
UPC, CIMNE, ETSECCP

FINITE ELEMENTS IN FLUIDS
Assignment 2 : Cavity flow problem

Inocencio Castañar

May 23, 2017

Contents

1 Statement 1

2 Steady Stokes problem 2

3 Steady Navier-Stokes problem 10

4 Appendix 15
4.1 MATLAB codes . 15

1 Statement

The cavity flow problem is a standard benchmark test for incompressible flows. The figure below
shows a schematic representation of the problem setting. The goal of this exercise is to analyze the
results obtained when adopting either the Stokes or the Navier-Stokes equations. Use the code in(
HW2Files_Cavity) to compute the finite elements approximation of these problems and answer the
questions below.

1

2 Steady Stokes problem

(a) Use the script mainStokes.m to compute the solution of the Stokes problem using
a uniform, structured mesh of Q2Q0, Q2Q1, P1P1 and MINI (P+

1 P1) elements, with 20
elements per side. Comment on the results.

First of all, let us explain the solvability condition and the LBB compatibility condition that must
be satisfied in the Stokes problem to guarantee that the solution is uniquely defined.

Consider the partiotioned matrix system governing the steady Stokes flow,(
K G
GT 0

)(
u
p

)
=

(
f
h

)
It can be shown that, provided the kernel of matrixG is zero, the global matrix is non-singular. This
is the also known as solvability condition. In turn, to have kerG = {0}, the velocity and pressure
interpolations must satisfy a compatibility condition, called the LBB condition. Inappropriate
combinations of velocity and pressure interpolations may render the discrete divergence matrix GT ,
rank deficient.

LBB compatibility condition states that: The existence of a stable finite element approximate
solution (uh,ph) to the steady Stokes problem depends on choosing a pair of spaces Vh and Qh,
such that the following inf-sup condition holds:

inf
qh∈Qh

sup
wh∈Vh

(qh,∇ ·wh)

‖q‖0‖wh‖1
≥ α > 0,

where α is independent of the mesh size h.

Let us now show firstly a combination of elements which does not satisfy this LBB condition:

2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Streamlines

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Velocity field

0

0.5

1

0

0.5

1

−200

0

200

400

(c) Pressure field

Figure 2.1: Results obtained for P1P1 element

Figure 2.1 shows the solution obtained for the steady Stokes problem when velocity is discretized
with continuous linear elements (P1) but also the pressure field. As expected as this element is
non LBB compliant it presents inaccurate pressure results. It presents oscillations which are more
pronounced in the corners where there is a discontinuity in the boundary conditions.

Let us now move the the Q2Q0 element and Q2Q1 element.

3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Streamlines

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Velocity field

0

0.5

1

0

0.5

1

−40

−20

0

20

40

(c) Pressure field

Figure 2.2: Results obtained for Q2Q0 element

4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Streamlines

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Velocity field

0

0.5

1

0

0.5

1

−100

−50

0

50

100

(c) Pressure field

Figure 2.3: Results obtained for Q2Q1 element

Both of them are LBB compliant elements and for that reason we can see, as expected, reasonale
results for pressure. Note that as pressure field is discretized with discontinuous bilinear elements
in figure 2.2 it is not able to capture as well as it is needed the pressure at the upper corners.
Figure 2.3 shows better and accurate results for the pressure field due to the fact that the pressure
is discretized with continuous bilinear elements.

Finally let us recall that there is one interesting option to satisfy the LBB compatibility condition
but keeping linear elements. This elements are the so-called Mini element, which discretizes both
the velocity field and the pressure with continuous linear elements. The key is that it uses a cubic
bubble function for the velocitity to satisfy this LBB condition:

5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Streamlines

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Velocity field

0

0.5

1

0

0.5

1

−20

0

20

40

(c) Pressure field

Figure 2.4: Results obtained for MINI(P+
1 P1) element

Figure 2.4 reproduces exactly what we have expected. This kind of elements are LBB compliants
so it performs reasonable results even though we are working with linear elements. The drawback
of using these elements is that the convergence is linear instead of quadratic as it is in the Q2Q1

elements (Taylor-Hood element)

In addition, let us recall that the main features in this case are the symmetry with respect to the
vertical centerline and the pressure singularity at the two upper corners as it can be shown in the
previous pictures.

