FINITE ELEMENTS IN FLUIDS

Master of Science in Computational Mechanics/Numerical Methods Spring Semester 2019

Rafel Perelló i Ribas
Laboratory: $2^{\text {nd }}$ session

Unsteady convection

In this assignment, the transport problem is solved using four different methods.
The problem is already discretised using a Crank-Nicolson method and consistent mass matrix. For the assignment, the Lax-Wendroff method has been implemented as well as the lumped matrices for both methods. The initial condition is a step. The results here are presented for the case of a Courant number of 0.6 :

- Convection velocity of 1.2
- Spatial domain length of 3
- Discretized in 240 linear elements
- Total time of 1.5
- Discretized in 240 elements

Lax-Wendroff with consistent mass matrix:

Figure 1: Lax-Wendroff method with consistent mass matrix

Lax-Wendroff with lumped mass matrix:

Figure 2: Lax-Wendroff method with lumped mass matrix

Crank-Nicolson with consistent mass matrix:

Figure 3: Crank-Nicolson method with consistent mass matrix

Crank-Nicolson with lumped mass matrix:

Figure 4:Crank-Nicolson method with lumped mass matrix
From the results it is seen that the solution of all methods is unstable with the exception of the LaxWendroff with lumped mass matrix. However, this method is dispersive as can be seen with the oscillations around the front. The behaviour of all methods is what it was expected.

Burgers equation

In this case, the Burgers equation has been solved with decreasing input data in order that a discontinuity appears.

Initial condition

Figure 5: Initial condition for the Burgers equation

It has implemented a Newton-Rapson method. For that the equation to solve in each step is:

$$
\boldsymbol{f}(\boldsymbol{U})=(\boldsymbol{M}+\Delta t \boldsymbol{C}(\boldsymbol{U})+\epsilon \Delta t \boldsymbol{K}) \boldsymbol{U}-\boldsymbol{M} \boldsymbol{U}^{n}
$$

To implement the method, the Jacobian of f is needed:

$$
\boldsymbol{J}=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{U}}=\boldsymbol{A}+\Delta t \frac{\partial \boldsymbol{C}}{\partial \boldsymbol{U}} \boldsymbol{U}
$$

The las term is:

$$
\left[\frac{\partial \boldsymbol{C}}{\partial \boldsymbol{U}} \boldsymbol{U}\right]_{i j}=\frac{\partial}{\partial u_{k}} \int N_{i} \cdot N_{j} \cdot N_{j}^{\prime} u_{j} d x u_{k}=\int N_{i} \cdot N_{j} \cdot N_{j}^{\prime} d x \delta_{j k} u_{k}=\int N_{i} \cdot N_{j} \cdot N_{j}^{\prime} d x u_{j}=\boldsymbol{C}
$$

That means that the Jacobian has the following form:

$$
\boldsymbol{J}=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{U}}=\boldsymbol{A}+\Delta t \boldsymbol{C}
$$

This has been implemented in the MATLAB code with low diffusion in order to see the differences between the methods. The parameters are the following:

- Total time $=4$
- $\Delta t=5 \cdot 10^{-3}$
- $\quad \epsilon=1 \cdot 10^{-4}$

Figure 6: Solution with explicit method

Figure 7: Solution with Picard method

Figure 8: Solution with Newton-Raphson
Here it is seen that the solution is unstable because the diffusion should be increased. In the case of the explicit method the solution explodes after a few time steps. However, in the implicit, the solution become unstable when the shocked is formed. Solution for the Picard and Newton-Raphson method are the same as expected.

