Finite element

 in Fluid

 in Fluid}

Exercise-1

Md Tariqul Islam

Date: 22/05/2017

A)

The main equation is:

$$
\frac{d \rho}{d t}+a \cdot \nabla \rho-\nabla \cdot(\mu \nabla \rho)+\sigma \rho=s
$$

The weak form is,
Multiply the above equation with a test function " w "

$$
\int w \frac{d \rho}{d t}+\int \text { wa. } \nabla \rho-\int w \nabla \cdot(\mu \nabla \rho)+\rho=\int w s
$$

Integration of parts leads to the weak form of the equation,

$$
\int w \frac{d \rho}{d t} \mathrm{~d} \Omega+\int \mathrm{wa} . \nabla \rho \mathrm{d} \Omega+\int \nabla \mathrm{w} \cdot(\mu \nabla \rho) \mathrm{d} \Omega-\int \mathrm{w}(\mu \nabla \rho) \cdot \mathrm{n} \mathrm{~d} f+\int \mathrm{w} \sigma \rho \mathrm{~d} \Omega=\int w s \mathrm{~d} \Omega
$$

Test functions are chosen such that the directlet boundary conditions are automatically satisfied and the in this problem, the neumann conditions are 0 .

The Implicit method, \boldsymbol{R}_{11},

$$
\begin{aligned}
& \frac{\Delta \rho}{\Delta t}-\mathrm{W} \Delta \rho_{t}=\mathrm{w} \rho_{t}^{n} \\
& \text { Where , } \\
& \mathrm{W}=1 / 2 \\
& \mathrm{w}=1
\end{aligned}
$$

the above equation is then multiplied with a test function " q " to get the weak form and replacing $\rho_{t}=\mathrm{s}-\mathrm{a} \cdot \nabla \rho+\nabla \cdot(\mu \nabla \rho)-\sigma \rho$

$$
\int q \frac{\Delta \rho}{\Delta t} \mathrm{~d} \Omega-\int q \mathrm{~W} \Delta \rho_{t} \mathrm{~d} \Omega=\int q \mathrm{w} \rho_{t}^{n} \mathrm{~d} \Omega
$$

By integration by parts, the final equation for weak form is obtained,

$$
\begin{gathered}
\int q \frac{\Delta \rho}{\Delta t} \mathrm{~d} \Omega+\int \mathrm{qWa} \cdot \nabla(\Delta \rho) \mathrm{d} \Omega+\int \nabla \mathrm{q} \cdot \mathrm{~W} \mu \nabla(\Delta \rho) \mathrm{d} \Omega+\int \mathrm{qW} \sigma(\Delta \rho) \mathrm{d} \Omega=\int \mathrm{q}\left(\mathrm{~W} \Delta s+w s^{n}\right) \mathrm{d} \Omega- \\
\int \mathrm{qwa.} \nabla\left(\rho^{n}\right) \mathrm{d} \Omega-\int \nabla \mathrm{q} \cdot \mathrm{w} \mu \nabla\left(\rho^{n}\right) \mathrm{d} \Omega-\int q \mathrm{w} \sigma \rho^{n} \mathrm{~d} \Omega
\end{gathered}
$$

For the stabilization of the above weak form equation, stabilization term has been introduced.

$$
\begin{gathered}
\int q \frac{\Delta \rho}{\Delta t} \mathrm{~d} \Omega+\int \mathrm{qWa} \cdot \nabla(\Delta \rho) \mathrm{d} \Omega+\int \nabla \mathrm{q} \cdot \mathrm{~W} \mu \nabla(\Delta \rho) \mathrm{d} \Omega+\int \mathrm{qW}(\Delta \rho) \mathrm{d} \Omega+\sum(\boldsymbol{\tau} \boldsymbol{P}(\boldsymbol{q}), \boldsymbol{R}(\boldsymbol{\Delta} \boldsymbol{\rho}))= \\
\int \mathrm{q}\left(\mathrm{~W} \Delta s+w s^{n}\right) \mathrm{d} \Omega-\int \mathrm{qwa.} \nabla\left(\rho^{n}\right) \mathrm{d} \Omega-\int \nabla \mathrm{q} \cdot \mathrm{w} \mu \nabla\left(\rho^{n}\right) \mathrm{d} \Omega-\int q \mathrm{~W} \sigma \rho^{n} \mathrm{~d} \Omega
\end{gathered}
$$

