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The cavity flow problem is a stander benchmark test for incompressible flows. The figure below
shows a schematic representation of the problem setting. The goal of this exercise is to analyze the
results obtained when adopting either the Stokes or the Navier-Stoke equations. Use the code in
HW2Files_Cavity to compute the finite element approximation of these problems and answer the
questions below.

(a) Use the script mainStokes.m to compute the solution of the Stokes problem using a uniform,
structured mesh of Q2Q0, Q2Q1, P1P1 and MINI (P+

1 P1) elements, th 20 elements per side.
Comment on the results.

Let us present the results obtained for the cases proposed. Figure 0.1 contains the results for
case of choosing Q2 elements for the velocity and Q0 elements for the pressure. As it can be seen,
the main feature of this solution is than it gives a discontinuous pressure field as the pressure is
contant inside the finite element. This combination does not capture quite well the solution at the
upper corner.

(a) Mesh of Q2Q0 elements (b) Streamlines
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(c) Velocity field
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(d) Pressure field

Figure 0.1: Results obtained for the case of a structured mesh of Q2 elements for velocity and Q0
elements for pressure. In (a) red nodes are for pressure and blue ones for velocity.
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All in all, this element provides reliable results, as it satisfies the socalled inf-sup conditions,
which guaranties the existence and uniqueness of the solution.

Figure 0.2 displays the results when the Q2Q1 elements are chosen, i.e. with continuous
biquadratic velocity representation and continuos bilinear pressure, respectively. One can note here
the symmetric character of the streamlines in Figure 0.2(b) and in the velocity field Figure 0.2(c).
Recall here that the Q2Q1 element is LBB-conforming exhibiting optimal quadratic convergence.
Thus, it provides accurate results. At least, more accurate than the ones presented previously for
the Q2Q0 element, specially for the pressure field, which is now continuous.

(a) Mesh of Q2Q1 elements. (b) Streamlines
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(c) Velocity field
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(d) Pressure field

Figure 0.2: Results obtained for the Q2Q1 (Taylor-Hood) element.

Let us now present a discussion for the case of choosing a linear triangular representation
for both velocity and pressure, i.e. P1P1 element. Figure 0.3 shows the results obtained after
executing the code for this element. As discussed in the class, this element does not satisfy the
LBB condition, which guarantees the uniqueness and existence of solution. Therefore, they present
a spurious node-to-node response for the pressure field. Also, for the case of the streamlines we
observe the existence of some oscillation specially on the boundaries of the mesh, Figure 0.3(b).
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On the contrary, it is difficult to predict the spurious solution by only looking at the velocity field,
Figure 0.3(c). In conclusion, this solution should be disregarded.

(a) Mesh of P1P1 elements (b) Strealines
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(c) Velocity field

1

-3000

-2000

0.8
1

-1000

0.6 0.8

0

0.60.4

1000

0.4
0.2

0.2

0 0

(d) Pressure field

Figure 0.3: Results obtained for the non-LBB-conforming P1P1 element.

Finally, we include the results obtained for the simulation of the problem for the socalled
MINI(P1+P1) element, Figure 0.4. The particular characteristic of this element is that it considers
a piecewiese velocity field enriched with a bubble function. The pressure is continous and piecewise
linear. This element is also LBB compliant and thus, as expected, we obtain reasonable results for
preassure. Again note the symmetry of the streamlines with respect to the vertical axis, Figure
0.4(b).
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(a) (b)
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Figure 0.4: Results obtained for the MINI P1+P1 element.

(b) Compute the solution of the Stokes problem considering (i) a structured uniform mesh of Q2Q1

with 20 elements per side (ii) a structured mesh of 20x20 Q2Q1 elements refines near the walls.
Comment on the results. Describe the main properties of the velocity and pressure fields.Are
there any differences between the solutions obtained with these two meshes? Which one do you
think is best? Why?

In this section we present to analyze the effect of solving the problem when a refined mesh near
the walls is considered, for Q2Q1 elements.

For the case of the structured uniform mesh, the results were already presentend in Figure
0.2, where it was noted the complete symmetry of the solution for streamlines and the realiable
solution for the pressure field as the element is LBB-conforming. Also, recall that this element has
quadratic convergence.

Figure 0.5 shows now the solution for the case of the Q2Q1 element but with a refined mesh
near the walls, Figure 0.5(a). The solution for the case of the streamlines does not differ much
from the case of the uniform mesh. Note the simmetry of this plot, Figure 0.5(b). On the other
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hand, for the case of the velocity field it seems like there is some difference as the velocity is more
concentrated near the upper boundary. For the case of the pressure field, Figure 0.5(d), we observe
that, even though both plots represent similiar shape, for the case of the refined mesh there is a
smoother and thicker transition from zero to non-zero values of the pressure on the upper corner
of the boundary.

