
INTERNATIONAL CENTRE FOR

NUMERICAL METHODS IN ENGINEERING

UNIVERSITAT POLITÈCNICA DE CATALUNYA

MASTER OF SCIENCE IN COMPUTATIONAL MECHANICS

Finite Element in Fluids
Hybridizable Discontinuous Galerkin Homework

Assignment # 16

Eugenio José Muttio Zavala

June 5, 2019

Submitted To:
Prof. Antonio Huerta

Prof. Matteo Giacomini
Prof. Pablo Saez

1 HYBRIDIZABLE DISCONTINUOUS GALERKIN

PROBLEM STATEMENT

Consider the domainΩ= [0,1]2 such that ∂Ω= ΓD ∪ ΓN ∪ ΓR with ΓD ∩ ΓN =;, ΓD ∩ ΓR =; and
ΓN ∩ ΓR =;. More precisely, set:

ΓN := {(x, y) ∈R2 : x = 1}

ΓR := {(x, y) ∈R2 : y = 0}

ΓD := ∂Ω\(ΓN ∪ΓR)

The following second-order linear scalar partial differential equation is defined
− ∇· (κ ∇u) = s in Ω,

u = uD on ΓD ,

n · (κ ∇u) = t on ΓN ,

n · (κ ∇u)+γu = g on ΓR ,

(1.1)

where κ and γ are the diffusion and convection coefficients, respectively, n is the outward unit
normal vector to the boundary, s is a volumetric source term and, uD , t , and, g are the Dirichlet,
Neumann and Robin data imposed on the corresponding portions of the boundary ∂Ω.

1. Write the HDG formulation of the problem (1.1). More precisely, derive the HDG strong and weak
forms of the local and global problems.[Hint: the hybrid variable û needs to be introduced on both on
ΓN and ΓR]

STRONG FORM

The strong form for the second-order elliptic problem is shown in the equation 1.1 which represents the
resolution of the Poisson equation in two dimensions in which a κ parameter is imposed and also a Robin
boundary condition is applied together with the corresponding Neuman and Dirichlet. Then, as the HDG
methodology suggests, an equivalent strong form of the second-order elliptic problem can be written in a
broken domain as:

− ∇· (κ ∇u) = s in Ωi , and for i = 1, ...,nel ,

u = uD on ΓD ,

n · (κ ∇u) = t on ΓN ,

n · (κ ∇u)+γu = g on ΓR ,

�u n� = 0 on Γ,

� n · ∇u� = 0 on Γ,

(1.2)

where the two last equations correspond to the imposition of the continuity of the primal variable u and the
normal fluxes respectively along the internal interface Γ. Finally, the strong form is written in mixed form,
in which the problem is solved as two equivalent or in other words as a system of first-order equations over
the broken computational domain as:

2

∇·qi = s

κ
in Ωi , and for i = 1, ...,nel ,

q+∇ui = 0 in Ωi , and for i = 1, ...,nel ,

ui = uD on ∂Ωi ∩ΓD ,

ui = û on ∂Ωi \ΓD ,

(1.3)

This approach assumes û given. In each element Ωe this problem produces an element-by-element solu-
tion qe and ue as a function of the unknown û. Now, the transmission condition for the global problem must
be imposed as:

� n · q� = 0 on Γ

n · q =−t on ΓN

n · q = γû − g on ΓR

(1.4)

Note that the continuity of u along Γ is automatically satisfied because u = û on Γ, as imposed by the local
problems in equation 1.3, and u = û is unique for adjacent elements.

