
FINITE ELEMENTS IN FLUIDS
Master of Science in Computational Mechanics/Numerical Methods

Spring Semester 2019
Rafel Perelló i Ribas

Laboratory: 4th session

Navier-Stokes transient flow
In this assignment, the Navier-Stokes transient equations have been solved using two different

schemes: the implicit second order monolithic scheme and the algebraic splitting.

For the computation of the matrices to construct the system of equations the same function

developed in the previous assignment is used. The only addition is the mass matrix. It has been used

the consistent mass matrix as the problem to solve is not very costly computationally speaking. In a

bigger problem it can be easily diagonalized summing all the contributions of each row to the diagonal.

Monolithic scheme

Implementation
The second order implicit method has been used. The problem to solve is the cavity of last assignment

with initial velocity of 0. The algorithm is the following:

- In each time step the solution is initialized with the solution of the previous time step.

𝑣0
𝑛+1 = 𝑣𝑛

- The velocity 𝑣
𝑛+

1

2

 is computed

𝑣𝑛+
1
2 =

1

2
(𝑣𝑘

𝑛+1 + 𝑣𝑛)

- Convection matrix 𝐶and its derivative 𝐷(𝐶 · 𝑢) 𝐷𝑢 ⁄ are computed using as velocity input

𝑣
𝑛+

1

2

. The elemental convection matrix is computed as:

𝐶𝑒 = ∑ [mat 𝐍]T(𝑣𝑥[gradx 𝐍] + 𝑣𝑦[grady𝐍]) · 𝑤

𝑖𝐺𝑎𝑢𝑠𝑠

To compute the velocity at the Gauss points the trial functions are used:

𝑣𝑥 = 𝑎𝑣𝑒 , 𝑣𝑦 = 𝑏𝑣𝑒

So the convection matrix is:

𝐶𝑒 = ∑ [mat 𝐍]T ([gradx 𝐍] · (𝑎 · 𝑢) + [grady𝐍] · (𝑏 · 𝑢)) · 𝑤

𝑖𝐺𝑎𝑢𝑠𝑠

Where:

𝑎 = 𝑁(𝑥𝐺𝑎𝑢𝑠𝑠)

[

1 0 0 0 ⋯ 0 0
0 0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ 0 0
0 0 0 0 ⋯ 1 0]

, 𝑏 = 𝑁(𝑥𝐺𝑎𝑢𝑠𝑠)

[

0 1 0 0 ⋯ 0 0
0 0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ 0 0
0 0 0 0 ⋯ 0 1]

The derivative 𝐷(𝐶 · 𝑢) 𝐷𝑢 ⁄ is computed as follows:

[
𝐷(𝐶 · 𝑢)

𝐷𝑢
]
𝑖𝑗

=
𝐷𝐶𝑖𝑘𝑢𝑘

𝐷𝑢𝑗
=

𝐷𝐶𝑖𝑘

𝐷𝑢𝑗
𝑢𝑘 + 𝐶𝑖𝑘

𝐷𝑢𝑘

𝐷𝑢𝑗

The second term is just 𝐶𝑖𝑗

𝐶𝑖𝑘

𝐷𝑢𝑘

𝐷𝑢𝑗
= 𝐶𝑖𝑘𝛿𝑘𝑗 = 𝐶𝑖𝑗

The first term is:

𝐷𝐶𝑖𝑘

𝐷𝑢𝑗

𝑢𝑘 =
𝐷

𝐷𝑢𝑗

(∑ [mat 𝐍]𝑖𝑙
T
([gradx 𝐍]𝑙𝑘 · (𝑎𝑚 · 𝑢𝑚) + [grady𝐍]

𝑙𝑘
· (𝑏𝑚 · 𝑢𝑚)) · 𝑤

𝑖𝐺𝑎𝑢𝑠𝑠

) · 𝑢𝑘 =

∑ [mat 𝐍]𝑖𝑙
T
([gradx 𝐍]𝑙𝑘 · (𝑎𝑚 · 𝛿𝑚𝑗) + [grady𝐍]

𝑙𝑘
· (𝑏𝑚 · 𝛿𝑚𝑗)) · 𝑤

𝑖𝐺𝑎𝑢𝑠𝑠

· 𝑢𝑘 =

∑ [mat 𝐍]𝑖𝑙
T
([gradx 𝐍]𝑙𝑘 · 𝑎𝑗 + [grady𝐍]

𝑙𝑘
· 𝑏𝑗) · 𝑤

𝑖𝐺𝑎𝑢𝑠𝑠

· 𝑢𝑘

𝐷𝐶

𝐷𝑢
· 𝑢 = ∑ [mat 𝐍]T([gradx 𝐍] · 𝑢 · 𝑎𝑇 + [grady𝐍] · 𝑢 · 𝑏𝑇) · 𝑤

𝑖𝐺𝑎𝑢𝑠𝑠

To calculate the derivative of the product 𝐶[𝑑𝑜𝑓𝑈𝑛𝑘, 𝑑𝑜𝑓𝐷𝑖𝑟] · 𝑣𝑎𝑙𝐷𝑖𝑟 the same function is

used. It has to be noted that
𝐷𝐶

𝐷𝑢
 is a third order tensor independent of 𝑢. The same function is

used with input the vector 𝑣𝑎𝑙𝐷𝑖𝑟 in the same form as the velocity vector.

