs = dt*(M*f - 1.5*a*C*Sol(:,end) - 1.5*nu*K*Sol(:,end) + ...

0.5*a*C*Sol(:,end-1) + 0.5*nu*K*Sol(:,end-1));
12 dc = M_reduced\rhs(2:end-1);
13 c(2:end-1) = c(2:end-1) + dc;
14 Sol = [Sol c];
15 end
16 end
17 else

By implementing this method and analysing it, it is noticed that based on the value of
Peclet number, this method gives accurate results only at low values of the Courant number,
and surprisingly tends to be more unstable for diffusion-dominated case (low values of Pe).

Diffusion-dominated (Pe = 0.33): the stability is only achieved at very low values of the
Courant number around C = 0.037 as in Figure 12a. Slightly increasing the value of the
Courant number to C = 0.06 yields unstable results in Figure 12b.

Balanced convection-diffusion (Pe = 1): the stability is only achieved at low values of the
Courant number around C = 0.1 as in Figure 12c. Slightly increasing the value of the Courant
number to C = 0.2 yields unstable results in Figure 12d.

Convection-dominated (Pe = 5): Stable solution was obtained at C = 0.4 as in Figure
12e. Slightly increasing the Courant number to C = 0.5 leads to instabilities in the solution as
shown in Figure 12f.

Highly convection-dominated (Pe = 100): Stable solution was obtained at C = 0.3 as in
Figure 12g. Slightly increasing the Courant number to C = 0.4 leads to unstable solution as
shown in Figure 12h.

15

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: Gaussian hill: standard Galerkin combined with Adams-Bashforth.

16

2.5 Time-discontinuous Galerkin formulation for the convection-diffusion
equation

Following the steps in [2] done to formulate the time-discontinuous Galerkin for the convection
equation, similarly, the time-discontinuous Galerkin for the convection-diffusion equation is
formulated.

Considering a piecewise continuous approximation in space and discontinuous approxima-
tion in time, the time domain is partitioned in nst sub-intervals, where each sub-interval is
defined as In =]tn, tn+1[, for n = 0, 1, ..., nst − 1.

Space-time slabs are then obtained in the form:

Qn = Ω× In

For the considered space-time slab Qn, the spatial domain Ω is subdivided into nel elements,
Ωe, e = 1, ..., nel, giving space-time element domains

Qn
e = Ωe × In, e = 1, ..., nel

Considering the following notation

uh(tn±) = lim
ε→0+

uh(tn ± ε)

The weak form of the convection-diffusion equation with zero source term is written as:∫ ∫
Qn

wh
(
uht + a ·∇uh −∇ · (ν∇uh)

)
dΩ dt+

∫
Ω

wh(tn+)
(
uh(tn+)− uh(tn−)

)
dΩ = 0 (31)

with the initial condition uh(x, t0−) = u0(x).

Integrating by parts and considering only Dirchlet boundary conditions yields:∫ ∫
Qn

wh
(
uht +a ·∇uh

)
dΩ dt+

∫ ∫
Qn

∇wh ·ν∇uh dΩ dt+

∫
Ω

wh(tn+)
(
uh(tn+)−uh(tn−)

)
dΩ = 0

(32)

Using finite element approximations over a space-time slab which are piecewise polynomials
in space and linear in time; that is, for (x, t) ∈ Qn = Ω× In,

uh(x, t) =

nnp∑
A=1

NA(x)
(
Θ1(t)ũnA + Θ2(t)un+1

A

)
where NA(x) is the spatial shape function at node A; ũnA and un+1

A are the nodal values of uh
for node A at tn+ and tn+1

− , respectively. Θ1(t) and Θ2(t) are the time interpolation functions
defined linearly as

Θ1(t) =
tn+1 − t
tn+1 − tn

=
tn+1 − t

∆t

Θ2(t) =
t− tn

tn+1 − tn
=
t− tn

∆t

17

The test function wh for each time slab (piecewise polynomials in space and linear in time)
are similarly defined, NA(x)Θ1(t) and NA(x)Θ2(t) for A = 1, ..., nnp.

With these definitions, the weak form (31) yields the following couple of equations for each
node A:

nnp∑
B=1

{∫ ∫
Qn

NAΘ1

[
NB

un+1
B − ũnB

∆t
+
(
Θ1ũnB + Θ2un+1

B

)
(a ·∇)NB

]
dΩ dt

+

∫ ∫
Qn

∇NAΘ1ν
(
Θ1ũnB + Θ2un+1

B

)
∇NB

}
= 0

(33a)

nnp∑
B=1

{∫ ∫
Qn

NAΘ2

[
NB

un+1
B − ũnB

∆t
+
(
Θ1ũnB + Θ2un+1

B

)
(a ·∇)NB

]
dΩ dt

+

∫ ∫
Qn

∇NAΘ2ν
(
Θ1ũnB + Θ2un+1

B

)
∇NB

}

+

∫
Qn

NA

nnp∑
B=1

NB(ũnB − unB) dΩ = 0

(33b)

Following the Matrix form for the convection equation shown in [3], The Matrix form for
the convection-diffusion equation is written, where the unknowns are un+1 and un+ , as:(

M +
2

3
∆tC +

2ν

3
∆tK

)
un+1 −

(
M − 1

3
∆tC − ν

3
∆tK

)
un

+

= 0 (34a)(
M +

1

3
∆tC +

ν

3
∆tK

)
un+1 +

(
M +

2

3
∆tC +

2ν

3
∆tK

)
un

+

= 2Mun
−

(34b)

18

A Developed codes for 1D unsteady convection

A.1 New function system_CN_LS.m

This function includes the implementation of the least-square spatial formulation combined
with Crank-Nicholson time integration scheme.