WEAK FORM

The weak form for each element equivalent to 1.3 can be written as follows: f or i = 1, ...,nel , given uD on
ΓD and û on Γ∪ΓN ∪ΓR , find (qi ,ui) ∈W(Ωi)×V(Ωi) that satisfies:

−(∇v, qi)Ωi +〈v, ni · q̂i 〉∂Ωi = (v, s/κ)Ωi

−(w, qi)Ωi + (∇· w,ui)Ωi = 〈 ni · w,uD〉∂Ωi∩ΓD +〈 ni · w, û〉∂Ωi \ΓD

(1.5)

where the numerical traces of the fluxes q̂i must be defined. This problem imposes the Dirichlet boundary
conditions weakly, and the numerical traces, which formally should be ni · q̂i = ni · qi , but for stability
purposes they are defined element-by-element as:

ni · q̂i :=
{

ni ·qi +τi (ui −uD) on ∂Ωi ∩ΓD

ni ·qi +τi (ui − û) elsewhere
(1.6)

where τi corresponds to a stabilization parameter defined element-by-element, whose selection has an
important effect on the stability, accuracy, and convergence properties of the resulting HDG method. Once
the weak form for the local problem is presented, the global problem 1.4 is of interest. The weak form
equivalent to 1.4 is to find û ∈M(Γ∪ΓN ∪ΓR) for all µ ∈M(Γ∪ΓN ∪ΓR) such that:

nel∑
n=1

〈µ, ni · q̂i 〉∂Ωi \∂Ω+
nel∑

n=1
〈µ, ni · q̂i + t〉∂Ωi∩ΓN +

nel∑
n=1

〈µ, ni · q̂i + g −γû〉∂Ωi∩ΓR = 0 (1.7)

Replacing the definition of the fluxes (1.6) into the previous equation, the global problem becomes:

nel∑
n=1

{
〈µ, ni ·qi 〉∂Ωi \ΓD +〈µ,τi ui 〉∂Ωi \ΓD −〈µ,τi û〉∂Ωi \ΓD −〈µ,γû〉∂Ωi∩ΓR

}
=−

nel∑
n=1

{
〈µ, g 〉∂Ωi∩ΓR +〈µ, t〉∂Ωi∩ΓN

}
(1.8)

3

SPATIAL DISCRETIZATION

To obtain the weak forms, the scalar and vector spaces were considered:

W(D) = {w ∈ [H1(D)]2,D ⊂Ω}

V(D) = {v ∈H1(D),D ⊂Ω}

M(S) = {µ ∈L2(S),S ⊂ Γ∪∂Ω}

Now, to consider a numerical approximation of the problem a discretization of the local (1.5-1.6) and global
(1.8) problems a discrete finite element spaces are introduced:

Wh(Ω) = { w ∈ [L2(Ω)]2; w |Ωi ∈ [Pp (Ωi)]2 ∀Ωi } ⊂W(Ω)
Vh(Ω) = {v ∈ [L2(Ω)]2; v |Ωi ∈Pp (Ωi) ∀Ωi } ⊂V(Ω)
Mh(S) = {µ ∈ [L2(S)]2; µ|Γi ∈Pp (Γi) ∀Ωi ⊂ S ⊂ Γ∪∂Ω} ⊂M(S)

(1.9)

These spaces give rise to an element-by-element nodal interpolation of the corresponding variables:

q ≈ qh =
nel∑

n=1
N j q j ∈Wh (1.10)

u ≈ uh =
nel∑

n=1
N j u j ∈Vh (1.11)

û ≈ ûh =
nel∑

n=1
N̂ j û j ∈Mh(Γ∪ΓN ∪ΓR) or Mh(Γ) (1.12)

Then, a system of equation can be expressed in matrix form by using the interpolation chosen in 1.10, 1.11
and 1.12: [

Auu Auq

AT
uq Aqq

]
i

[
ui

qi

]
=

[
fu

fq

]
i

+
[

Auû

Aqû

]
i

ûi (1.13)

Similarly, applying the interpolation to (1.8) produces the following system of equations:

nel∑
n=1

{[
AT

uû AT
qû

]
i

[
ui

qi

]
+ [Aûû]i ûi +

[
AR

ûû

]
i ûi

}
=

nel∑
n=1

{
[fû]i +

[
fR

û

]
i

}
(1.14)

where matrices AR
ûû and fR

û are associated to the Robin boundary condition of the problem and can be
defined as:

