
Propagation of a steep front  

Problem Statement:- 

For the solution of  one-dimensional transient pure convection problem 

 

𝑢𝑡 + 𝑎𝑢𝑥 = 0; 𝑎 = 1; 𝑡𝜖 (0,0.6]; 𝑥 𝜖 (0,1) 

 

for the given problem, S=0 

With the given initial  

𝑢0(𝑥) = {1 𝑖𝑓 𝑥 ≤ 0.2 ; 0 𝐸𝑙𝑠𝑒 

u (0, t) =1 , for the homogeneous Dirichlet inflow boundary condition  

1. Courant Number: 

C= 
|𝑎|∆𝑡

∆𝑥
 = 0.75 

2. Crank-Nicholson scheme in time and the Galerkin formulation in 

space 

𝑢𝑛+1−𝑢𝑛

∆𝑡
+ 

1

2
 (𝒂 . 𝛁)(𝑢𝑛+1 − 𝑢𝑛)=−𝒂 ∗ 𝛁𝑢𝑛 (CN Scheme) 

Weighted Residual and Galerkin Formulation:-  

(w,
∆𝑢𝑛

∆𝑡
)+ (w,

1

2
 (𝒂 . 𝛁)∆𝑢𝑛) =−(𝑤 , 𝒂 . 𝛁𝑢𝑛 ) 

At unit speed of discontinuous initial data, the given 1D problem considers the convection. At 

position x = 0.2 of the computational domain (0, 1), the discontinuity occurs over one 

element and is initially located. The given inlet condition is imposed. Uniform linear 

elements of size h=0.02 is employed as a mesh. In Figure 1, the results at time t = 0.6 are 

displayed together with the exact solution. They were obtained (for a Courant number C = 

0.75) by combining the Crank—Nicolson scheme (with linear elements) and the Galerkin 

formulation, 

Spurious oscillations over the whole computational domain being induced, can be observed 

that the Crank—Nicolson Scheme with Galerkin formulation. Because Crank—Nicolson is 

not a monotone scheme, residual oscillations remain at the front.  

 

 



 
 

 

 

 

 

 

 
 
 

Figure 1: Using the Crank—Nicolson scheme with the Galerkin, propagation of a steep front  

Method at C =0.75. The graphs show the computed solutions at time t = 0.60, together with 

the exact solution. 

3.  Crank-Nicholson scheme in time and theleast-squares formulation in 

space 

Crank-Nicholson scheme in time: 

𝑢𝑛+1−𝑢𝑛

∆𝑡
  + 

1

2
 (𝒂 . 𝛁)(𝑢𝑛+1 − 𝑢𝑛)=−𝒂 ∗ 𝛁𝑢𝑛 

This equation can be viewed as a spatial strong form that must be solved at each time step, 

namely𝐿(∆𝑢) − 𝑓 = 0. Where L=
1

∆𝑡
+

1

2
 (𝒂 . 𝛁)is the spatial differential operator and f = 

−𝒂 ∗ 𝛁𝑢𝑛.Minimization of the least-squares functional, (𝐿(∆𝑢) − 𝑓, 𝐿(∆𝑢) − 𝑓), produces 

the least square equation (𝐿(𝑤), 𝐿(∆𝑢) − 𝑓)= 0 which takes the following explicit form. 

(
𝑤

∆𝑡
+

1
2

(𝒂 . 𝛁𝐰),
∆𝒖
∆𝒕

+
1
2

(𝒂 . 𝛁∆𝐮)) = (
𝑤

∆𝑡
+

1
2

(𝒂 . 𝛁𝐰), −𝒂 ∗ 𝛁𝑢𝑛) 

 

At time t = 0.6, the results are displayed in Figure 2 together with the exact solution. by 

combining the Crank—Nicolson scheme (with linear elements) and the least-squares 

formulation of Carey and Jiang, they were obtained (for a Courant number C = 0.75). By the 



 
 

Galerkin formulation over the whole computational domain, It is observed that Crank—

Nicolson with least-squares succeeds in removing the spurious oscillations is induced  

 

 

 

 

 

 
 

Figure 2: Using the Crank—Nicolson scheme with the least-squares method, propagation of 

a steep front. The Courant number is C = 0.75. The graphs show the computed solutions at 

time t = 0.60, together with the exact solution. 

