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Consider the domain Ω = [0, 1]2 such that ∂Ω = ΓD∪ΓN∪ΓR with ΓD∩ΓN = φ, ΓD∩ΓR = φ.,
ΓN ∩ ΓR = φ. More precisely, set

ΓN := {(x, y) ∈ R2 : x = 0},
ΓR := {(x, y) ∈ R2 : y = 0},

ΓD := ∂Ω\(ΓN ∪ ΓR).

The following second-order linear scalar partial differential equation is defined
−∇ · (κ∇u) = s in Ω,

u = uD on ΓD

n · (κ∇u) = t on ΓN

n · (κ∇u) + γu = g on ΓR

(1)

1 HDG formulation of the problem 1

Strong form over the domain can be written as:

−∇ · (κ∇u) = s in Ωi, and for i = 1, ..., nel,

u = uD on ΓD

n · (κ∇u) = t on ΓN

n · (κ∇u) + γu = g on ΓR

JunK = 0 on Γ

Jn · ∇uK = 0 on Γ

The two last equations introduced correspond to the imposition of the continuity of the
primal variable u and the normal fluxes respectively along the internal interface Γ.

The first phase of solving HDG formulation is by, element-by-element problem defined with
(q, u) as unknowns defined as:

∇ · qi = s in Ωi,

qi + κ∇ui = 0 in Ωi,

ui = uD on ∂Ωi ∩ ΓD,

ui = û on ∂Ωi\ΓD,
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for i = 1, .., nel.
And the second phase, a global problem is defined to determine hybrid variable û. The
imposition of the so-called transmission conditions:

Jn · qK = 0 on Γ

n · q = −t on ΓN

n · q = γû− g on ΓR

1.1 Weak form

The weak formulation is:

−(∇v,qi)Ωi
+ 〈v,ni · q̂i〉∂Ωi

= (v, s)Ωi

−(w,qi)Ωi
+ κ(∇ ·w, ui)Ωi

= κ〈ni ·w, uD〉∂Ωi∩ΓD
+ κ〈ni ·w, û〉∂Ωi\ΓD

where the numerical traces of the fluxes q̂i are defined, element-by-element as:

ni · q̂i :=

{
ni · qi + τi(ui − uD) on ∂Ωi ∩ ΓD
ni · qi + τi(ui − û) elsewhere

with τi being a stabilization parameter.

The weak form of the global problem is defined by û ∈ M(Γ ∪ ΓN ∪ ΓR) for all µ ∈
M(Γ ∪ ΓN ∪ ΓR) such that:

nel∑
n=1

〈µ,ni · q̂i〉∂Ωi\∂Ω +

nel∑
n=1

〈µ,ni · q̂i + t〉∂Ωi∩ΓN
+

nel∑
n=1

〈µ,ni · q̂i + g − γû〉∂Ωi∩ΓR
= 0

nel∑
n=1

{
〈µ,ni · qi〉∂Ωi\ΓD

+ 〈µ, τiui〉∂Ωi\ΓD
− 〈µ, τiû〉∂Ωi\ΓD

− 〈µ, γû〉∂Ωi∩ΓR

}
= −

nel∑
n=1

{
〈µ, g〉∂Ωi∩ΓR

+ 〈µ, t〉∂Ωi∩ΓN

}
1.2 Spatial discretization

The following discrete finite-element spaces are introduced:

Wh(Ω) = {w ∈ [L2(Ω)]2; w|Ωi
∈ [Pp(Ωi)]

2 ∀Ωi} ⊂ W(Ω)
Vh(Ω) = {v ∈ [L2(Ω)]2; v|Ωi

∈ Pp(Ωi) ∀Ωi} ⊂ V(Ω)
Mh(S) = {µ ∈ [L2(S)]2; µ|Γi

∈ Pp(Γi) ∀Ωi ⊂ S ⊂ Γ ∪ ∂Ω} ⊂ M(S)

The variables u, q, and û are approximated as:
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q ≈ qh =

nel∑
n=1

Njqj ∈ Wh

u ≈ uh =

nel∑
n=1

Njuj ∈ Vh

û ≈ ûh =

nel∑
n=1

N̂jûj ∈Mh(Γ ∪ ΓN ∪ ΓR) orMh(Γ)

The weak form of the local problem gives rise to the following system of equations for each
element: [

Auu Auq

κAT
uq Aqq

]
i

[
ui

qi

]
=

[
fu
κfq

]
i

+

[
Auû

κAqû

]
i

ûi

Applying the interpolation

nel∑
n=1

{ [
AT

uû AT
qû

]
i

[
ui

qi

]
+ [Aûû]i ûi +

[
AR

ûû

]
i
ûi
}

=

nel∑
n=1

{
[fû]i +

[
fRû
]
i

}
In the above equation the matrices AR

ûû and fRû are associated to the Robin boundary con-
dition of the problem and are defined as:

