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Problem no. 1 involves 

Argument 1: Using Galerkin formulation, four cases were tested: 

Case 1:  

Case 2:  

Case 3:  

Case 4:  

 

A comparison between the solution obtained for each case is shown in Figure 1. It is clearly seen 

that for Peclet number, 𝑃𝑒, greater than 1 the solution is unstable and node-to-node oscillations 

arises. This is due to the domination of the convection part whose stiffness matrix is non-

symmetric. Thus, a stabilization technique is needed to obtain a stable oscillation-free solution.  

 
Figure 1 Solution of problem 1 obtained using Galerkin linear FE formulation for 4 cases 

with different Peclet number 
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Argument 2: Case 3 where 𝑃𝑒 = 5 is solved using four different stabilized methods which are 

Streamline Upwind (SU), Streamline Upwind Petrov-Galerkin (SUPG), Galerkin Least-squares (GLS) 

and Sub-Grid Scale (SGS). For this, the optimal stabilization parameter, 𝜏 = ℎ 2𝑎⁄  (coth 𝑃𝑒 - 

1 𝑃𝑒⁄ ), is used. The solutions obtained using linear elements are shown in Figure 2. It is noted that 

the nodal values are exact in all cases which makes all the approximations identical. The reason is 

the use of the optimal stabilization parameter as well as having a constant source term. 

 
Figure 2 Solution of problem 1 - case 3 obtained using four different stabilized methods with linear elements 

 

Argument 3: The effect of the stabilization parameter is investigated. Again, case 3 where 𝑃𝑒 = 5 

is solved using two different values of the stabilization parameter, 𝜏 = 1 and 𝜏 = 0.01. The results 

are shown in Figure 3. It is observed that for large value of 𝜏 the solution becomes very smooth, 

while for very small value of 𝜏 the solution is unstable. This could be interpreted if we recall that 

the parameter 𝜏 is directly proportional to the amount of added diffusion. Thus, extra added 

diffusion leads to a very smooth stable but inaccurate solution, while very small added diffusion 

is not enough to stabilize the convection dominated problem. Therefore, the value of the 

stabilization parameter should be chosen carefully to obtain a stable and accurate solution. For 

this 1D case with linear elements, the optimal value of 𝜏 exists and this would be the best choice. 

 

 

Pe = 5 
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Figure 3 Solution of problem 1 -  case 3 obtained using SUPG with different values of τ 

 

Argument 4: If quadratic elements are used, we wouldn't obtain nodally exact solution if the 

previous optimal value of the stabilization parameter for linear elements is used, see Figure 4 

where the solution obtained using SUPG with 10 quadratic elements are used. However, to obtain 

nodally exact solution, the stabilization parameter should be further adjusted (Donea and Huerta, 

2004). 

 
Figure 4 The nodal solution of problem 1 - case 3 obtained using SUPG with 10 quadratic elements (𝜏=optimal value 

of linear elements) 
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Argument 5: The problem is changed to Problem no. 3 which involves  

The source term is now non-zero and non-constant. 

Repeating the previous arguments, it is again observed that for Galerkin formulation, Peclet 

number must be less than or equal to 1 to obtain a stable solution. See Figure 5. 

 
Figure 5 Solution of problem 3 obtained using Galerkin linear FE formulation for 4 cases with different Peclet 

number 

 

        Using the four stabilized methods mentioned earlier (SU, SUPG, GLS and SGS) for case 3 

where 𝑃𝑒 = 5, the results are shown in Figure 6.  The only difference appears in the non-

consistent case of SU method, where the approximated solution is far from the exact one, while 

the other consistent methods produce accurate solutions which are nodally exact. The reason is 

that SU method doesn't perform well for non-constant source terms even if the optimal 

stabilization parameter is used. 

        Moreover, the effect of the stabilization parameter is again proved to be crucial to achieve 

stable and yet accurate solution. Figure 7 shows the solution of case 3 obtained using SUPG with 

linear elements for two different values of the stabilization parameter, 𝜏 = 1 and 𝜏 = 0.01. Again, 

large value of 𝜏 yields a very smooth stable but inaccurate solution while very small value of 𝜏 

results in unstable solution. Thus, the stabilization parameter must be chosen carefully. 

Furthermore, the optimal value of 𝜏 yields nodally exact solution. 