 

4. Second-order Lax-Wendroffmethod 
 

 

TG2 Scheme:-  

 
𝑢𝑛+1−𝑢𝑛

∆𝑡
  =𝑢𝑡

𝑛 +
∆𝑡

2
𝑢𝑡𝑡

𝑛 + 𝑜(∆𝑡2);  

After simplification:-  

 
𝑢𝑛+1−𝑢𝑛

∆𝑡
 = −(𝒂. 𝛁)𝑢𝑛+ 

∆𝑡

2
(𝒂. 𝛁)2𝑢𝑛 

Galerkin Formulation:-  

The Galerkin formulation of the given 1D problem for this scheme becomes: 

(w,
∆𝑢

∆𝑡
 )= (𝑎𝑤𝑥 , 𝑢𝑛 − 

∆𝑡

2
𝒂. 𝛁𝑢𝑛 )  

In Figure 3, the results at time t = 0.6 are displayed together with the exact solution. They 

were obtained (for a Courant number C = 0.75). As C=0.75, so the exact solution can’t be 



 
 

expected and the method is unstable for C=0.75. The Lax-Wendroff scheme with consistent 

mass representation (TG2) cannot be operated with C2 >1/3, Moreover, it shows a phase lead 

at C= 1/2. The number of time steps should be reduced to obtain good results so that the 

courant number will fall in the stability range of the TG2 scheme. In the Figure 4, the 

improved solutions obtained using the TG2 scheme is shown for C=0.3 is shown.  

 

 
Figure 3: For the C= 0.75, solutions obtained using the TG2 method  

 

Figure 4: for the C= 0.3, solutions obtained using the TG2 method  



 
 

 

 

 

5. TG2-2S 

The explicit Taylor—Galerkin method TG2 of  two-step versions which include first time 

derivatives only and are thus easier to implement than the one-step method TG2.  

Scheme:  

𝑢𝑛+1/2 =  𝑢𝑛 + 
∆𝑡
2

𝑢𝑡
𝑛 

𝑢𝑛+1 =  𝑢𝑛 + ∆𝑡 𝑢𝑛+1/2 

Galerkin Formulation for the given problem:-  

 

〈𝑤,
𝑢𝑛+1/2−𝑢𝑛

∆𝑡
〉 = −

1

2
〈w,𝑎𝑢𝑥

𝑛〉 

 

〈𝑤,
𝑢𝑛+1 − 𝑢𝑛

∆𝑡
〉 = −〈𝑤, 𝑎𝑢𝑥

𝑛+1/2〉 

 

At C=0.75 this scheme is unstable. and at C=0.3 tt shows spurious oscillations. Which can be 

depicted from the Figure 5 and 6. Using the Discontinuous Galerkin in space and the second-

order two-step Lax-Wendroff method in time, the solutions can be improved. The two-step 

TG2 method integrates in time the semi-discrete equations resulting from the discontinuous 

Galerkin method. 



 
 

 
 

 

Figure 5: for the C= 0.75 solutions obtained using the TG2-2S method  

 

 
Figure 6:Solutions obtained using the TG2-2S (C=0.3) 

 

 

CODE:-  



 
 

Implementation of Initial Conditions: 

% INITIAL CONDITION FOR THE TRANSIENT ANALYSIS 
% Steep front 
u = zeros(numnp, nstep+1); 
x0 = 0.2; 
fori=1:numnp 
dist = xnode(i)-x0; 
ifdist<= 0 
u(i,1) = 1; 
end 
end 

 

1. Crank-Nicholson scheme in time and linear finite element for the 

Galerkin scheme in space: 

function [A,B,f] = system_CN(xnode,a) 
% [A,B,f] = system_CN(xnode,a) 
% L.h.s (A) and r.h.s (B,f) matrices for the second-order 
% implicit Crank-Nicolson scheme using the consistent mass matrix. 
%  
% xnode: nodal coordinates 
% a :    velocity 
% 

 

 
globaldt 

 
dt_2 = dt/2; 

 
% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]';  
wpg = [1 1]'; 

 
% Shape functions and its derivatives in the reference element 
N_mef=  [(1-xipg)/2 (1+xipg)/2];   
Nxi_mef=  [-1/2 1/2; -1/2 1/2]; 

 
% Total number of nodes and elements 
numnp = size(xnode,2);  
numel = numnp-1;  

 
% Number of Gauss points on an element 
ngaus = size(wpg,1); 

 
% Allocate storage 
A = zeros(numnp,numnp); 
B = zeros(numnp,numnp); 
f = zeros(numnp,1); 