1 function [A,B,f] = system_CN_LS(xnode,a)
2 % [A,B,f] = system_CN_LS(xnode,a)
3 % L.h.s (A) and r.h.s (B,f) matrices for the second-order
4 % implicit Crank-Nicolson scheme using the consistent mass matrix.
5 %
6 % Least-Squares spatial discretization is used
7 %
8 % xnode: nodal coordinates
9 % a : velocity

10 %
11

12

13 global dt
14

15 dt_2 = dt/2;
16

17 % Gauss points and weights on the reference element [-1,1]
18 xipg = [-1/sqrt(3) 1/sqrt(3)]';
19 wpg = [1 1]';
20

21 % Shape functions and its derivatives in the reference element
22 N_mef = [(1-xipg)/2 (1+xipg)/2];
23 Nxi_mef = [-1/2 1/2; -1/2 1/2];
24

25 % Total number of nodes and elements
26 numnp = size(xnode,2);
27 numel = numnp-1;
28

29 % Number of Gauss points on an element
30 ngaus = size(wpg,1);
31

32 % Allocate storage
33 A = zeros(numnp,numnp);
34 B = zeros(numnp,numnp);
35 f = zeros(numnp,1);
36

37 % MATRICES COMPUTATION
38 % Loop on elements
39 for i=1:numel
40 unos = ones (ngaus,1);
41 h = xnode(i+1)-xnode(i);
42 xm = (xnode(i)+xnode(i+1))/2;
43 weight = wpg*h/2;
44 isp = [i i+1];
45 % Loop on Gauss points (numerical quadrature)
46 for ig=1:ngaus
47 N = N_mef(ig,:);
48 Nx = Nxi_mef(ig,:)*2/h;
49 w_ig = weight(ig);

19

50 x = xm + h/2*xipg(ig); % x-coordinate of the current Gauss point
51 % Matrices assembly
52 A(isp,isp) = A(isp,isp) + w_ig*(N'*N + dt_2^2*(a*Nx)'*(a*Nx));
53 B(isp,isp) = B(isp,isp) + w_ig*(dt*(a*Nx)'*N - ...

(dt^2/2)*(a*Nx)'*(a*Nx));
54 f(isp) = f(isp) + w_ig*(dt*(N')*SourceTerm(x) + ...

(dt^2/2)*(a*Nx)'*SourceTerm(x));
55 end
56 end

A.2 New function system_LW_2S.m

This function includes the implementation of the two-step Lax-Wendroff time integration
scheme with Galerkin spatial formulation.

1 function [A,B,f] = system_LW_2S(xnode,a)
2 % [A,B,f] = system_LW_2S(xnode,a)
3 % L.h.s (A) and r.h.s (B,f) matrices for the two-step Lax-Wendroff scheme
4 % with consistent mass matrix
5 %
6 % xnode: nodal coordinates
7 % a : velocity
8 %
9

10

11 global dt
12

13 dt_2 = dt/2;
14

15 % Gauss points and weights on the reference element [-1,1]
16 xipg = [-1/sqrt(3) 1/sqrt(3)]';
17 wpg = [1 1]';
18

19 % Shape functions and its derivatives in the reference element
20 N_mef = [(1-xipg)/2 (1+xipg)/2];
21 Nxi_mef = [-1/2 1/2; -1/2 1/2];
22

23 % Total number of nodes and elements
24 numnp = size(xnode,2);
25 numel = numnp-1;
26

27 % Number of Gauss points on an element
28 ngaus = size(wpg,1);
29

30 % Allocate storage
31 A = zeros(numnp,numnp);
32 B = zeros(numnp,numnp);
33 f = zeros(numnp,1);
34

35 % MATRICES COMPUTATION
36 % Loop on elements
37 for i=1:numel
38 unos = ones (ngaus,1);
39 h = xnode(i+1)-xnode(i);
40 xm = (xnode(i)+xnode(i+1))/2;

20

41 weight = wpg*h/2;
42 isp = [i i+1];
43 % Loop on Gauss points (numerical quadrature)
44 for ig = 1:ngaus
45 N = N_mef(ig,:);
46 Nx = Nxi_mef(ig,:)*2/h;
47 w_ig = weight(ig);
48 x = xm + h/2*xipg(ig); % x-coordinate of the current Gauss point
49 % Matrices assembly
50 A(isp,isp) = A(isp,isp) + w_ig*N'*N;
51 B(isp,isp) = B(isp,isp) + w_ig*dt*(a*Nx)'*N;
52 f(isp) = f(isp) + w_ig*dt_2*(N')*SourceTerm(x);
53 end
54 end

21

B Developed codes for 1D unsteady convection-diffusion

B.1 Modified function Galerkin.m

This function includes the implementation of Adams-Bashforth time integration scheme with
Galerkin spatial formulation.