(b) Compute the solution of the Stokes problem considering (i) a structured, uniform
mesh of Q2Q1 elements with 20 elements per side (ii) a structured mesh of 20x20
Q2Q1 elements refined near the walls. Comment on the results. Describe the main
properties of the velocity and pressure fields. Are there any differences between the
solutions obtained with these two meshes? Which one do you thinks the best? Why?

Solutions for the structured uniform mesh are already available in figure 2.3. Let us now show the
results obtained for the second case, where the elements are refined near the walls.

6

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Streamlines

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Velocity field

0

0.5

1

0

0.5

1

−1000

0

1000

(c) Pressure field

Figure 2.5: Results obtained for Q2Q0 element with elements refined near the walls

As we can see by comparing between figure 2.3 and figure 2.5 both of them present quasi-identical
distribution of streamlines. With regard to both the velocity field and the pressure field, we can
observe that adapted mesh is able to capture better what happens in the corners and edges. More-
over, we can see that the pressure field for adapted mesh is smoother and more regular than the
one obtained with uniform mesh.

(c) Modify the Stokes code to solve the problem using a GLS stabilized formulation
with P1P1 elements. Describe the formulation you are using and the choice of the
stabilization parameter. Is the method behaving as expected?

The basic idea behind the stabilization procedures is to enforce the positive definiteness of the
matrix problem governing the Stokes flow in the Galerkin formulation. Let us first of all define the
spaces which play a rol in the problem:

The trial solution space S containing the approximating functions for the velocity:

S :=
{
v ∈H1 (Ω) | v = vD on ΓD

}

7

The weighting functions of the velocity, w belong to V . Functions in this class have the same
characteristics as those in class S, except that the weighting functions are required to vanish on ΓD

where the velocity is prescribed. The class V is thus defined by:

V :=
{
w ∈H1 (Ω) | w = 0 on ΓD

}
Finally, we introduce a space of functions, denoted Q, for the pressure.This functions in Q are
simply required to be square-integrable. So at the end,

Q := L2 (Ω)

We denote by Sh and Vh th finite dimensional subspaces of S and V and Qh the finite dimensional
subspace of Q.

The problem states: Find vh ∈ Sh and ph ∈ Q, such that, for all (wh, qh) ∈ Vh ×Qh,{
a(wh,vh) + b(wh, qh) = (wh, bh) + (wh, th)ΓN

,

b(vh, qh)−
∑nel

e=1 τe(∇qh,∇ph)Ωe = −
∑nel

e=1 τe(∇qh, bh)Ωe .

Note that for linear elements the GLS stabilization does not affect the weak form of the momentum
equation because the terms involving the second derivatives of the weighting function w vanish.
Note also that for the cavity problem we are facing there are neither body forces nor Neumann
boundary conditions. So the weak form of the problem yields,{

a(wh,vh) + b(wh, qh) = 0,

b(vh, qh)−
∑nel

e=1 τe(∇qh,∇ph)Ωe = 0.

By using the Galerkin discretization of the weak form, one finds that the matrix system which
governs the discrete Stokes problem with GLS stabilization for linear elements assumes the following
partioned form: (

K G
GT D

)(
u
p

)
=

(
0
0

)

where K is the viscosity matrix, matrix G is the discrete gradient operator, and GT the divergence
gradient operator. All of them already implemented in the code. And finally the matrix D which
arises from the discretization of the term τe(∇qh,∇ph) and is the also known stiffness matrix:

D = A(e)D(e) ⇒ D
(e)
ij =

∫
Ωe

τe∇Ni∇Nj dΩ

The stabilization parameter is chosen as:

τe = α0
h2
e

4ν

where he is a measure of the element size and ν the viscosity parameter. The parameter α0 can be
tuned but the choice α0 = 1/3 appears to be optimal for linear elements. (See [1] page 288).

In appendix, there are the different modificed matlab codes which are involved in this section.
Let us now show the obtained results when velocity and pressure fields ara discretized with linear
continuous elements and using GLS as a stabilization technique.