AR
ûû =− 1

κ

∑
∂Ωi∩ΓR

γ

n f
i p∑

g=1
N̂n(ξ f

g)N̂T (ξ f
g)w f

g (1.15)

fR
û =− 1

κ

∑
∂Ωi∩ΓR

n f
i p∑

g=1
N(ξ f

g)g (x(ξ f
g))w f

g (1.16)

After replacing the local solution (1.13) in (1.14), the global system becomes:

K̂û = f̂

with

4

K̂ =
nel

A
i=1

[
AT

uû AT
qû

]
i

[
Auu Auq

AT
uq Aqq

]−1

i

[
Auû

Aqû

]
i

+ [Aûû]i +
[
AR

ûû

]
i

and

f̂ =
nel

A
i=1

[fû]i +
[
fR

û

]
i −

[
AT

uû AT
qû

]
i

[
Auu Auq

AT
uq Aqq

]−1

i

[
fu

fq

]
i

2. Implement in the Matlab code provided in class the corresponding HDG solver.

In order to implement the HDG solver including the Robin boundary condition into the provided code, it
was needed to understand how the mesh is created and also how the faces of each element are stored. Then,
locating the correct numbering of elements and faces (in local and global form) a new matrix space similar
with the Neuman BC is considered for the Robin BC. The code provide the internal and external faces of
the elements, which these are important because the external plane x = 1 must be imposed as Neuman BC,
and the plane y = 0 must be Robin BC, as the problem states. A subroutine was coded in which the entire
external faces are the parameter, then a loop search for the requested planes and store them depending the
boundary conditions (Code 1).

Code Implementation 1

for i = 1 : length (infoFaces . extFaces)
El_num = T(infoFaces . extFaces (i , 1) , 1 : 3) ; %c a l l s the in−edge nodes
Nod_1 = X(El_num(1) , :) ;
Nod_2 = X(El_num(2) , :) ;
Nod_3 = X(El_num(3) , :) ;
i f Nod_1(2) == 0 && Nod_2(2) == 0 | | Nod_1(2) == 0 && Nod_3(2) ==0 | | Nod_3(2) == 0 &&
Nod_2(2) ==0 % y=0 (Neumann faces)

infoFaces . extFaces_N (k , :) = infoFaces . extFaces (i , :) ;
k = k +1;

e l s e i f Nod_1(1) == 1 && Nod_2(1) == 1 | | Nod_1(1) == 1 && Nod_3(1) ==1 | | Nod_3(1) == 1 &&
Nod_2(1) ==1 % x=1 (Robin faces)

infoFaces . extFaces_R (m, :) = infoFaces . extFaces (i , :) ;
m=m+1;

else
infoFaces . extFaces_D (q , :) = infoFaces . extFaces (i , :) ;
q = q+1;

end
end

Listing 1: Boundary Conditions in External Faces.

Furthermore, the code provided in class uses a Faces matrix F in which it stores all the constrained and
unconstrained faces of the domain. First, it stores the interior faces which are not constrained. Then a loop
over the external faces is done, first stores the ones with “fluxes” boundary conditions and the last are the
Dirichlet faces due to the solver does not consider this ones in the computation of the solution. Then, the
Robin faces should be considered just before the Dirichlet faces as the code 2 shows.