Where,

$$
\begin{aligned}
& \mathcal{R}(\Delta \rho)=\frac{\Delta \rho}{\Delta t}+\mathrm{W} \mathcal{L}(\Delta \rho)-\mathrm{w}\left[s^{n}-\mathcal{L}\left(\rho^{n}\right)\right]-\mathrm{W} \Delta s \\
& \mathcal{L}=\mathrm{a} \cdot \nabla-\nabla \cdot(\mu \nabla)+\sigma
\end{aligned}
$$

For SUPG: $\mathcal{P}(q)=W(a . \nabla) q$

For GLS: $\mathcal{P}(q)=\frac{\mathrm{q}}{\Delta t}+\mathrm{W}[(\mathrm{a} . \nabla) \mathrm{q}-\nabla \cdot(\mu \nabla \mathrm{q})+\sigma \mathrm{q}]$

From the equation above, different Matrix and vector can be defined :

Mass matrix $\mathrm{M}=\int N_{a} N_{b} \mathrm{~d} \Omega$
Convection matrix $\quad \mathrm{C}=\int N_{a}\left(\mathrm{a} . \nabla N_{b}\right) \mathrm{d} \Omega$
Diffusion Matrix $\mathrm{D}=\int N_{a}\left(\mu \nabla N_{b}\right) \mathrm{d} \Omega$

Reaction Matrix $\mathrm{R}=\int N_{a} \sigma N_{b} \mathrm{~d} \Omega$
Stabilization Matrix $S=\sum(\tau \mathcal{P}(q), \mathcal{R}(\Delta \rho))$

Source vector $\mathrm{SV}=\int N_{a}\left(\mathrm{~W} \Delta s+w s^{n}\right) \mathrm{d} \Omega$

The system that has to be solved is:
$\frac{1}{\Delta t} \mathrm{M}+\mathrm{WC}+\mathrm{WD}+\mathrm{WR}+\mathrm{S}=\mathrm{SV}-\mathrm{wC}-\mathrm{wS}-\mathrm{w} \sigma \mathrm{M}$

The Implicit method, \boldsymbol{R}_{22},

$$
\begin{gathered}
\frac{\Delta \rho}{\Delta t}-\mathrm{W} \Delta \rho_{t}=\mathrm{w} \rho_{t}^{n} \\
\text { Where }
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{W} & =\frac{1}{24}\left[\begin{array}{cc}
7 & -1 \\
13 & 5
\end{array}\right] \\
\mathrm{w} & =\frac{1}{2}\binom{1}{1}
\end{aligned}
$$

the above equation is then multiplied with a test function " q " to get the weak form and replacing $\rho_{t}=\mathrm{S}-\mathrm{a} . \nabla \rho+\nabla \cdot(\mu \nabla \rho)-\sigma \rho$

$$
\int q \frac{\Delta \rho}{\Delta t} \mathrm{~d} \Omega-\int q \mathrm{~W} \Delta \rho_{t} \mathrm{~d} \Omega=\int q \mathrm{w} \rho_{t}^{n} \mathrm{~d} \Omega
$$

By integration by parts, the final equation for weak form is obtained,

$$
\begin{gathered}
\int q \frac{\Delta \rho}{\Delta t} \mathrm{~d} \Omega+\int \mathrm{qWa} \cdot \nabla(\Delta \rho) \mathrm{d} \Omega+\int \nabla \mathrm{q} \cdot \mathrm{~W} \mu \nabla(\Delta \rho) \mathrm{d} \Omega+\int \mathrm{qW} \sigma(\Delta \rho) \mathrm{d} \Omega=\int \mathrm{q}\left(\mathrm{~W} \Delta s+w s^{n}\right) \mathrm{d} \Omega- \\
\int \mathrm{qwa.} \nabla\left(\rho^{n}\right) \mathrm{d} \Omega-\int \nabla \mathrm{q} \cdot \mathrm{w} \mu \nabla\left(\rho^{n}\right) \mathrm{d} \Omega-\int q \mathrm{w} \sigma \rho^{n} \mathrm{~d} \Omega
\end{gathered}
$$