8

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Streamlines

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Velocity field

0

0.5

1

0

0.5

1

−50

0

50

(c) Pressure field

Figure 2.6: Results obtained for P1P1 element with elements refined near the walls and stabilizing
the problem with GLS technique

The basic idea behind stabilization procedures is to enforce the positive definiteness of the matrix
which governs de steady Stokes problem. An interesting consequence of the GLS stabilization of the
Stokes problem is that elements with equal order interpolations, which are unstable in the Galerkin
formulation (see figure 2.1) now become stable as it can be observed in figure 2.6.

So we can conclude that the method behaves as expected because the linear/linear three-node
triangle has become stable even though it was unstable with the Galerkin formulation used at a).

9

3 Steady Navier-Stokes problem

d) The script mainNavierStokes.m can be used to solve the Navier-Stokes equations
with Picard method. In order to be able to use it, you must first write a Matlab
function ConvectionMatrix.m to evaluate the matrix arising from the discretization of
the convective term:

c(w,v,v∗) =

∫
Ω
w · (v∗ ·∇)vdΩ

Solve the Navier-Stokes equations using a structured mesh of Q2Q1 elements with 20
elements per side. Consider the Reynolds numbers Re = 100; 500; 1000; 2000 and
comment on the results. In particular, discuss the number of iterations needed to
achieve convergence, the evolution of the pressure field, the position and strength of
the main vortex of the velocity. Compare your results with the ones given in literature.

The matlab implementation of the code can be seen in appendix. First of all let us show a table
with the number of iterations needed to achieve the given tolerance:

Re Number of iterations

100 13
500 29
1000 35
2000 69

As we can see the higher is the Reynolds number, the more iterations are needed to achieve conver-
gence. This fact can be easily explained by using the dimensionless form of the steady Navier-Stokes
equation:

(v · ∇)v − 1

Re
∇2v +∇p = 0

∇ · v = 0

The higher is Reynolds number, the more dominant becomes the convective part, which is the part
which causes that the final matrix is nonlinear and non-symmetric, so harder to solve.

Let us now recall that there are two potential sources of numerical instability in the Galerkin
finite element solution of this problem, the first is due to the treatment of the convective term and
manifests itself in high Reynolds number flows when unresolved internal or boundary layers are
present in the solution. The second it the inappropriate combination of interpolation functions for
velocity and pressure.

For this problem as Q2Q1 elements are chosen, we can assure that they are LBB compliant and
satisfy the compatibility condition. Let us now show the results for different Reynolds numbers:

10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Streamlines

0

0.5

1

0

0.5

1

−10

0

10

(b) Pressure field

Figure 3.1: Results obtained for Q2Q1 element with elements refined near the walls with Re = 100

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Streamlines

0

0.5

1

0

0.5

1

−2

0

2

4

(b) Pressure field

Figure 3.2: Results obtained for Q2Q1 element with elements refined near the walls with Re = 500

11

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Streamlines

0

0.5

1

0

0.5

1

−1

0

1

2

(b) Pressure field

Figure 3.3: Results obtained for Q2Q1 element with elements refined near the walls with Re = 1000

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Streamlines

0

0.5

1

0

0.5

1

−0.5

0

0.5

1

1.5

(b) Pressure field

Figure 3.4: Results obtained for Q2Q1 element with elements refined near the walls with Re = 2000

The influence of the Reynolds number can be clearly seen along the different figures. Note that
the position of the main vortex moves towards the center of the cavity when the Reynolds number
increases. The development of a secondary vortex in the right bottom corner of the cavity becomes
progressively apparent and a third vortex appears at the lower left corner as it can be seen in figure
3.4.

Note also for the pressure field that, while Reynolds number is increasing, its value at the upper
corners is decreasing. Regarding to the velocity field, as Reynolds number increases boundary layers
are more obvious and the variations of velocity become sharper. This elevated velocity gradient
could develop non-physical oscillations for large values of the Reynolds number and a stabilization
procedure will be needed.