AR
ûû = −

∑
∂Ωi∩ΓR

γ

nf
ip∑

g=1

N̂n(ξfg)N̂T (ξfg)wfg

fRû = −
∑

∂Ωi∩ΓR

nf
ip∑

g=1

N(ξfg)g(x(ξfg))wfg

After substituting the local solution

K̂û = f̂

with

K̂ =

nel

A
i=1

[
AT

uû AT
qû

]
i

[
Auu Auq

κAT
uq Aqq

]−1

i

[
Auû

κAqû

]
i

+ [Aûû]i +
[
AR

ûû

]
i

and

f̂ =

nel

A
i=1

[fû]i +
[
fRû
]
i
−
[
AT

uû AT
qû

]
i

[
Auu Auq

κAT
uq Aqq

]−1

i

[
fu
κfq

]
i
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2 Solution

Given equation:
u(x, y) = cosh

(
a sin (κx)2 + b cos

(
π
(
γ x2 − y3

)))
(2)

and following conditions: κ = 4, γ = 2, a = −0.2 and, b = 0.8

Plot for the equation (2), and take it as a reference.

Figure 2.1: Plot for the equation

with the help of MATLAB analytic expression for uD, t, and g were computed.

uD =


cosh

(
4 cos(π y3)

5

)
x = 0

cosh

(
4 cos(2π x2)

5
− sin(4x)2

5

)
y = 0

t = −4 sinh

(
4 cos (π (2x2 − y3))

5
− sin (4x)2

5

) (
8 cos (4x) sin (4x)

5
+

16 π sin (π (2x2 − y3)) x

5

)
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g = 2 cosh

(
4 cos (π (2x2 − y3))

5
− sin (4x)2

5

)

−48 π

5
sinh

(
4 cos (2 π x2 − π y3)

5
− sin (4x)2

5

)
sin
(
2 π x2 − π y3

)
y2

All these equations were introduced in the existing functions analyticalPoisson.m and
sourcePoisson.m for the computations of the source term and the exact solution, which
also includes the computations for the Dirichlet boundary values. Also two new functions
neumanPoisson.m and robinPoisson.m were created to to accommodate t and g.

After that to apply boundry conditions, seperation of faces were performed with new function
ExtFace class.m. This new function divides the external boundary faces into Neumann,
Dirichlet and Robin.
analytical solution obtained was,

Figure 2.2: Analytical solution (u)

End results obtained, it is shown for a linear approximation different meshes:
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(a) u (p=1) (b) u (p=2)

(c) u* (p=1) (d) u* (p=2)

(e) q (p=1) (f) q (p=2)

Figure 2.3: Comparison of the solution u, the postprocessed solution u*, and q using a linear
and quadratic approximation for 1024 elements.
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Following table shows error obtained for different cases

1024 elements
p = 1 p = 2

Error u 5.221895e-01 4.551095e-01
Error u* 4.537080e-01 4.541246e-01
Error q 6.615271e+00 6.628339e+00

Table 1: Comparison of the error of the solution u, the postprocessed solution u*, and q
using a linear and quadratic approximation for 1024 elements.

As seen from the error table with 1024 elements linear approximation performs better then
quadratic. while for 64 elements quadratic approximation works better.
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(a) u (p=1) (b) u (p=2)

(c) u* (p=1) (d) u* (p=2)

(e) q (p=1) (f) q (p=2)

Figure 2.4: Comparison of the solution u, the postprocessed solution u*, and q using a linear
and quadratic approximation for 64 elements.
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Following table shows error obtained for different cases

64 elements
p = 1 p = 2

Error u 1.940836e+00 1.205015e+00
Error u* 4.159823e-01 4.480802e-01
Error q 5.218238e+00 6.454382e+00

Table 2: Comparison of the error of the solution u, the postprocessed solution u*, and q
using a linear and quadratic approximation for 64 elements.

Thus from above plots we can conclude that higher the number of elements we can reduce
the degree of polynomial for optimal solution.

The convergence study was performed on u, u* and q for the value of κ =1 to 4 in the L2(Ω)
norm.

Figure 2.5: Error of the solution and the post-processed solution in the L2(Ω) norm as a
function of the characteristic element size h for different values of the approximation degree
p

Various colors represent the degree of polynomial. As can be seen as the number of elements
in the mesh increases, the error decreases up to certain number but after that error changes
sign and then increases.The improvements of the HDG methodology in the postprocess
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computation, where the solution u * that is shown with dashed lines gains precision can be
seen converging and produces improved results.

Figure 2.6: Error of q in the L2(Ω) norm as a function of the characteristic element size h
for different values of the approximation degree p
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