For the stabilization of the above weak form equation, stabilization term has been introduced.

$$
\begin{gathered}
\int q \frac{\Delta \rho}{\Delta t} \mathrm{~d} \Omega+\int \mathrm{qWa} \cdot \nabla(\Delta \rho) \mathrm{d} \Omega+\int \nabla \mathrm{q} \cdot \mathrm{~W} \mu \nabla(\Delta \rho) \mathrm{d} \Omega+\int \mathrm{qW} \sigma(\Delta \rho) \mathrm{d} \Omega+\sum(\boldsymbol{\tau} \boldsymbol{\mathcal { P }}(\boldsymbol{q}), \boldsymbol{\mathcal { R }}(\boldsymbol{\Delta} \boldsymbol{\rho}))= \\
\int \mathrm{q}\left(\mathrm{~W} \Delta s+w s^{n}\right) \mathrm{d} \Omega-\int \mathrm{qwa} \cdot \nabla\left(\rho^{n}\right) \mathrm{d} \Omega-\int \nabla \mathrm{q} \cdot \mathrm{w} \mu \nabla\left(\rho^{n}\right) \mathrm{d} \Omega-\int q \mathrm{w} \sigma \rho^{n} \mathrm{~d} \Omega
\end{gathered}
$$

Where,

$$
\begin{aligned}
& \mathcal{R}(\Delta \rho)=\frac{\Delta \rho}{\Delta t}+\mathrm{W} \mathcal{L}(\Delta \rho)-\mathrm{w}\left[s^{n}-\mathcal{L}\left(\rho^{n}\right)\right]-\mathrm{W} \Delta s \\
& \mathcal{L}=\mathrm{a} . \nabla-\nabla \cdot(\mu \nabla)+\sigma
\end{aligned}
$$

For SUPG: $\mathcal{P}(q)=W(a . \nabla) q$

For GLS: $\mathcal{P}(q)=\frac{\mathrm{q}}{\Delta t}+\mathrm{W}[(\mathrm{a} . \nabla) \mathrm{q}-\nabla \cdot(\mu \nabla \mathrm{q})+\sigma \mathrm{q}]$

From the equation above, different Matrix and vector can be defined :

Mass matrix $\quad \mathrm{M}=\int N_{a} N_{b} \mathrm{~d} \Omega$

Convection matrix $\quad \mathrm{C}=\int N_{a}\left(\mathrm{a} . \nabla N_{b}\right) \mathrm{d} \Omega$
Diffusion Matrix $\quad \mathrm{D}=\int N_{a}\left(\mu \nabla N_{b}\right) \mathrm{d} \Omega$
Reaction Matrix $\mathrm{R}=\int N_{a} \sigma N_{b} \mathrm{~d} \Omega$
Stabilization Matrix $\mathrm{S}=\sum(\tau \mathcal{P}(q), \mathcal{R}(\Delta \rho))$
Source vector $\quad \mathrm{SV}=\int N_{a}\left(\mathrm{~W} \Delta s+w s^{n}\right) \mathrm{d} \Omega$

The system that has to be solved is:
$\frac{1}{\Delta t} \mathrm{M}+\mathrm{WC}+\mathrm{WD}+\mathrm{WR}+\mathrm{S}=\mathrm{SV}-\mathrm{wC}-\mathrm{wS}-\mathrm{w} \sigma \mathrm{M}$

The Explicit method, \boldsymbol{R}_{20}

$$
\begin{aligned}
& \rho^{n+\frac{1}{2}}=\rho^{n}+\frac{\Delta t}{2} \rho_{t}^{n} \\
& \rho^{n+\frac{1}{2}}=\rho^{n}+\Delta t \rho_{t}^{n+\frac{1}{2}}
\end{aligned}
$$