To end up let us compare our results with the ones given in the literature:

12

Table 3.1: Add caption

Square cavity x1 x2

Re=100 Present simulation 0.62 0.74
Burggraf(1966) 0.62 0.74
Tuann and Olson(1978) 0.61 0.722

Re=1000 Present simulation 0.54 0.57
Ozawa(1975) 0.533 0.569
Goda(1979) 0.538 0.575

As expected our results are the same that the ones obtained in [1] (see page 312, Table6.2).

13

References

[1] Donea, J., Huerta, A. Finite Element Methods for Flow Problems. Wiley, 2003.

14

4 Appendix

4.1 MATLAB codes

1 % This program solves the 2D cavity flow Stokes problem
2
3
4 clear; close all; clc
5
6 addpath('Func_ReferenceElement ')
7
8 dom = [0,1,0,1];
9
10 % Element type and interpolation degree
11 % (0: quadrilaterals , 1: triangles , 11: triangles with bubble

function)
12 elemV = 1; degreeV = 1; degreeP = 1;
13 % elemV = 1; degreeV = 2; degreeP = 1;
14 % elemV = 11; degreeV = 1; degreeP = 1;
15 if elemV == 11
16 elemP = 1;
17 else
18 elemP = elemV;
19 end
20 referenceElement = SetReferenceElementStokes(elemV ,degreeV ,elemP ,

degreeP);
21
22 nx = cinput('Number of elements in each direction ' ,20);
23 ny = nx;
24 adapted = 1;
25 [X,T,XP,TP] = CreateMeshes(dom ,nx,ny,referenceElement ,adapted);
26
27 figure; PlotMesh(T,X,elemV ,'b-');
28 figure; PlotMesh(TP,XP ,elemP ,'r-');
29
30 % Matrices arising from the discretization and the GLS stabilization
31 [K,G,D,f] = StokesSystem(X,T,XP,TP,referenceElement ,nx);
32 [ndofP ,ndofV] = size(G);
33
34 [dofDir ,valDir ,dofUnk ,confined] = BC_red(X,dom ,ndofV);
35 nunkV = length(dofUnk);
36 if confined
37 nunkP = ndofP -1;
38 disp(' ')
39 disp('Confined flow. Pressure on lower left corner is set to zero'

);
40 G(1,:) = [];
41 D(1,:) = [];
42 D(:,1) = [];
43 else
44 nunkP = ndofP;

45 end
46
47 f = f - K(:,dofDir)*valDir;
48 Kred = K(dofUnk ,dofUnk);
49 Gred = G(:,dofUnk);
50 fred = f(dofUnk);
51
52 GLS=1; % If is 1 GLS stabilization is activated
53 if GLS==0
54 A = [Kred Gred ';
55 Gred zeros(nunkP)];
56 else
57 A = [Kred Gred ';
58 Gred D];
59 end
60 b = [fred; zeros(nunkP ,1)];
61
62 sol = A\b;
63
64 velo = zeros(ndofV ,1);
65 velo(dofDir) = valDir;
66 velo(dofUnk) = sol(1: nunkV);
67 velo = reshape(velo ,2,[]) ';
68 pres = sol(nunkV +1:end);
69 if confined
70 pres = [0; pres];
71 end
72
73 nPt = size(X,1);
74 figure;
75 quiver(X(1:nPt ,1),X(1:nPt ,2),velo (1:nPt ,1),velo (1:nPt ,2));
76 hold on
77 plot(dom([1,2,2,1,1]),dom([3,3,4,4,3]),'k')
78 axis equal; axis tight
79
80 PlotStreamlines(X,velo ,dom);
81
82 if degreeP == 0
83 PlotResults(X,T,pres ,referenceElement.elemP ,referenceElement.

degreeP)
84 else
85 PlotResults(XP ,TP,pres ,referenceElement.elemP ,referenceElement.

degreeP)
86 end

1 function [K,G,D,f] = StokesSystem(X,T,XP,TP,referenceElement ,nx)
2 % [K,G,f] = StokesSystem(X,T,XP ,TP,referenceElement)
3 % Matrices K, G and r.h.s vector f obtained after discretizing a