 
% MATRICES COMPUTATION 
% Loop on elements 
fori=1:numel 
unos = ones (ngaus,1); 
    h = xnode(i+1)-xnode(i); 
xm = (xnode(i)+xnode(i+1))/2; 
weight = wpg*h/2; 



 
 

isp = [i i+1];  
% Loop on Gauss points (numerical quadrature) 
forig=1:ngaus 
        N = N_mef(ig,:); 
Nx = Nxi_mef(ig,:)*2/h; 
w_ig = weight(ig); 
        x = xm + h/2*xipg(ig); % x-coordinate of the current Gauss point 
% Matrices assembly 
A(isp,isp) = A(isp,isp) + w_ig*(N'*N - dt_2*(a*Nx)'*N); 
B(isp,isp) = B(isp,isp) + w_ig*dt*(a*Nx)'*N; 
f(isp) = f(isp) + w_ig*(N')*SourceTerm(x); 
end 
end 

2. Crank-Nicholson scheme in time and the least-squares formulation in 

space (CJ): 
function [A,B,f] = system_CJ (xnode,a) 
% [A,B,f] = system_CJ(xnode,a) 
% L.h.s (A) and r.h.s (B,f) matrices for Carey-Jiang  method 
% Crank-Nicolson method is used for the time-integration whereas  
% spatial discretization is performed using linear finite 
% elements and the least-squares formulation. 
%    xnode: nodal coordinates 
%    a :    convection velocity 
% 

 
globaldt 

 
dt_2 = dt/2; 

 
% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]';  
wpg = [1 1]'; 

 
% Shape functions on the reference element 
N_mef=  [(1-xipg)/2 (1+xipg)/2];   
Nxi_mef=  [-1/2 1/2; -1/2 1/2]; 

 
% Total number of nodes and elements 
numnp = size(xnode,2);  
numel = numnp-1;  

 
% Number of Gauss points in each element 
ngaus = size(wpg,1); 

 
% Allocate storage 
A = zeros(numnp,numnp); 
B = zeros(numnp,numnp); 
f = zeros(numnp,1); 

 
% MATRICES COMPUTATION 
% Loop on elements 
fori=1:numel 
unos = ones (ngaus,1); 
    h = xnode(i+1)-xnode(i); 
xm = (xnode(i)+xnode(i+1))/2; 
weight = wpg*h/2; 
isp = [i i+1];  
% Loop on Gauss points (numerical quadrature) 
forig=1:ngaus 



 
 

        N = N_mef(ig,:); 
Nx = Nxi_mef(ig,:)*2/h; 
w_ig = weight(ig); 
        x = xm + h/2*xipg(ig); % x-coordinate of Gauss point 
% Matrices assembly 
A(isp,isp) = A(isp,isp) + w_ig*(N'*N + dt_2*a*(N'*Nx + Nx'*N + 

dt_2*a*Nx'*Nx)); 
B(isp,isp) = B(isp,isp) - w_ig*dt*a*(N'*Nx + dt_2*a*Nx'*Nx); 
% In this case there is no source term 
end 
end 

 

3. TG2(Lax-Wendroff) 
function [A,B,f] = system_LW(xnode,a) 
% [A,B,f] = system_LW(xnode,a) 
% L.h.s (A) and r.h.s (B,f) matrices for the second-order 
% explicit Taylor-Galerkin method (Lax-Wendroff). 
% The spatial discretization is performed using linear finite 
% elements and the Galerkin formulation. 
%    xnode: nodal coordinates 
%    a :    convection velocity 
% 

 
globaldt 

 
dt_2 = dt/2; 

 
% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]';  
wpg = [1 1]'; 

 
% Shape functions on the reference element 
N_mef=  [(1-xipg)/2 (1+xipg)/2];   
Nxi_mef=  [-1/2 1/2; -1/2 1/2]; 

 
% Total number of nodes and elements 
numnp = size(xnode,2);  
numel = numnp-1;  

 
% Number of Gauss points in each element 
ngaus = size(wpg,1); 

 
% Allocate storage 
A = zeros(numnp,numnp); 
B = zeros(numnp,numnp); 
f = zeros(numnp,1); 

 
% MATRICES COMPUTATION 
% Loop on elements 
fori=1:numel 
unos = ones (ngaus,1); 
    h = xnode(i+1)-xnode(i); 
xm = (xnode(i)+xnode(i+1))/2; 
weight = wpg*h/2; 
isp = [i i+1];  
% Loop on Gauss points (numerical quadrature) 
forig=1:ngaus 
        N = N_mef(ig,:); 
Nx = Nxi_mef(ig,:)*2/h; 