        Again, the need for a modified optimal stabilization parameter for quadratic elements is 

shown, where in Figure 8 the solution obtained using SUPG with 10 quadratic elements is shown 

for problem 3 - case 3. The nodal solution is observed to be inexact. 
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Figure 6 Solution of problem 3 - case 3 obtained using four different stabilized methods with linear elements 

 

 
Figure 7 Solution of problem 3 -  case 3 obtained using SUPG with different values of τ 
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Figure 8 The nodal solution of problem 3 - case 3 obtained using SUPG with 10 quadratic elements (τ=optimal value 

of linear elements 

Argument 6:  

 

 

And  

For this problem, the exact solution is easily found by solving a second order ordinary differential 

equation with constant coefficients. It is obtained to be used as a reference for the numerical 

results. 

        The solution obtained using Galerkin, SUPG, GLS and SGS methods in a uniform mesh of 10 

linear elements is shown in Figure 9. In this problem, the Peclet number is 5, it is observed that 

an oscillation-free solution is only obtained in cases of SGS method. It is also observed that the 

oscillations in case of GLS is more compared to SUPG. This is happening because of using linear 

elements for a problem with positive reaction coefficient. It can be further understood if we recall 

the GLS test function 

 

It can be seen that for linear elements the second term is zero, and for positive values of the 

reaction coefficient 𝜎, GLS is SUPG with the Galerkin term weighted 1 + 𝜎𝜏 times more. This 

issue is solved in case of SGS method where the test SGS test function is given by: 

GLS test function: 
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Thus, in this case the Galerkin term is weighted by 1 − 𝜎𝜏 and thus SGS has no oscillations [2]. 

 
Figure 9 The solution of the steady convection-diffusion-reaction equation obtained using different stabilized 

methods 

Argument 7: Using Galerkin formulation with a refined mesh near the sharp front yields a stable 

and accurate solution. Figure 10 shows the solution obtained using 20 linear elements, where the 

element size is 0.1 in the region [0,0.9] then smaller elements of size 0.01 is used in the region 

[0.9,1]. 

 
Figure 10 Solution of the steady convection-diffusion-reaction equation obtained using Galerkin FE with a refined 

mesh near the sharp front 

 

SGS test function: 
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Appendix 1: Developed Parts of the code for steady convection-diffusion problem 

SUPG_System 

    % Loop on Gauss points 
    for ig = 1:ngaus 
        N_ig = N(ig,:); 
        Nx_ig = Nxi(ig,:)*2/h; 
        N2x_ig = N2xi(ig,:)*(2/h)^2; 
        w_ig = wgp(ig)*h/2;         
        Ke = Ke + w_ig*(N_ig'*(a*Nx_ig) + Nx_ig'*(nu*Nx_ig))... 
            + w_ig*tau*(a*Nx_ig)'*(a*Nx_ig-nu*N2x_ig); 
        x = N_ig*Xe; % x-coordinate of the gauss point 
        s = SourceTerm(x,example);  
        fe = fe + w_ig*(N_ig'+tau*a*Nx_ig')*s; 
    end 

 

GLS_System 

    % Loop on Gauss points 
    for ig = 1:ngaus 
        N_ig = N(ig,:); 
        Nx_ig = Nxi(ig,:)*2/h; 
        N2x_ig = N2xi(ig,:)*(2/h)^2; 
        w_ig = wgp(ig)*h/2;         
        Ke = Ke + w_ig*(N_ig'*(a*Nx_ig) + Nx_ig'*(nu*Nx_ig))... 
            + w_ig*tau*(a*Nx_ig-nu*N2x_ig)'*(a*Nx_ig-nu*N2x_ig); 
        x = N_ig*Xe; % x-coordinate of the gauss point 
        s = SourceTerm(x,example);  
        fe = fe + w_ig*(N_ig'+tau*(a*Nx_ig'-nu*N2x_ig'))*s; 
    end 

 

SGS_System 

    % Loop on Gauss points 
    for ig = 1:ngaus 
        N_ig = N(ig,:); 
        Nx_ig = Nxi(ig,:)*2/h; 
        N2x_ig = N2xi(ig,:)*(2/h)^2; 
        w_ig = wgp(ig)*h/2;         
        Ke = Ke + w_ig*(N_ig'*(a*Nx_ig) + Nx_ig'*(nu*Nx_ig))... 
            + w_ig*tau*(a*Nx_ig+nu*N2x_ig)'*(a*Nx_ig-nu*N2x_ig); 
        x = N_ig*Xe; % x-coordinate of the gauss point 
        s = SourceTerm(x,example);  
        fe = fe + w_ig*(N_ig'+tau*(a*Nx_ig'+nu*N2x_ig'))*s; 
    end 
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Appendix 2: Developed Parts of the code for steady convection-diffusion-reaction problem 

Galerkin_System 

    % Loop on Gauss points 
    for ig = 1:ngaus 
        N_ig = N(ig,:); 
        Nx_ig = Nxi(ig,:)*2/h; 
        w_ig = wgp(ig)*h/2;         
        Ke = Ke + w_ig*(N_ig'*(a*Nx_ig) + Nx_ig'*(nu*Nx_ig) + 