Stokes problem
4 %

5 % X,T: nodal coordinates and connectivities for velocity
6 % XP,TP: nodal coordinates and connectivities for pressure
7 % referenceElement: reference element properties (quadrature , shape

functions ...)
8
9
10 elem = referenceElement.elemV;
11 ngaus = referenceElement.ngaus;
12 wgp = referenceElement.GaussWeights;
13 N = referenceElement.N;
14 Nxi = referenceElement.Nxi;
15 Neta = referenceElement.Neta;
16 NP = referenceElement.NP;
17 ngeom = referenceElement.ngeom;
18
19 % Number of elements and number of nodes in each element
20 [nElem ,nenV] = size(T);
21 nenP = size(TP ,2);
22
23 % Number of nodes
24 nPt_V = size(X,1);
25 if elem == 11
26 nPt_V = nPt_V + nElem;
27 end
28 nPt_P = size(XP ,1);
29
30 % Number of degrees of freedom
31 nedofV = 2*nenV;
32 nedofP = nenP;
33 ndofV = 2*nPt_V;
34 ndofP = nPt_P;
35
36 K = zeros(ndofV ,ndofV);
37 G = zeros(ndofP ,ndofV);
38 f = zeros(ndofV ,1);
39 D = zeros(ndofP ,ndofP);
40
41 % Loop on elements
42 for ielem = 1:nElem
43 % Global number of the nodes in element ielem
44 Te = T(ielem ,:);
45 TPe = TP(ielem ,:);
46 % Coordinates of the nodes in element ielem
47 Xe = X(Te(1: ngeom) ,:);
48 % Degrees of freedom in element ielem
49 Te_dof = reshape ([2*Te -1; 2*Te],1,nedofV);
50 TPe_dof = TPe;
51
52 % Element matrices
53 [Ke,Ge,De,fe] = EleMatStokes(Xe,ngeom ,nedofV ,nedofP ,ngaus ,wgp ,N,

Nxi ,Neta ,NP,nx);

54
55 % Assemble the element matrices
56 K(Te_dof , Te_dof) = K(Te_dof , Te_dof) + Ke;
57 G(TPe_dof ,Te_dof) = G(TPe_dof ,Te_dof) + Ge;
58 D(TPe_dof ,TPe_dof) = D(TPe_dof ,TPe_dof) + De;
59 f(Te_dof) = f(Te_dof) + fe;
60 end
61
62
63
64
65
66
67 function [Ke,Ge ,De,fe] = EleMatStokes(Xe,ngeom ,nedofV ,nedofP ,ngaus ,

wgp ,N,Nxi ,Neta ,NP,nx)
68 % [Ke,Ge,fe] = EleMatStokes(Xe,ngeom ,nedofV ,nedofP ,ngaus ,wgp ,N,Nxi ,

Neta ,NP)
69
70 Ke = zeros(nedofV ,nedofV);
71 Ge = zeros(nedofP ,nedofV);
72 De = zeros(nedofP ,nedofP);
73 fe = zeros(nedofV ,1);
74
75 %Compute tau for GLS
76 he=sqrt (2/nx^2);
77 alpha = 1/3;% optimal value for linear elements
78 nu =1;
79 tau_e = alpha *he ^2/(4* nu); % nu is 1.
80
81 % Loop on Gauss points
82 for ig = 1:ngaus
83 N_ig = N(ig ,:);
84 Nxi_ig = Nxi(ig ,:);
85 Neta_ig = Neta(ig ,:);
86 NP_ig = NP(ig ,:);
87 Jacob = [
88 Nxi_ig (1: ngeom)*(Xe(:,1)) Nxi_ig (1: ngeom)*(Xe(:,2))
89 Neta_ig (1: ngeom)*(Xe(:,1)) Neta_ig (1: ngeom)*(Xe(:,2))
90];
91 dvolu = wgp(ig)*det(Jacob);
92 res = Jacob\[Nxi_ig;Neta_ig];
93 nx = res(1,:);
94 ny = res(2,:);
95
96 Ngp = [reshape ([1;0]* N_ig ,1,nedofV); reshape ([0;1]* N_ig ,1,

nedofV)];
97 % Gradient
98 Nx = [reshape ([1;0]*nx ,1,nedofV); reshape ([0;1]*nx ,1,nedofV)];
99 Ny = [reshape ([1;0]*ny ,1,nedofV); reshape ([0;1]*ny ,1,nedofV)];
100 % Divergence
101 dN = reshape(res ,1,nedofV);