The above equations are then multiplied with a test function " w " to get the weak form and replacing $\rho_{t}=\mathrm{s}-\mathrm{a} . \nabla \rho+\nabla \cdot(\mu \nabla \rho)-\sigma \rho$

From first equation,

$$
\int w \rho^{n+\frac{1}{2}} \mathrm{~d} \Omega=\int \mathrm{w} \rho^{n} \mathrm{~d} \Omega+\int w \frac{\Delta t}{2} \rho_{t}^{n} \mathrm{~d} \Omega
$$

By integration by parts, the final equation for weak form is obtained,

$$
\begin{gathered}
\int w \rho^{n+\frac{1}{2}} \mathrm{~d} \Omega=\int \mathrm{w} \rho^{n} \mathrm{~d} \Omega+\int w \frac{\Delta t}{2} s^{n} \mathrm{~d} \Omega-\int w \frac{\Delta t}{2} \mathrm{a} \cdot \nabla \rho^{n} \mathrm{~d} \Omega+\int \nabla w \cdot \frac{\Delta t}{2}\left(\mu \nabla \rho^{n}\right) \mathrm{d} \Omega- \\
\int w \frac{\Delta t}{2} \sigma \rho^{n} \mathrm{~d} \Omega
\end{gathered}
$$

For the stabilization of the above weak form equation, stabilization term has been introduced.

$$
\begin{gathered}
\int w \rho^{n+\frac{1}{2}} \mathrm{~d} \Omega+\sum(\boldsymbol{\tau} \boldsymbol{\mathcal { P }}(\boldsymbol{q}), \boldsymbol{R}(\boldsymbol{\Delta} \boldsymbol{\rho}))=\int \mathrm{w} \rho^{n} \mathrm{~d} \Omega+\int w \frac{\Delta t}{2} s^{n} \mathrm{~d} \Omega-\int w \frac{\Delta t}{2} \mathrm{a} \cdot \nabla \rho^{n} \mathrm{~d} \Omega+ \\
\int \nabla w \cdot \frac{\Delta t}{2}\left(\mu \nabla \rho^{n}\right) \mathrm{d} \Omega-\int w \frac{\Delta t}{2} \sigma \rho^{n} \mathrm{~d} \Omega
\end{gathered}
$$

Where,

$$
\begin{aligned}
& \mathcal{R}(\Delta \rho)=\frac{\Delta \rho}{\Delta t}+\mathrm{W} \mathcal{L}(\Delta \rho)-\mathrm{w}\left[s^{n}-\mathcal{L}\left(\rho^{n}\right)\right]-\mathrm{W} \Delta s \\
& \mathcal{L}=\mathrm{a} \cdot \nabla-\nabla \cdot(\mu \nabla)+\sigma
\end{aligned}
$$

For SUPG: $\mathcal{P}(q)=W(a . \nabla) q$
For GLS: $\mathcal{P}(q)=\frac{\mathrm{q}}{\Delta t}+\mathrm{W}[(\mathrm{a} . \nabla) \mathrm{q}-\nabla \cdot(\mu \nabla \mathrm{q})+\sigma \mathrm{q}]$

From the equation above, different Matrix and vector can be defined :

Mass matrix $\quad \mathrm{M}=\int N_{a} N_{b} \mathrm{~d} \Omega$
Convection matrix $\quad \mathrm{C}=\int N_{a}\left(\mathrm{a} . \nabla N_{b}\right) \mathrm{d} \Omega$
Diffusion Matrix $\quad \mathrm{D}=\int N_{a}\left(\mu \nabla N_{b}\right) \mathrm{d} \Omega$
Reaction Matrix $\mathrm{R}=\int N_{a} \sigma N_{b} \mathrm{~d} \Omega$
Stabilization Matrix $\mathrm{S}=\sum(\tau \mathcal{P}(q), \mathcal{R}(\Delta \rho))$
Source vector $\mathrm{SV}=\int N_{a}\left(s^{n}\right) \mathrm{d} \Omega$

The system that has to be solved is:
$\mathrm{M}+\mathrm{S}=\mathrm{M}+\frac{\Delta t}{2} \mathrm{SV}-\frac{\Delta t}{2} \mathrm{C}+\frac{\Delta t}{2} \mathrm{D}-\frac{\Delta t}{2} \mathrm{R}$