(a) Refined mesh of Q2Q1 elements. (b) Streamlines.
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(c) Velocity field.
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(d) Pressure field.

Figure 0.5

For this problem, one should realize that threre is a descontinuity in the boundary conditions
at the two upper cornes of the cavity. Note that velocity v1 changes abruptly from zero value
to one. Consequently, a refined mesh can be used within this zone in order to catch better the
velocity change therefore providing a more accurate computation. For pressue, a smoother field is
obtained.

(c) Modify the Stokes code to solve the problem using a GLS stabilized formulation with P1P1

elements. Describe the formulation you are using and the choice of the stabilizaation parameter.
Is the method behaving as expected?
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The stabilization of the Stokes problem pretends to enforce the positive definiteness of the
final matrix of the system to be solved. This basically means to fulfill the inf-sup condition which
guarantees the solution of the problem. This is done by modifying the Galerkin weak form in order
to render non-zero the diagonal term resulting from the incompressiblity condition. In practice,
the weak form is modified by adding the terms coming from a minization of a least squares form.

For the case of linear elements, the GLS stabilization technique does not affect the weak form of
the momentun equation because terms involving second derivatives cancel. Then, the formulation
can be stated as

Find vh ∈ Sh and ph ∈ Qh, such that, for all (wh, qh) in Vh ×Qh,{
a(wh,vh) + b(w, ph) = (wh, bh) + (wh, th)ΓN

b(vh, qh)−
∑nel

e=1 τe(∇qh,∇ph)Ωe = −
∑nel

e=1 τe(∇qh, bh)Ωe

But recall that for this problem does not involve neither any source term nor Neumann bound-
ary conditions. Thus, we need to solve,

Find vh ∈ Sh and ph ∈ Qh, such that, for all (wh, qh) in Vh ×Qh,{
a(wh,vh) + b(w, ph) = 0
b(vh, qh)−

∑nel
e=1 τe(∇qh,∇ph)Ωe = 0

which derives into the following discrete problem,

[
K G
GT D

]{
u
p

}
=

{
0
0

}

where the Dirichlet boundary condition need to be included in order to successfully obtain the
solution of the problem. Matrices K and G are already provided and matrix D can be imple-
mented. It has the form of a typical stiffness matrix, i.e.

D = Λ(e)D(e) ⇒ D
(e)
ij =

∫
Ωe

τe∇Ni ·∇Nj dΩ

The stabilization parameter is chosen as

τe = α0
h2
e

4ν

In this expression, he is an average element size and ν is the viscosity and the parameter α0 is
chosen to be equal to 1/3, as it is proposed in [1] (chapter 6, page 288).

Let us now present the results obtained for the case of considering a P1P1 element with a GLS
stabilized formulation on a mesh of 20x20 elements with refinement near the walls. Now, as one
can note, the solution of this non-LBB conforming element has been stabilized and a non-spurious
solution is obtained in the pressure field, in comparison with Figure 0.3(d). Also, in the case of
the streamlines, in comparison with Figure 0.3(b), the image does not show some spurious solution
near the boundaries and seems to be more accurate and realiable now.
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(a) Refined mesh of P1P1 elements.
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(b) Streamlines.
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(c) Velocity field.
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(d) Pressure field.

Please refer to Listing 1, for a detailed Matlab implementation. A function for obtaining matrix
D has been programmed, which is executed when it is chosen in the code.

Listing 1: GLS stabilization
1 function D = GLSMatrix(XP,TP, referenceElement ,nx)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This function computes the matrix arising from the discretization
4 % of tau*(grad q, grad p) needed for the GLS stabilization technique
5 %
6 % Inputs:
7 % XP --> pressure nodes
8 % TP --> connectivity of pressure nodes
9 % referenceElement --> structure containing shape functions ,
10 % gauss points , etc...
11 %
12 % nx --> number of elements in the discretization , needed to
13 % compute tau
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14 %
15 % Output:
16 % D --> matrix for the GLS formulation
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18
19
20 % Extract local variables
21 ngaus = referenceElement.ngaus;
22 wgp = referenceElement.GaussWeights;
23 NP = referenceElement.NP;
24 % I have assigned the Nxi and Neta shape functions also to the