5

Code Implementation 2

F = zeros (nOfElements , 3) ;
for iFace = 1 : nOfInteriorFaces %numbering of i nte r nal faces

infoFace = intFaces (iFace , :) ;
F(infoFace (1) , infoFace (2)) = iFace ;
F(infoFace (3) , infoFace (4)) = iFace ;

end

for iFace = 1 : nOfExteriorFaces_N %numbering of Neuman faces
infoFace = infoFaces . extFaces_N (iFace , :) ;
F(infoFace (1) , infoFace (2)) = iFace + nOfInteriorFaces ;

end

for iFace = 1 : nOfExteriorFaces_R %numbering of Robin faces
infoFace = infoFaces . extFaces_R (iFace , :) ;
F(infoFace (1) , infoFace (2)) = iFace + nOfInteriorFaces + nOfExteriorFaces_N ;

end

for iFace = 1 : nOfExteriorFaces_D %Numbering of D i r i c h l e t faces
infoFace = infoFaces . extFaces_D (iFace , :) ;
F(infoFace (1) , infoFace (2)) = iFace + nOfInteriorFaces + nOfExteriorFaces_N +
nOfExteriorFaces_R ;

end

Listing 2: Including Robin BC in Faces Matrix F .

As a new boundary condition is imposed (Robin), it is needed to redefine the number of degrees of freedom
that the solver will compute. In the previous version of the code, only the Neuman face provide degrees of
freedom in the external boundary, due to the Dirichlet nodes are known values and are not considered in
the solver as dofs. In this implementation, the Robin BC acts similarly to a Neuman face, then more degrees
of freedom must be considered. The code 3 show the lines that ensure the redefinition of the dofs.

Code Implementation 3

uDirichlet = computeProjectionFaces (@analyticalPoisson , infoFaces . extFaces_D , X , T ,
referenceElement) ;

dofDir ichlet= (nOfInteriorFaces+nOfExteriorFaces_N+nOfExteriorFaces_R) *nOfFaceNodes + (1 :
nOfExteriorFaces_D *nOfFaceNodes) ;

dofUnknown = 1 : (nOfInteriorFaces *nOfFaceNodes+nOfExteriorFaces_N *nOfFaceNodes+
nOfExteriorFaces_R *nOfFaceNodes) ;

Listing 3: Degrees of freedom redefined by considering Robin BC.

6

The matrix computation and the corresponding force due the Robin boundary condition are implemented
in the subroutine hdg_preprocess.m. As can be seen in the code 4, the lines corresponds to the equations
1.15 and 1.16 which denotes the matrix product of the shape functions, the Robin’s function g (x) and the
paramerer κ included.

Code Implementation 4

%Robin matrix (All_R)
i f Fext_R == 1

nodes = faceNodes (face_R_id , :) ; Xf = Xe (nodes , :) ;
dxdxi = Nx1d* Xf (: , 1) ; dydxi = Nx1d* Xf (: , 2) ;
dxdxiNorm = sqrt (dxdxi .^2+ dydxi . ^ 2) ; dline = dxdxiNorm . * IPw_f ’ ;
ind_face = (face_R_id−1)*nOfFaceNodes + (1 : nOfFaceNodes) ;
Auu_f = N1d’ * (spdiags (dline , 0 , ngf , ngf) *N1d) *gamma;
Arr (ind_face , ind_face) = −(1/kappa) * Auu_f ;

end

%Neumann force vector
fqN = zeros (nOfFaces *nOfFaceNodes , 1) ;
i f Fext_N == 1

nodes_N = faceNodes (face_N_id , :) ;
Xf_N = Xe (nodes_N , :) ;
dxdxi = Nx1d*Xf_N (: , 1) ; dydxi = Nx1d*Xf_N (: , 2) ;
dxdxiNorm = sqrt (dxdxi .^2+ dydxi . ^ 2) ; dline = dxdxiNorm . * IPw_f ’ ;
aux_f = −N1d’ * (spdiags (dline , 0 , ngf , ngf) *neumanPoisson (N1d*Xf_N)) ;
i f face_N_id == 1