From second equation,

$$
\int w \rho^{n+\frac{1}{2}} \mathrm{~d} \Omega=\int \mathrm{w} \rho^{n} \mathrm{~d} \Omega+w \Delta t \rho_{t}^{n+\frac{1}{2}}
$$

By integration by parts, the final equation for weak form is obtained,

$$
\begin{gathered}
\int w \rho^{n+\frac{1}{2}} \mathrm{~d} \Omega=\int \mathrm{w} \rho^{n} \mathrm{~d} \Omega+\int w \Delta t s^{n+\frac{1}{2}} \mathrm{~d} \Omega-\int w \Delta t \mathrm{t} \cdot \nabla \rho^{n+\frac{1}{2}} \mathrm{~d} \Omega+\int \nabla w \cdot \Delta t\left(\mu \nabla \rho^{n+\frac{1}{2}}\right) \mathrm{d} \Omega- \\
\int w \Delta t \sigma \rho^{n+\frac{1}{2}} \mathrm{~d} \Omega
\end{gathered}
$$

For the stabilization of the above weak form equation, stabilization term has been introduced.

$$
\begin{gathered}
\int w \rho^{n+\frac{1}{2}} \mathrm{~d} \Omega+\sum(\boldsymbol{\tau} \boldsymbol{\mathcal { P }}(\boldsymbol{q}), \boldsymbol{\mathcal { R }}(\boldsymbol{\Delta} \boldsymbol{\rho}))=\int \mathrm{w} \rho^{n} \mathrm{~d} \Omega+\int w \Delta t s^{n+\frac{1}{2}} \mathrm{~d} \Omega-\int w \Delta t \mathrm{a} \cdot \nabla \rho^{n+\frac{1}{2}} \mathrm{~d} \Omega+ \\
\int \nabla w \cdot \Delta t\left(\mu \nabla \rho^{n+\frac{1}{2}}\right) \mathrm{d} \Omega-\int w \Delta t \sigma \rho^{n+\frac{1}{2}} \mathrm{~d} \Omega
\end{gathered}
$$

Where,

$$
\begin{aligned}
& \mathcal{R}(\Delta \rho)=\frac{\Delta \rho}{\Delta t}+\mathrm{W} \mathcal{L}(\Delta \rho)-\mathrm{w}\left[s^{n}-\mathcal{L}\left(\rho^{n}\right)\right]-\mathrm{W} \Delta s \\
& \mathcal{L}=\mathrm{a} \cdot \nabla-\nabla \cdot(\mu \nabla)+\sigma
\end{aligned}
$$

For SUPG: $\mathcal{P}(q)=\mathrm{W}(\mathrm{a} . \nabla) \mathrm{q}$
For GLS: $\mathcal{P}(q)=\frac{\mathrm{q}}{\Delta t}+\mathrm{W}[(\mathrm{a} . \nabla) \mathrm{q}-\nabla .(\mu \nabla \mathrm{q})+\sigma \mathrm{q}]$

From the equation above, different Matrix and vector can be defined :

Mass matrix $\quad \mathrm{M}=\int N_{a} N_{b} \mathrm{~d} \Omega$
Convection matrix $\mathrm{C}=\int N_{a}\left(\mathrm{a} \cdot \nabla N_{b}\right) \mathrm{d} \Omega$
Diffusion Matrix $\mathrm{D}=\int N_{a}\left(\mu \nabla N_{b}\right) \mathrm{d} \Omega$
Reaction Matrix $\mathrm{R}=\int N_{a} \sigma N_{b} \mathrm{~d} \Omega$
Stabilization Matrix $\mathrm{S}=\sum(\tau \mathcal{P}(q), \mathcal{R}(\Delta \rho))$
Source vector $\mathrm{SV}=\int N_{a}\left(s^{n}\right) \mathrm{d} \Omega$

The system that has to be solved is:
$\mathrm{M}+\mathrm{S}=\mathrm{M}+\Delta t \mathrm{SV}-\Delta t \mathrm{C}+\Delta t \mathrm{D}-\Delta t \mathrm{R}$
D)

