
FEF Assignment 4

Unsteady Navier Stokes

Hanna, John

1 Introduction

The Unsteady Navier Stokes equation describes a flow where both inertial and viscous forces play a role
in the flow. The classical Galerkin method can be used to spatially discretize the problem, however,
stabilization should be applied in some cases. Time can be discretized using the famous θ methods, or
using Chorin-Temam projection method.

2 Problem description and summary of the methods

The problem to be solved is a square domain 1*1 where 3 sides are fixed, while the upper one is not fixed
having a prescribed velocity in the x-direction of value 1. This provides a discontinuity in the boundary
conditions at the two upper corners which results in a singularity in the pressure solution as shown in
the results section. The pressure is set to zero at the lower left corner. The initial velocity field is set to
zero at time 0.

The differential equation that is been solved is given as:

vt − ν∇2v + (v.∇)v +∇p = b in Ω

∇.v in Ω

v0 = 0 in Ω and t = 0

v = vD in ΓD and t =]0, inf[

−pn+ ν(n.∇)v = t in ΓN and t =]0, inf[

2.1 Semi-Implicit first order monolitic Scheme

The problem is spatially discretized using the Galerkin method leading to:

Mu̇+ [K + C(u)]u+Gp = f

GTu = h

using the semi-implicit θ method, in which the convection matrix is calculated explicitly from the last
step, we can obtain.

M
ui+1 − ui

∆t
+ [K + C(u)]ui+1 +Gp = f

GTui+1 = h

rewriting the equation in matrix form to solve for the increments, we obtain[
M + ∆tθ(K + C) ∆tθG

GT 0

] [
∆u
∆p

]
=

[
∆t(F − [K + C]ui −Gpi)

0

]
This system of equations is solved for each time increment.

2.2 Chorin-Temam projection method

This method depends on calculating an intermediate velocity step without regard to the pressure as
follows after arrangement:

(M + ∆t(K + C))u∗ = Mui + ∆tf

1

Then the velocity and pressure at the next time step is calculated as:

Mui+1 + ∆tGpi+1 = Mu∗

GTni+1 = 0

which can be rearranged in matrix form as[
M ∆tG
GT 0

] [
ui+1

pi+1

]
=

[
Mu∗

0

]

3 Results and Discussion

The results were obtained using dt = 0.002 and Q2Q1 elements.

3.1 Semi-Implicit method

The value of θ was chosen to be 1.

Figure 1: Pressure distribution and velocity contours at t = 0.002

Figure 2: Pressure distribution and velocity contours at t = 0.08

As can be noted from the above figures, the pressure field is smooth at the beginning, then as time
goes the discontinuities begin to appear with small perturbations near it. Better results can be obtained
by using stabilization techniques.

2

3.2 Chorin-Temam projection method

Figure 3: Pressure distribution and velocity contours at t = 0.002

Figure 4: Pressure distribution and velocity contours at t = 0.08

Similar results are obtained for this method. However, the solution is more smooth and no stabilization
is needed.

3

4 Appendix (MATLAB Codes)

4.1 Semi-Implicit Method

C = ConvectionMatrix (X,T, re ferenceElement , ve l o) ;
Cred = C(dofUnk , dofUnk) ;

f r e d = f r e d − (K(dofUnk , dofDir)∗ va lDir + C(dofUnk , dofDir)∗ va lDir) ;

A = [Mred+dt ∗(Kred+Cred) dt∗Gred ’ ;
Gred ze ro s (nunkP)] ;

B = [dt ∗(f r e d − (Kred+Cred)∗ veloVect (dofUnk)−Gred ’∗ pres) ; z e r o s (nunkP , 1)] ;

s o l I n c = A\B;

ve l o Inc = ze ro s (ndofV , 1) ;
v e l o Inc (dofUnk) = s o l I n c (1 : nunkV) ;
p re s Inc = s o l I n c (nunkV+1:end) ;
ve l o = ve lo + reshape (ve lo Inc , 2 , []) ’ ;
p res = pres + pre s Inc ;

4.2 Chorin-Temam projection method

C = ConvectionMatrix (X,T, re ferenceElement , ve l o) ;
Cred = C(dofUnk , dofUnk) ;

ve l o r ed = veloVect (dofUnk) ;
f r e d = f r e d − (K(dofUnk , dofDir)∗ va lDir + C(dofUnk , dofDir)∗ va lDir) ;

A = Mred + dt ∗(Kred+Cred) ;
B = Mred∗ ve lo r ed + dt∗ f r e d ;

s tep1 = A\B; % Int e rm id i a t e Ve loc i ty

Atot = [Mred dt∗Gred ’ ;
Gred ze ro s (nunkP)] ;

Btot = [Mred∗ s tep1 ; z e r o s (nunkP , 1)] ;

s o l = Atot\Btot ; % Fina l s o l u t i o n

v e l o s o l = ze ro s (ndofV , 1) ;
v e l o s o l (dofUnk) = s o l (1 : nunkV) ;
p r e s o l = s o l (nunkV+1:end) ;
ve l o = reshape (v e l o s o l , 2 , []) ’ ;
ve loVect = reshape (velo ’ , ndofV , 1) ;

4