fqN (1 : nodes_of_face) = aux_f ;
e l s e i f face_N_id == 2

fqN (nodes_of_face +1:2* nodes_of_face) = aux_f ;
e lse

fqN (2* nodes_of_face +1:3* nodes_of_face) = aux_f ;
end

end

%Robin force vector
fqR = zeros (nOfFaces *nOfFaceNodes , 1) ;
i f Fext_R == 1

nodes_R = faceNodes (face_R_id , :) ;
Xf_R = Xe (nodes_R , :) ;
dxdxi = Nx1d* Xf_R (: , 1) ; dydxi = Nx1d* Xf_R (: , 2) ;
dxdxiNorm = sqrt (dxdxi .^2+ dydxi . ^ 2) ; dline = dxdxiNorm . * IPw_f ’ ;
aux_f = −N1d’ * (spdiags (dline , 0 , ngf , ngf) * robinPoisson (N1d* Xf_R)) ;
i f face_R_id == 1

fqR (1 : nodes_of_face) = aux_f ;
e l s e i f face_N_id == 2

fqR (nodes_of_face +1:2* nodes_of_face) = aux_f ;
e lse

fqR (2* nodes_of_face +1:3* nodes_of_face) = aux_f ;
end

end

Listing 4: Robin matrix and force vector computation.

7

3. Set κ= 2.5 and λ= 1.1. Consider u(x, y) = cos
(
aπ

(
k

(
x2 −b

)))
sinh

(−γ y
)

, with a = 4 and b = 0.3.
Determine the analytical expressions of the data uD , t and g in problem (1.1). [Hint: Use Matlab tools
for symbolic calculus]

In order to introduce the given function u for this task, which corresponds to the #16 Assignment:

u(x, y) = cos
(
aπ

(
k

(
x2 −b

)))
sinh

(−γ y
)

(1.17)

Plotting this function, it is worthy to say that this specific function is a great challenge to approximate due
to the high gradients that present, and the complexity of the function. (fig. 1.1).

(a) (b)

Figure 1.1: Function imposed to the boundary conditions of the problem #16.

Then, taking into account the hint given, using the Matlab symbolic calculus it was introduced the analyti-
cal expression 1.17, and computed the expression for Neuman t and for Robin g as:

Dirichlet:

uD =
{

sinh
(
1.1y

)
for x = 0

−1.33565 ·cos(31.4159x2 −9.42478) for y = 1
(1.18)

Neuman (x = 1):

t = 50π sin

(
4π

(
5 x2

2
− 3

4

))
sinh

(
1.1y

)
x (1.19)

Robin (y = 0):

g = 1.1cosh

(
11y

4

)
cos

(
10π

(
x2 −0.3

))−1.1cos
(
10π

(
x2 −0.3

))
sinh

(
1.1y

)
(1.20)

8

4. Solve problem (1.1) using HDG with different meshes and polynomial degrees of approximation.
Starting from the plots provided by the Matlab code, discuss the accuracy of the obtained solution u
and of the post-processed one u∗.

(a) (b)

Figure 1.2: Comparison of the a) solution u and b) the postprocessed solution u∗ using a linear approxima-
tion in a 2048 elements mesh.

(a) (b)

Figure 1.3: Comparison of the a) solution u and b) the postprocessed solution u∗ using an approximation
of fourth order polynomial in a 512 elements mesh.

In order to compare the results provided by the HDG method, some experiments with different meshes and
polynomial degrees of approximation were performed, some of the most relevant are shown next. First, a
linear approximation using a fine mesh with 2048 elements is tested, as can be seen in figure 1.2a, the graph
does not look similar to the analytical solution of figure 1.1, even though the error computed using the L2

norm is 7.606669·(10−1). Nevertheless, the post-processed solution u∗ is incredible accurate because it has
an error of 8.298004 · (10−3) by using linear elements, and as can be seen in figure 1.2b it is closer to the
analytical solution. Now, using a discretization with less elements (512), but a higher polynomial degree
of approximation (p = 4), a comparison of the results can be discussed. The figure 1.3a shows the solution

9

u, in which is evident a better approximation by using less elements but polynomial of degree 4, the graph
is quite similar with the analytical solution and the error is 3.426272 · (10−2) which is a very good improve-
ment compared with the previous result using a dense mesh. Moreover, the result of the postprocess result
is even better than before, with an error of 2.771389 · (10−4).