So the system of equations is:

𝑓 = [
𝑓 − 𝐶(𝑑𝑜𝑓𝑈𝑛𝑘, 𝑑𝑜𝑓𝐷𝑖𝑟) · 𝑣𝑎𝑙𝐷𝑖𝑟

𝑓𝑞
]

𝐴𝑛+1 = [
1

2
𝐾 +

1

Δ𝑡
𝑀 𝐺𝑇

𝐺 −𝐿

] , 𝐴𝑛 = [
1

2
𝐾 −

1

Δ𝑡
𝑀 0

0 0

]

𝑟 = 𝐴𝑛+1𝑥𝑛+1 + 𝐴𝑛𝑥𝑛 + [
𝐶 0
0 0

] ·
𝑥𝑛+1 + 𝑥𝑛

2
− 𝑓

The Jacobian of the system is:

𝐽 = 𝐴𝑛+1 +
1

2
[
𝐶 0
0 0

] + [
𝐷𝐶

𝐷𝑢
· 𝑢 −

𝐷𝐶

𝐷𝑢
· 𝑣𝑎𝑙𝐷𝑖𝑟 0

0 0
]

It has to be noted that all matrices have been reduced to its corresponding degrees of

freedom.

Then, the next step is computed as:

Δ𝑥𝑛+1 = −𝐽−1𝑟

This loop is performed until convergence and then it is advanced to the next time step.

The convergence plot is the following:

Figure 1: Convergence plot for the Newton-Raphson scheme

It is clearly seen that the convergence is not quadratic as expected. For that reason, a function

has been coded to compute the numerical derivative of the residual and compare it with the

Jacobian. In summary, the function assumes a new unknown 𝑥ℎ
𝑛+1 = 𝑥𝑛+1 + ℎ and computes

the residual with this unknown and performs a first order differentiation and compares it with

the one computed with the Jacobian:

The error reduces linearly with the norm of ℎ as expected but at about 10−4 it stagnates

revealing that the Jacobian is not correct. Playing with the script, the conclusion is that the

error is in the derivative of the force vector 𝑓. However, despite the efforts to solve it I have

not been able to find the correct solution.

Results
It has been simulated the cavity with the same boundary conditions than in the previous

assignment but with an initial velocity of 0. The Reynolds number is 100 and the density is of

5. It has been simulated 1 second divided in steps of 0.1s with 10 elements per edge. The

results are the following:

- 𝑡 = 0.1𝑠

Figure 2: Streamlines at t=0.1s for monolithic scheme

Figure 3: Velocity field at t=0.1s for monolithic scheme

Figure 4: Pressure field at t=0.1s for monolithic scheme

- 𝑡 = 1𝑠

Figure 5:Streamlines at t=1s for monolithic scheme

Figure 6: Velocity field at t=1s for monolithic scheme

Figure 7: Pressure field at t=1s for monolithic scheme

Algebraic splitting

Implementation
For this implementation, most of the scheme and the computation of the matrices is exactly equal

than in the monolithic scheme. First, two matrices are defined:

𝐴1 = [
Δ𝑡 · 𝐾 + 𝑀 0

𝐺 −𝐺𝑀−1𝐺′
] , 𝐴2 = 𝑀−1𝐺′

In each iteration first is computed the contribution to the force vector from the previous time step:

𝑓𝑀 = 𝑀 · 𝑣𝑛

Then, the solution is initialized with the one from the previous time step.

𝑣0
𝑛+1 = 𝑣𝑛

With this approximation, the convective matrix is computed and the first system is solved:

[
𝑣𝑛+1̂

𝑝𝑛+1̂
]

𝑘+1

= (𝐴1 + [
𝐶 · Δ𝑡 0

0 0
])

−1

· (𝑓 + [
𝑓𝑀
0

])

Where the force vector 𝑓 takes into account the contributions of the Dirichlet Boundary Condition.

Then:

𝑝𝑛+1 = 𝑝𝑛+1̂, 𝑣𝑛+1 = 𝑣𝑛+1̂ − 𝐴2 · 𝑝𝑛+1

After that, the iteration is complete and it starts again. This scheme is a fixed point iteration and for

the problem solved converges in 5 iterations to a tolerance of 10−6.

Results
The simulation performed is the same than in the previous algorithm. The results are the following:

- 𝑡 = 0.1𝑠

Figure 8:Streamlines at t=0.1s for algebraic splitting scheme

Figure 9: Velocity field at t=0.1s for algebraic splitting scheme

Figure 10: Pressure field at t=0.1s for algebraic splitting scheme

- 𝑡 = 1𝑠

Figure 11: Streamlines at t=1s for algebraic splitting scheme

Figure 12: Velocity field at t=1s for algebraic splitting scheme

Figure 13: Pressure field at t=1s for algebraic splitting scheme

Conclusions
Both methods yield to the same results up to numerical errors. So, we conclude that the

implementation of the schemes is correct with the mentioned error in the computation of the

Jacobian in the Newton-Raphson solver.