1 function Sol = Galerkin(T,s,a,nu,f,K,M,C,xnode,dt,nstep,c,Accd1,bccd1,d_temp)
2 % Sol = Galerkin(T,s,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd1,bccd1)
3 % This function computes solution Sol at each time step using Galerkin ...

formulation
4 %
5 % Input
6 % T,s: time-integration matrices
7 % tau: stabilization matrix
8 % a,nu: problem coefficients
9 % f,K,M,C: matrices obtained by discretizing the different terms ...

of the PDE using FEM
10 % xnode: vector of nodal coordinates
11 % dt: time step
12 % nstep: number of time steps to be computed
13 % c: initial condition
14 % Accd1, bccd1: matrices to impose boundary conditions using lagrange ...

multipliers
15 % d_temp: Time discretization method (added for Adams-Bashforth ...

scheme)
16

17 % Number of points
18 npoin = size(xnode,2);
19

20 if d_temp == 3 % Adams-Bashforth
21 M_reduced = M(2:end-1,2:end-1);
22 Sol = c;
23 for i=1:nstep
24 if i == 1 % use forward Euler for 1st step
25 rhs = dt*(M*f - a*C*c - nu*K*c);
26 dc = M_reduced\rhs(2:end-1);
27 c(2:end-1) = c(2:end-1) + dc;
28 Sol = [Sol c];
29 else % use Adams-Bashforth for the rest of steps
30 rhs = dt*(M*f - 1.5*a*C*Sol(:,end) - 1.5*nu*K*Sol(:,end) + ...

0.5*a*C*Sol(:,end-1) + 0.5*nu*K*Sol(:,end-1));
31 dc = M_reduced\rhs(2:end-1);
32 c(2:end-1) = c(2:end-1) + dc;
33 Sol = [Sol c];
34 end
35 end
36 else
37 % Integration matrix
38 [n,m] = size(T);
39 Id = eye(n,m);
40

41 % Computation of the matrix necessary to obtain solution at each ...
time-step: A du = F

42 Kt = a*C + nu*K;
43

22

44 A = [];
45 for i = 1:n
46 row = [];
47 for j = 1:m
48 row = [row, Id(i,j)*M + dt*T(i,j)*Kt];
49 end
50 A = [A; row];
51 end
52

53 Mf = M*f;
54

55 nccd = size(Accd1,1);
56 Accd = []; bccd = [];
57 for i = 1:n
58 row = [];
59 for j = 1:m
60 row = [row, Id(i,j)*Accd1];
61 end
62 Accd = [Accd; row];
63 bccd = [bccd; bccd1];
64 end
65

66 nccd = n*nccd;
67 Atot = [A Accd'; Accd zeros(nccd)];
68

69 % Factorization of matrix Atot
70 [L,U] = lu(Atot);
71

72 Sol = c;
73 % Loop to compute the transient solution
74 for i=1:nstep
75 aux = dt*(-Kt*c + Mf);
76 F = [];
77 for i =1:n
78 F = [F; s(i)*aux];
79 end
80 F = [F;bccd*0];
81 dc = U\(L\F);
82 dc = reshape(dc(1:n*npoin),npoin,n);
83 c = c + sum(dc,2);
84 Sol = [Sol c];
85 end
86 end

23

References

[1] Donea, J., Huerta, A. (2004). Finite Element Methods for Flow Problems. Chichester:
Wiley, pp.141.

[2] Donea, J., Huerta, A. (2004). Finite Element Methods for Flow Problems. Chichester:
Wiley, pp.128-129.

[3] Donea, J., Huerta, A. (2004). Finite Element Methods for Flow Problems. Chichester:
Wiley, pp.143.

24

	Contents
	1 1D unsteady convection
	1.1 Propagation of a cosine profile
	1.1.1 Explicit methods
	1.1.2 Implicit methods

	1.2 Propagation of a steep front
	1.2.1 Crank-Nicholson with linear finite elements for Galerkin formulation
	1.2.2 Crank-Nicholson with linear finite elements for least-squares formulation
	1.2.3 Lax-Wendroff with linear finite elements for Galerkin formulation
	1.2.4 Two-step Lax-Wendroff with linear finite elements for Galerkin formulation

	2 1D unsteady convection-diffusion
	2.1 Galerkin and Crank-Nicholson
	2.2 Galerkin and R2,2
	2.3 Galerkin and R3,3
	2.4 Galerkin and Adams-Bashforth
	2.5 Time-discontinuous Galerkin formulation for the convection-diffusion equation

	A Developed codes for 1D unsteady convection
	A.1 New function system _ CN _ LS.m
	A.2 New function system _ LW _ 2S.m

	B Developed codes for 1D unsteady convection-diffusion
	B.1 Modified function Galerkin.m

	References