Considering the steady state case, the problem is solved with both linear and quadrilateral element for 3 different cases with various velocity, diffusion parameter, reaction and source. The results are compared with GLS and SUPG discretization and are shown below:

First case

$a=(-1,0), \mu=10^{-3}, \sigma=10^{-3}, s=0$

Using GLS

Fig 1: Linear element

Fig 2: Quadratic element

Using SUPG

Fig 3: Linear element

Fig 4: Quadratic element
Both GLS and SUPG showed similar results. But when compared between results using linear and quadratic element, it can be seen that the results obtained with linear element has more oscillation than the results obtained using quadratic element for both GLS and SUPG. This is due to the fact that, quadratic element can approximate result more accurately than linear element.

Second case

$$
a=\left(-10^{-3}, 0\right), \mu=10^{-3}, \sigma=1, s=0
$$

Using GLS

Fig 5: Linear element

Fig 6: Quadratic element

Using SUPG

Fig 7: Linear element

Fig 8: Quadratic element
For the second case as well, both GLS and SUPG showed similar results. But when compared between results using linear and quadratic element, the later one has much less oscillation and the solution is smoother compare to linear element. It was anticipated as quadratic element are better in approximating solutions.

Third case

$$
a=\left(-10^{-3}, 0\right), \mu=10^{-3}, \sigma=0, s=1
$$

Using GLS

Fig 9: Linear element

Fig 10: Quadratic element

Using SUPG

Fig 11: Linear element

Fig 12: Quadratic element
For the third case, all the graphs look different than the other two cases as there is a source term present. Here too it can be seen that the quadratic has less oscillation than linear although the difference is quite small.

APPENDIX

For linear

```
% Number of elements and number of nodes in the mesh
nElem = size(T,1);
nPt = size(X,1);
K = zeros(nPt,nPt);
f = zeros(nPt,1);
if method == 0
        % GLS
        Pe = a*h/ (2*nu);
        tau_p = h* (1 + 9/Pe^2)^(-1/2)/(2*a);
        disp(strcat('Recommended stabilization parameter = ',num2str(tau_p)));
        tau = cinput('Stabilization parameter',tau_p);
        if isempty(tau)
            tau = tau_p;
        end
elseif method == 1
            % SUPG
        Pe = a*h/ (2*nu);
        tau_p = h* (1 + 9/Pe^2)^(-1/2)/(2*a);
        disp(strcat('Recommended stabilization parameter = ',num2str(tau_p)));
        tau = cinput('Stabilization parameter',tau_p);
        if isempty(tau)
            tau = tau_p;
        end
else
    error ('Unavailable method')
end
```

```
% Loop on Gauss points (computation of integrals on the current element)
for ig = 1:ngaus
    N_ig = N(ig,:);
    Nxi_ig = Nxi(ig,:);
    Neta_ig = Neta(ig,:);
    Jacob = [Nxi_ig*(Xe(:,1)) Nxi_ig*(Xe(:,2))
        Neta ig*(Xe(:,1)) Neta_ig*(Xe(:,2))];
    dvolu = wgp(ig)*det(Jacob);
    res = Jacob\[Nxi_ig;Neta_ig];
    Nx = res(1,:);
    Ny = res (2,:);
    if method == 0
        % GLS
        Ke = Ke + (nu* (Nx'*Nx+Ny'*Ny) + N_ig'*(ax*Nx+ay*Ny) + sig*(N_ig'*N_ig) + ...
                tau*(ax*Nx+ay*Ny+sig*N_ig)'*(ax*Nx+ay*Ny+sig*N_ig))*dvolu;
            aux = N_ig*Xe;
            f ig = SourceTerm(aux,src);
            fe = fe + (N_ig+tau*(ax*Nx+ay*Ny+sig*N_ig))'*(f_ig*dvolu);
    else
            % SUPG
            Ke = Ke + (nu* (Nx'*Nx+Ny'*Ny) + N_ig'*(ax*Nx+ay*Ny) + sig*(N_ig'*N_ig) + ...
                tau*(ax*Nx+ay*Ny)'*(ax*Nx+ay*Ny+sig*N_ig))*dvolu;
            aux = N_ig*Xe;
            f_ig = SourceTerm(aux,src);
            fe = fe + (N_ig+tau*(ax*Nx+ay*Ny))'*(f_ig*dvolu);
    end
end
```