102
103 Ke = Ke + (Nx '*Nx+Ny '*Ny)*dvolu;
104 Ge = Ge - NP_ig '*dN*dvolu;
105 De = De -tau_e*(nx '*nx + ny '*ny)*dvolu;
106 x_ig = N_ig (1: ngeom)*Xe;
107 f_igaus = SourceTerm(x_ig);
108 fe = fe + Ngp '* f_igaus*dvolu;
109 end

1 function C = ConvectionMatrix(X,T,referenceElement ,velo)
2 % [K,G,f] = StokesSystem(X,T,XP ,TP,referenceElement)
3 % Matrices K, G and r.h.s vector f obtained after discretizing a

Stokes problem
4 %
5 % X,T: nodal coordinates and connectivities for velocity
6 % referenceElement: reference element properties (quadrature , shape

functions ...)
7 % velo: convective velocity
8
9 elem = referenceElement.elemV;
10 ngaus = referenceElement.ngaus;
11 wgp = referenceElement.GaussWeights;
12 N = referenceElement.N;
13 Nxi = referenceElement.Nxi;
14 Neta = referenceElement.Neta;
15 ngeom = referenceElement.ngeom;
16
17 % Number of elements and number of nodes in each element
18 [nElem ,nenV] = size(T);
19
20 % Number of nodes
21 nPt_V = size(X,1);
22 if elem == 11
23 nPt_V = nPt_V + nElem;
24 end
25
26 % Number of degrees of freedom
27 nedofV = 2*nenV;
28 ndofV = 2*nPt_V;
29
30 %Allocate
31 C = zeros(ndofV ,ndofV);
32
33 % Loop on elements
34 for ielem = 1:nElem
35 % Global number of the nodes in element ielem
36 Te = T(ielem ,:);
37 % Coordinates of the nodes in element ielem
38 Xe = X(Te(1: ngeom) ,:);
39 % Degrees of freedom in element ielem

40 Te_dof = reshape ([2*Te -1; 2*Te],1,nedofV);
41 % Ve: element nodes ' velocity
42 Ve = velo(T(ielem ,:) ,:);
43 % Element matrices
44 Ce = zeros(nedofV ,nedofV);
45 % Loop on Gauss points
46 for igaus = 1:ngaus
47 % Shape functions on Gauss point igaus
48 N_ig = N(igaus ,:);
49 Nxi_ig = Nxi(igaus ,:);
50 Neta_ig = Neta(igaus ,:);
51 % Jacobian matrix on the Gauss point
52 Jacob = [
53 Nxi_ig (1: ngeom)*(Xe(:,1)) Nxi_ig (1: ngeom)*(Xe(:,2))
54 Neta_ig (1: ngeom)*(Xe(:,1)) Neta_ig (1: ngeom)*(Xe(:,2))];
55 dvolu = wgp(igaus)*det(Jacob);
56 % Shape functions ' derivatives in global coordinates
57 res = Jacob\[Nxi_ig;Neta_ig];
58 nx = res(1,:);
59 ny = res(2,:);
60 % Shape functions in 2D
61 Ngp=[reshape ([1;0]* N_ig ,1,nedofV);reshape ([0;1]* N_ig ,1,

nedofV)];
62 % Gradient
63 Nx = [reshape ([1;0]*nx ,1,nedofV); reshape ([0;1]*nx ,1,

nedofV)];
64 Ny = [reshape ([1;0]*ny ,1,nedofV); reshape ([0;1]*ny ,1,

nedofV)];
65 % Velocity on point igaus
66 v_igaus = N_ig*Ve;
67 % Contribution to element matrix
68 Ce = Ce + Ngp '*(v_igaus (1)*Nx+v_igaus (2)*Ny)*dvolu;
69 end
70 %Assembly
71 C(Te_dof , Te_dof) = C(Te_dof , Te_dof) + Ce;
72 end
73 end

	Statement
	Steady Stokes problem
	Steady Navier-Stokes problem
	Appendix
	MATLAB codes