pressure in
25 % the SetReferenceElement function
26 NPxi = referenceElement.NPxi;
27 NPeta = referenceElement.NPeta;
28
29 nenP = size(TP ,2); % Number of nodes per element
30 nPt_P = size(XP ,1); % Number of nodes for pressure
31
32 % Number of degrees of freedom
33 nedofP = nenP;
34 ndofP = nPt_P;
35
36 he = sqrt (2/nx^2); % average element size
37 alpha = 1/3; % optimal for linear elements (Donea and Huerta , 2002)
38 nu=1;
39 tau_e = alpha*he ^2/(4* nu);
40
41 D = zeros(ndofP ,ndofP); % initialize matrix D
42
43 for ielem = 1:size(TP ,1) % loop over elements
44
45 TPe = TP(ielem ,:); % Global number of the nodes in element ielem
46 XPe = XP(TPe(1: size(TP ,2)) ,:); % Coordinates of the nodes in

element ielem
47 TPe_dof = TPe; % Degrees of freedom in element ielem
48
49 for ig = 1 : ngaus % loop over Gauss points
50
51 De = zeros(nedofP ,nedofP); % Initialize elemental matrix
52
53 NP_ig = NP(ig ,:);
54 NPxi_ig = NPxi(ig ,:);
55 NPeta_ig = NPeta(ig ,:);
56 % Compute jacobian
57 JP = [NPxi_ig (1: size(TP ,2))*(XPe(:,1)) NPxi_ig (1: size(TP ,2)

)*(XPe(:,2))
58 NPeta_ig (1: size(TP ,2))*(XPe(:,1)) NPeta_ig (1: size(TP

,2))*(XPe(:,2))];
59 dvolu = wgp(ig)*det(JP);
60 BP = JP\[ NPxi_ig;NPeta_ig ]; %matrix with derivatives
61
62 NPx = BP(1,:);
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63 NPy = BP(2,:);
64
65 De = De - tau_e*(NPx '*NPx +NPy '*NPy)*dvolu;
66 end
67
68 % Assemble the element matrix
69 D(TPe_dof ,TPe_dof) = D(TPe_dof ,TPe_dof) + De;
70 end
71 end

(d) The script mainNavierStokes.m can be used to solve the Navier-Stokes equations with Picard
method. In order to be able to use it, you must first write a Matlab function ConvectionMatrix.m
to evaluate the matrix arising from the discretization of the convective term:

c(w,v,v∗) =

∫
Ω
w · (v∗ ·∇)v dΩ

Solve the Navier-Stokes equations using a structured mesh of Q2Q1 elements with 20 elements
per side. Consider the Reynolds numbers Re=100, 500, 1000, 2000 and comment on the results.
In particular, discuss the number of iterations needed to achieve converge, the evolution of the
pressure field, the position and strength of the main vortex of the velocity. Compare your
results with the ones given in the literature.

In this last section we are going to present the results obtained for the Navier–Stokes for
different values of the Reynold number. In order to be able to perform the calculations, the
convective matrix arising from the discretization of the weak form needs to be computed first.
Listing 2 offers a detailed implementation in the Matlab code.

For the fitst case of analysis, with Re = 100, 13 iterations are needed to converge.Figure 0.6(a)
presents the streamlines and Figure 0.6(b) the obtained pressure field. In comparison with the
Stokes problem, even though we obtain a similar pressure distribution in shape nothe that now the
values of the pressure at the two upper corners are quite different. In the case of the streamlines,
it seems like the main vortex has slightly moved to the right with respect ot previous solutions.

(e) Streamlines.
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(f) Pressure field.

Figure 0.6: Results for solving the Navier–Stokes problem with Re=100. 13 iterations are needed
to get a residual agreeing with the set tolerance.
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In Figure 0.7 we collect the results for Re = 500. For this case, a total number of 29 iterations
are needed to achieve a solution with the desired tolerance. The pressure field looks similar than
before but one should note that the values at the two upper corners, where there is a discontinuity
in the boundary condition, have changed. They are lowe now (in absolute value). Related with
the streamlines, we can see that the main vortex has moved its position and is now slightly more
centered than before. Further, another vortex starst to appear on the lower right corner of the
domain.

(a) Streamlines.
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(b) Pressure field.

Figure 0.7: Results for solving the Navier–Stokes problem with Re=500. 29 iterations are needed
to get a residual agreeing with the set tolerance.

Let us now present some discussion on the results for Re = 1000. Again, a reduction in the
absolute value of the pressure is noticed, i.e. there is more suction in this case. Note that the
value of the pressure in the center of the domain has decreased too.

(a) Streamlines.
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(b) Pressure field.

Figure 0.8: Results for solving the Navier–Stokes problem with Re=1000. 35 iterations are needed
to get a residual agreeing with the set tolerance.
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For the streamlines, the distribution is quite similar to previous case, with the main vortex
centered and another one appearing on the lower right corner.