For Quadratic

```
Loop on Gauss points (computation of integrals on the current element)
or ig = 1:ngaus
    N_ig = N(ig,:);
    Nxi_ig = Nxi(ig,:);
    Neta_ig = Neta(ig,:);
    N2xi_ig = N2xi(ig,:);
    N2eta ig = N2eta(ig,:);
    N2xieta_ig = N2xieta(ig,:);
    N2etaxi ig = N2etaxi(ig,:);
    Jacob = [Nxi_ig*(Xe(:,1)) Nxi_ig*(Xe(:,2))
        Neta_ig*(Xe(:,1)) Neta_ig*(Xe(:,2))];
    lap = [(Nxi_ig*Xe(:,1))^2 (Nxi_ig*Xe(:,2))*(Nxi_ig*Xe(:,1)) N2xi_ig*Xe
        (Neta_ig*Xe(:,1))*(Nxi_ig*Xe(:,1)) (Neta_ig*Xe(:, 2))*(Nxi_ig*\Sigma
        0 Nxi_ig*Xe(:,1) 0 0 Nxi__ig* (Xe(:, 2))
        (Nxi_ig*Xe(:,1))*(Neta_ig*Xe(:,1)) (Nxi_ig*Xe(:, 2))*(Neta_ig*\
        (Neta_ig*Xe(:,1))^2 (Neta_ig*Xe(:,2))*(Neta_ig*Xe(:,1)) N2eta
        O 0 Neta_ig*Xe(:,1) 0 0 Neta_ig*(Xe(:,2))];
    dvolu = wgp(ig)*det(Jacob);
    res = lap\[N2xi_ig;N2xieta_ig;Nxi_ig;N2etaxi_ig;N2eta_ig;Neta_ig];
    Nx = res (3,:);
    Ny = res (6, :);
    Nxx = res (1,:);
    Nyy = res (5,:);
    fin = Nxx+Nyy;
```

```
xi = z(:,1); eta = z(:,2);
if elem == 0
    if p == 1
        N = [(1-xi).*(1-eta)/4, (1+xi).*(1-eta)/4, (1+xi).*(1+eta)/4, (1
        Nxi = [(eta-1)/4, (1-eta)/4, (1+eta)/4, -(1+eta)/4];
        Neta = [(xi-1)/4, -(1+xi)/4, (1+xi)/4, (1-xi)/4 ];
        N2xi = [zeros(size(xi)), zeros(size(xi)), zeros(size(xi)), zeros
        N2eta = [zeros(size(eta)), zeros(size(eta)), zeros(size(eta)), ze
        N2xieta = [1/4*ones(size(xi)), -1/4*ones(size(xi)), 1/4*ones(size(x
        N2etaxi = [1/4*ones(size(xi)), -1/4*ones(size(xi)), 1/4*ones(size(x
    elseif p == 2
            N = [xi.*(xi-1).*eta.*(eta-1)/4, xi.*(xi+1).*eta.*(eta-1)/4, ...
                xi.*(xi+1).*eta.*(eta+1)/4, xi.*(xi-1).*eta.*(eta+1)/4, ...
                (1-xi.^2).*eta.*(eta-1)/2, xi.*(xi+1).*(1-eta.^2)/2, ...
                (1-xi.^2).*eta.*(eta+1)/2, xi.*(xi-1).*(1-eta.^2)/2, ...
                (1-xi.^2).*(1-eta.^2)];
            Nxi = [(xi-1/2).*eta.*(eta-1)/2, (xi+1/2).*eta.*(eta-1)/2, ...
                (xi+1/2).*eta.*(eta+1)/2, (xi-1/2).*eta.*(eta+1)/2, ...
                -xi.*eta.*(eta-1), (xi+1/2).*(1-eta.^2), ...
                -xi.*eta.*(eta+1), (xi-1/2).*(1-eta.^2), ...
                -2*xi.*(1-eta.^2)];
            Neta = [xi.*(xi-1).*(eta-1/2)/2, xi.*(xi+1).*(eta-1/2)/2, ...
                xi.*(xi+1).*(eta+1/2)/2, xi.*(xi-1).*(eta+1/2)/2, ...
                (1-xi.^2).*(eta-1/2),
                (1-xi.^2).*(eta+1/2),