A last comparison is done by using a finer mesh and a polynomial approximation of degree 4 (fig. 1.4), in
which it can be seen the best approximation that can be obtained in this work. The error of the solution
with the L2 norm is 3.460436 · (10−5) and the postprocess error is 6.663120 · (10−8), which is almost the ana-
lytical result.

(a) (b)

Figure 1.4: Comparison of the a) solution u and b) the postprocessed solution u∗ using a linear approxima-
tion in a 8192 elements mesh.

5. Compute the errors for u, q, and u∗ in the L2-norm defined in the domain Ω. Perform a conver-
gence study for the primal, u, mixed, q and post-processed, u∗ variables for a polynomial degree of
approximation k = 1, ...,4. Discuss the obtained numerical results, starting from the theoretical results
on the optimal convergence rates of HDG.

To prove the behavior of the numerical results comparing the polynomial approximation degree some ex-
periments were carried out by using the same mesh of 512 elements, the figure 1.5a shows the solution
u with linear approximation, it shows an error of 2.413887 with the L2 norm, and it can be seen that the
approximation is not as good as the 4th degree polynomial solution with an error of 3.426272 · (10−2) of
the figure 1.5b. And also, the flux q computed by HDG methodology is shown in the figures 1.5c and 1.5d
for the X -component using the linear and fourth degree approximation respectively. It is verified that the
approximation using linear elements lacks of accuracy as well, in contrast the fourth degree polynomial ap-
proximation is more adequate. The same conclusion can be done in the Y -component of the flux, in which
is more evident that higher polynomials have an impressive impact in the HDG results.

Then, a comparison between post-processed solutions is shown in the figure 1.6 using the same mesh of
512 elements but different approximation polynomial, where even though it is obvious that using a higher
degree of polynomial the results are getting better, the linear approximation (fig. 1.6a) is quite accurate and
incredible superior than the solution itself (fig. 1.5a), which indicates the importance of the implementa-
tion of the postprocess.

10

(a) (b)

(c) (d)

(e) (f)

Figure 1.5: Comparison between polynomial degree 1 (left) and 4 (right) using the same discretization with
512 elements.

11

(a) (b)

Figure 1.6: Comparison of the postprocess solution u∗ with a) p = 1 degree (er r or = 6.102481 · (10−2)) and
b) p = 4 degree (er r or = 2.771389 · (10−4)) of approximation in a 512 elements mesh.

Furthermore, a comparison between the evolution of the refinement in the mesh and the degrees of the
polynomials can be done through a convergence analysis. The figure 1.7 shows a graph in which the colors
represent the polynomial degree, and as can be seen as the element is getting small, the error diminishes
which is logical, but one of the extraordinary improvements of the HDG methodology resides in the post-
process computation, where the solution u∗ (dashed lines) have a clearly gain of accuracy. For example
the finest mesh with degree of approximation 4 corresponds to the solid line (—), and the postprocessed
solution of degree p=2 (– –) obtains the same result, then it can be said that the postprocess is two times
more accurate than the solution computed. Moreover, the results obtained for this problem show that the
optimal (i.e., p + 1 for the solution and p + 2 for the postprocessed solution) rate of convergence is obtained.

Figure 1.7: Convergence analysis with discretization meshes from 8 elements to 8192, and using polynomial
degrees from 1 to 4: p=1(—), p=2 (—), p=3 (—), p=4 (—).

12

REFERENCES

[1] Ruben Sevilla. Hybridisable discontinuous galerkin for second-order elliptic problems. notes for dg
summer school - barcelona, 2017.

[2] Ruben Sevilla and Antonio Huerta. Tutorial on Hybridizable Discontinuous Galerkin (HDG) for Second-
Order Elliptic Problems, pages 105–129. 05 2016.

13