N_ig'*sigma*N_ig); 
        x = N_ig*Xe; % x-coordinate of the gauss point 
        s = SourceTerm(x,example);  
        fe = fe + w_ig*(N_ig')*s; 
    end 

 

SUPG_System 

    % Loop on Gauss points 
    for ig = 1:ngaus 
        N_ig = N(ig,:); 
        Nx_ig = Nxi(ig,:)*2/h; 
        N2x_ig = N2xi(ig,:)*(2/h)^2; 
        w_ig = wgp(ig)*h/2;         
        Ke = Ke + w_ig*(N_ig'*(a*Nx_ig) + Nx_ig'*(nu*Nx_ig) + 

N_ig'*sigma*N_ig)... 
            + w_ig*tau*(a*Nx_ig)'*(a*Nx_ig - nu*N2x_ig + sigma*N_ig); 
        x = N_ig*Xe; % x-coordinate of the gauss point 
        s = SourceTerm(x,example);  
        fe = fe + w_ig*(N_ig' + tau*a*Nx_ig')*s; 
    end 

 

GLS_System 

    % Loop on Gauss points 
    for ig = 1:ngaus 
        N_ig = N(ig,:); 
        Nx_ig = Nxi(ig,:)*2/h; 
        N2x_ig = N2xi(ig,:)*(2/h)^2; 
        w_ig = wgp(ig)*h/2;         
        Ke = Ke + w_ig*(N_ig'*(a*Nx_ig) + Nx_ig'*(nu*Nx_ig) + 

N_ig'*sigma*N_ig)... 
            + w_ig*tau*(a*Nx_ig - nu*N2x_ig + sigma*N_ig)'*(a*Nx_ig - 

nu*N2x_ig + sigma*N_ig); 
        x = N_ig*Xe; % x-coordinate of the gauss point 
        s = SourceTerm(x,example);  
        fe = fe + w_ig*(N_ig'+tau*(a*Nx_ig' - nu*N2x_ig' + 

sigma*N_ig'))*s; 
    end 
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SGS_System 

    % Loop on Gauss points 
    for ig = 1:ngaus 
        N_ig = N(ig,:); 
        Nx_ig = Nxi(ig,:)*2/h; 
        N2x_ig = N2xi(ig,:)*(2/h)^2; 
        w_ig = wgp(ig)*h/2;         
        Ke = Ke + w_ig*(N_ig'*(a*Nx_ig) + Nx_ig'*(nu*Nx_ig) + 

N_ig'*sigma*N_ig)... 
            + w_ig*tau*(a*Nx_ig + nu*N2x_ig - sigma*N_ig)'*(a*Nx_ig - 

nu*N2x_ig + sigma*N_ig); 
        x = N_ig*Xe; % x-coordinate of the gauss point 
        s = SourceTerm(x,example);  
        fe = fe + w_ig*(N_ig'+tau*(a*Nx_ig' + nu*N2x_ig' - 

sigma*N_ig'))*s; 
    end 

 

 

Exact solution for the problem 

if problem == 1 % already modified 
    r1 = (a+sqrt(a^2 + 4*nu*sigma))/(2*nu); 
    r2 = (a-sqrt(a^2 + 4*nu*sigma))/(2*nu); 
    c1 = 1.418784356*10^-51; 
    c2 = -c1; 
    res = c1*exp(r1*x)+c2*exp(r2*x); 
%     res = (1-exp(x*a/nu))/(1-exp(a/nu)); 
% elseif problem == 2 
%     res = (x + (1 - exp(a/nu*x))/((exp(a/nu)-1)))/a; 
% elseif problem == 3 
%     aux = pi*(a^2+nu^2*pi^2); 
%     e = exp(a/nu); 
%     c1 = (-aux+a*(e+1))/(aux*(e-1)); 
%     c2 = (aux-2*a)/(aux*(e-1)); 
%     res = c1 + c2*exp(a*x/nu) + nu*pi*(sin(pi*x)-

a*cos(pi*x)/(nu*pi))/aux; 
end 

 

A part added to account for quadratic elements 

if p == 1 
nPt = nElem + 1; 
h = (dom(2) - dom(1))/nElem; 
X = (dom(1):h:dom(2))';  
T = [1:nPt-1; 2:nPt]'; 
elseif p == 2 
nPt = 2*nElem + 1; 
h = (dom(2) - dom(1))/nElem; 
X = (dom(1):h/2:dom(2))'; 
T = [1:2:nPt-2; 2:2:nPt-1; 3:2:nPt]'; 
end 

 

 