                (1-xi.^2).*(-2*eta)];
            N2xi = [eta.*(eta-1)/2, eta.*(eta-1)/2, ...
                eta.*(eta+1)/2, eta.*(eta+1)/2, ...
                    -eta.*(eta-1), (1-eta.^2), ...
                    -eta.*(eta+1), (1-eta.^2), ...
                    -2*(1-eta.^2)];
                        xi.*(xi+1).*(-eta), ...
                        xi.*(xi-1).*(-eta), ...
```

```
    N2eta = [xi.*(xi-1).*1/2, xi.*(xi+1)*1/2, ...
                                xi.*(xi+1).*1/2, xi.*(xi-1)*1/2, ...
                                (1-xi.^2), -xi.*(xi+1), ...
                        (1-xi.^2), -xi.*(xi-1), ...
                            -(1-xi.^2)*2];
    N2xieta = [(xi-1/2).*(2*eta-1)/2, (xi+1/2).*(2*eta-1)/2, ...
        (xi+1/2).*(2*eta+1)/2, (xi-1/2).*(2*eta+1)/2, ...
        -xi.*(2*eta-1), (xi+1/2).*(-2*eta), ...
        -xi.*(2*eta+1), (xi-1/2).*(-2*eta), ...
        4*xi.*eta];
        N2etaxi = [(2*xi-1).*(eta-1/2)/2, (2*xi+1).*(eta-1/2)/2, ...
        (2*xi+1).*(eta+1/2)/2, (2*xi-1).*(eta+1/2)/2, ...|
        -2*xi.*(eta-1/2),
        -2*xi.*(eta+1/2),
        4*xi.*eta];
    else
        error('not available interpolation degree')
    end
elseif elem == 1
    if p == 1
        N = [1-xi-eta, xi, eta];
        Nxi = [-ones(size(xi)), ones(size(xi)), zeros(size(xi))];
        Neta = [-ones(size(xi)), zeros(size(xi)), ones(size(xi))];
        N2xi = [zeros(size(xi)), zeros(size(xi)), zeros(size(xi))];
        N2eta = [zeros(size(eta)), zeros(size(eta)), zeros(size(eta))];
        N2xieta = [zeros(size(xi)), zeros(size(xi)), zeros(size(xi))];
        N2etaxi = [zeros(size(eta)), zeros(size(eta)), zeros(size(eta))];
    else
        error('not available interpolation degree')
    end
```

```
    if method == 0
        % GLS
        Ke = Ke + (nu* (Nx'*Nx+Ny'*Ny) + N_ig'*(ax*Nx+ay*Ny) + sig*(N_ig'*N_ig) + ...
                tau*(ax*Nx+ay*Ny-nu*fin+sig*N_ig)'*(ax*Nx+ay*Ny-nu*fin+sig*N_ig))*dvolu;
        aux = N_ig*Xe;
        f ig = SourceTerm(aux,src);
        fe = fe + (N_ig+tau*(ax*Nx+ay*Ny-nu*fin+sig*N_ig))'*(f_ig*dvolu);
    else
        % SUPG
        Ke = Ke + (nu* (Nx'*Nx+Ny'*Ny) + N_ig'*(ax*Nx+ay*Ny) + sig*(N_ig'*N_ig) + ...
                tau*(ax*Nx+ay*Ny)'*(ax*Nx+ay*Ny-nu*fin+sig*N_ig))*dvolu;
        aux = N_ig*Xe;
        f_ig = SourceTerm(aux,src);
        fe = fe + (N_ig+tau*(ax*Nx+ay*Ny))'*(f_ig*dvolu);
    end
nd
```

