
Finite Elements in Fluids April 24, 2019

Master of Science in Computational Mechanics

Universitat Politècnica de Catalunya Agustina FELIPE RAMUDO

Assignment IX: UNSTEADY NAVIER STOKES PROBLEM

vt − ν∇2v + (v · ∇)v +∇p = b in Ωx(0, T)

∇ · v = 0 in Ωx(0, T)

v = vD on ΓDx(0, T)

−pn ·+ν(n · ∇)v = t on ΓNx(0, T)

v(x,0) = v0(x) in Ω

(1)

The weak formulation of system of equations (1) can be obtained by multiplying them
by a vector weighting function w and a scalar weighting function q. The finite element
discretization of the system of equations (1) is:

Mu̇(t) + [K + C(v(t))]u(t) + Gp(t) = f(t,v(t))

GTu(t) = h(t)

u(0) = v0 − vD(0)

(2)

where M is the standard finite element mass matrix defined as M = [mat N]T [mat N].

1

1 Cavity flow problem:

The cavity flow problem is the reference point used to test the stabilization terms in this
report. The geometry of the problem and the boundary conditions can be seen in the next
figure:

Figure 1.1: Problem statement with boundary conditions.

2 Chorin-Temam projection method

The principle of the projection method is to compute the velocity and pressure fields sep-
arately through the computation of an intermediate velocity, which is then projected onto
the subspace of the solenoidal vector functions.
The Chorin-Temam projection method includes two basic steps as follows.

1. includes the viscous and convective in convective terms in the Navier-Stokes equations
and (given the previous velocity field vn) consist of finding an intermediate velocity
field vn+1 such that:

vn+1
int − vn

∆t
+ (v∗ · ∇)v∗∗ − ν∇2v∗∗ = fn+1 in Ω

vn+1
int = vn+1

D on Γ

(3)

where v∗ and v∗∗ must be chosen suitable for the treatment of the nonlinear convective
term, possible options are:

• Explicit Euler v∗=v∗∗=vn

2

• Semi-Implicit v∗=vn and v∗∗=vn+1
int

• Implicit Euler v∗=v∗∗=vn+1
int

For the semi-implicit and fully implicit cases, the algebraic system resulting from the
finite element discretization is:

M1

(
vn+1
int − vn

∆t

)
+ (C(v∗) + K)vn+1

int = fn+1 (4)

2. determines the velocity vn+1 and pressure pn+1 solving:
vn+1
int − vn

∆t
+∇pn+1 = 0 in Ω

∇ · vn+1 = 0 in Ω

n · vn+1
int = n · vn+1

D on Γ

(5)

The discrete equations emanating from the discretization of the weak form of the above
equations induce the following system of algebraic equations:M2

(
vn+1 − vn+1

int

∆t

)
+ Gpn+1 = 0

GTv
n+1

= 0

(6)

Code Implementation:

1 while step < nstep
2 step = step +1;
3 C = ConvectionMatrix (X,T, referenceElement , velo);
4 Cred = C(dofUnk , dofUnk);
5 fredn = fred − (K(dofUnk , dofDir)+C(dofUnk , dofDir))* valDir ;
6

7 % FIRST STEP
8 btot = dt* fredn + Mred * veloVect (dofUnk);
9 Atot = Mred +dt *(Cred + Kred);

10 Z = Atot \ btot ;
11

12 % SECOND STEP
13 btot = [Mred *Z; f q];
14 Atot = [Mred Gred '* dt; Gred L];
15 aux = Atot \ btot ;
16

17 veloInc = zeros (ndofV ,1);
18 veloInc (dofUnk) = aux (1: nunkV);
19 presInc = aux (nunkV +1: end);

3

20 velo = reshape (veloInc ,2 ,[]) ';
21 pres = presInc ;
22 end

3 Semi-implicit first order monolitic scheme

∆u

∆t
− θ∆ut = un

t (7)

where the θ is in the interval [0,1] and determines which method is apply. When θ ≥ 0.5,the
methods are unconditionally stable.
Consider the transient weak form of Navier-Stokes:

ut =
f − (K + C(v))u−Gp

M
(8)

Substituting this equation in the previous equation:

∆u

∆t
−θ
[(
−(K + Cn+1)un+1 −Gpn+1

M

)
−
(
−(K + Cn)un −Gpn

M

)]
=

f − (K + Cn)un −Gpn

M
(9)

The nonlinear convective term C is considered as linearized, and the above equation can be
re-arranged as:

∆u

∆t
+ θ

(
(K + Cn)∆u + G∆p

M

)
=

f − (K + Cn)un −Gpn

M
(10)

To complete the above system, the divergence free condition must be imposed. Then the
equations can be written as:{

(M + θ∆t(K + Cn))∆u + θ∆tG∆p = ∆t(f − (K + Cn)un −Gpn)

GT∆u = 0
(11)

The solution of the transient Navier-Stokes problem can be found using the time discretiza-
tion by the θ methods. In order to implement this formulation into the Matlab code, first
consider the equation (11) in matrix form as:[

M + θ∆t(K + Cn) θ∆tG
GT 0

] [
∆u
∆p

]
=

[
∆t(f − (K + Cn)un −Gpn)

0

]
(12)

4

Code Implementation:

1

2 while step < nstep
3 step = step +1;
4 C = ConvectionMatrix (X,T, referenceElement , velo);
5 Cred = C(dofUnk , dofUnk);
6 fredn = fred − (K(dofUnk , dofDir)+C(dofUnk , dofDir))* valDir ;
7

8 % Matricial system of equations
9 Atot = [Mred + teta *dt *(Kred + Cred) dt* teta *Gred'

10 Gred zeros (nunkP)];
11 btot = [dt *(fredn −(Kred + Cred)* veloVect (dofUnk)−Gred'* ...

pres);zeros (nunkP ,1)];
12

13 % Computation of velocity and pressure increment
14 solInc = Atot \ btot ;
15

16 % Update of the solution
17 veloInc = zeros (ndofV ,1);
18 veloInc (dofUnk) = solInc (1: nunkV);
19 presInc = solInc (nunkV +1: end);
20 velo = velo + reshape (veloInc ,2 ,[])';
21 pres = pres + presInc ;
22 end

4 Results

The domain was discretized in a regular 5x5 mesh of Q2Q1 elements.
In the following plots the three methods used will be shown for different time steps:

(a) θ = 1 (b) θ = 0.5 (c) Chorin-Temam

Figure 4.1: Time step 10

5

(a) θ = 1 (b) θ = 0.5 (c) Chorin-Temam

Figure 4.2: Time step 30

(a) θ = 1 (b) θ = 0.5 (c) Chorin-Temam

Figure 4.3: Time step 50

6

(a) θ = 1 (b) θ = 0.5 (c) Chorin-Temam

Figure 4.4: Time step 80

(a) θ = 1 (b) θ = 0.5 (c) Chorin-Temam

Figure 4.5: Time step 100

The graphics show that the calculations are very similar for all time steps. Some differences
can be observed in the density of the flow lines.

The most notorious difference is observed between Chorin-Temam and the semi-implicit
methods, the upper position of the flow. (Chorin-Temam predicts that it will be larger).

7