 
 

w_ig = weight(ig); 
        x = xm + h/2*xipg(ig); % x-coordinate of Gauss point 
% Matrices assembly 
A(isp,isp) = A(isp,isp) + w_ig*N'*N; 
B(isp,isp) = B(isp,isp) + w_ig*dt*(a*Nx)'*(N-dt_2*a*Nx); 
f(isp) = f(isp) + dt*w_ig*(dt_2*a*Nx + N)'*SourceTerm(x); 
end 
end 

 

4. TG2-2S:  

function [A1,B1,f1,A2,B2,f2,C2] = system_TG22S (xnode,a) 
% [A1,B1,f1,A2,B2,f2,C2] = system_TG32S(xnode,a) TWO STEP 
% The spatial discretization is performed using linear finite 
% elements and the Galerkin formulation. 
% xnode: nodal coordinates 
% a : convection velocity 
% 
globaldt 
%alpha=1/9; %%%ALPHA= 1/9 (TG3); ALPHA 1/12 ( TG4) 
%dt_2 = dt*dt/2; 
%dt2_alpha = dt^2*alpha; %%%%%%%%%%%%% ALPHA 
%% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]'; 
wpg = [1 1]'; 
% Shape functions on the reference element 
N_mef = [(1-xipg)/2 (1+xipg)/2]; 
Nxi_mef = [-1/2 1/2; -1/2 1/2]; 
% Total number of nodes and elements 
numnp = size(xnode,2); 
numel = numnp-1; 
% Number of Gauss points in each element 
ngaus = size(wpg,1); 
% Allocate storage 
A1 = zeros(numnp,numnp); 
B1 = zeros(numnp,numnp); 
f1 = zeros(numnp,1); 
A2 = zeros(numnp,numnp); 
B2 = zeros(numnp,numnp); 
f2 = zeros(numnp,1); 
C2 = zeros(numnp,numnp); 
% MATRICES COMPUTATION 
% Loop on the elements 
fori=1:numel 
unos = ones (ngaus,1); 
h = xnode(i+1)-xnode(i); 
xm = (xnode(i)+xnode(i+1))/2; 
weight = wpg*h/2; 
isp = [i i+1]; 
% Loop on Gauss points (numerical quadrature) 
forig = 1:ngaus 
N = N_mef(ig,:); 
Nx = Nxi_mef(ig,:)*2/h; 
w_ig = weight(ig); 
x = xm + h/2*xipg(ig); % x-coordinate of Gauss point 
% Matrices assembly 
A1(isp,isp) = A1(isp,isp) + w_ig*(N'*N); 
B1(isp,isp) = B1(isp,isp) - w_ig*((dt/2*N'*(a*Nx))); 
f1(isp) = f1(isp) + w_ig*(N')*SourceTerm(x); 
A2(isp,isp) = A2(isp,isp) + w_ig*(N'*N); 
B2(isp,isp) = B2(isp,isp); 



 
 

f2(isp) = f2(isp) + w_ig*(N')*SourceTerm(x); 
C2(isp,isp) = C2(isp,isp) - w_ig*(dt*N'*(a*Nx)); 
end 
end 

 

STEPS TO WRITE THE ENTIRE MATRIX:-  

 
% Entire matrix (including boundary condition); 
%Atot = [A Accd';Accd 0]; 
%[L,U] = lu(Atot); 
if meth == 8% 2-step method 
A1tot = [A1 Accd';Accd zeros(2)]; 
[L1,U1] = lu(A1tot); 
A2tot = [A2 Accd';Accd zeros(2)]; 
[L2,U2] = lu(A2tot); 
else 
Atot = [A Accd';Accd zeros(2)]; 
[L,U] = lu(Atot); 
end 

 

SOLUTION STEPS:-  

% SOLUTION AT EACH TIME STEP  
for n = 1:nstep 
if meth == 8 % 2-step method 
btot = [B1*u(:,n)+ f1; bccd]; 
aux = U1\(L1\btot); 
u_m = u(:,n) + aux(1:numnp); 
btot = [C2*u_m + f2; bccd]; 
aux = U2\(L2\btot); 
u(:,n+1) = u(:,n) + aux(1:numnp); 
else 
btot = [B*u(:,n)+f; bccd]; 
aux = U\(L\btot); 
u(:,n+1) = u(:,n) + aux(1:numnp); 
end 
end 

 

 

----END---- 