Finally, for the case of Re = 2000, the pressure again decreases not only on the corses but also
on the center of the mesh. Morevover in the case of the streamlines, we observe the appearance
of a third vortex on the lower left corner added to the two previous ones. In addition, the main
vortex is even more centered now. For this case, 69 iterations are needed to achieve convergence.

(a) Streamlines.
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(b) Pressure field.

Figure 0.9: Results for solving the Navier–Stokes problem with Re=2000. 69 iterations are needed
to get a residual agreeing with the set tolerance.

As a conclusion, we state that increasing the Reynolds number in the computations, i.e. going
to a more turbulent flows, derives into a decrease in the absolute values of the pressure field (more
suction). Further, the main vortex of the velocity moves towars the center of the cavity, and a
second vortex appears on the lower right corner and even a third vortex starts to come up in the
lower left corner. This is because the flow becomes more turbulent. It is expected that, if we
keep increasing the Re number, we would reach a point where the standard Galerkin formulation
provides meaningless solutions and thus, a stabilized formulation would be requiered.

In reference [1] (chapter 6, page 312) a small table is provided with the position of the main
vortex of the solution for different Reynolds number. It compares different solutions obtained
in the literature for this problem like the ones from Ozawa(1975), Burggraf (1966), Tuann and
Olson(1978), etc. All in all, our solution agrees with the literature as the position of the main
vortex gets centered as we increase the Re number.

Listing 2: Convection matrix
1 function C = ConvectionMatrix(X,T,referenceElement ,velo)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This function computes the matrix arising from the discretization
4 % of c(w,v,v) needed for the solution of Navier -Stokes
5 %
6 % Input:
7 % X --> nodal coordinates
8 % T --> connectivity matrix
9 % referenceElement --> data structure containing shape functions ,
10 % derivatives , Gauss points , etc ...
11 % velo --> initial velocity
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12 %
13 % Output:
14 % C --> convection matrix
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16
17 % Extract local information
18 N = referenceElement.N;
19 Nxi = referenceElement.Nxi;
20 Neta = referenceElement.Neta;
21 wgp = referenceElement.GaussWeights;
22 nnodes = referenceElement.ngeom;
23 ngaus = referenceElement.ngaus;
24
25 [numel ,nen] = size(T); % Total number of elements and nodes per

element
26 numnp = size(X,1); % Nodes in the mesh
27 ndofn = 2*nen; % Dof 's per node
28 nunk = 2*numnp; % Total number of dof 's in the mesh
29
30 C = zeros(nunk , nunk);
31 for ielem = 1:numel % Loop over elements
32
33 Te = reshape ([2*T(ielem ,:) -1; 2*T(ielem ,:)],1,ndofn);
34 Xe = X(T(ielem ,1: nnodes) ,:); % nodal coordinates of current

element
35 Ve = velo(T(ielem ,:) ,:); % velocity on nodes of current element
36 Ce = zeros(ndofn ,ndofn); % initalize elemental matrix
37
38 for igaus = 1:ngaus % Loop on Gauss points
39
40 % Shape functions
41 N_igaus = N(igaus ,:);
42 Nxi_igaus = Nxi(igaus ,:);
43 Neta_igaus = Neta(igaus ,:);
44
45 % Compute jacobian of the transformation
46 J = [Nxi_igaus (1: nnodes)*(Xe(1:nnodes ,1)) Nxi_igaus (1:

nnodes)*(Xe(1: nnodes ,2))
47 Neta_igaus (1: nnodes)*(Xe(1:nnodes ,1)) Neta_igaus

(1: nnodes)*(Xe(1:nnodes ,2))];
48
49 dvolu=wgp(igaus)*det(J);
50 % Matrix with derivatives of shape functions
51 B = J\[ Nxi_igaus;Neta_igaus ];
52 % Shape functions in 2D
53 Ngp = [reshape ([1;0]* N_igaus ,1,ndofn); reshape ([0;1]* N_igaus

,1,ndofn)];
54 % Derivatives
55 Nx = [reshape ([1;0]*B(1,:) ,1,ndofn); reshape ([0;1]*B(1,:) ,1,

ndofn)];
56 Ny = [reshape ([1;0]*B(2,:) ,1,ndofn); reshape ([0;1]*B(2,:) ,1,

ndofn)];
57 % Velocity on point igaus
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58 v_igaus = N_igaus * Ve;
59 Ce = Ce + Ngp '*( v_igaus (1)*Nx+v_igaus (2)*Ny)*dvolu; %

elemental matrix
60 end
61 C(Te,Te) =C(Te,Te) + Ce; % Assembly
62 end
63 end
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