Finite Elements in Fluids
April 3, 2019
Master of Science in Computational Mechanics
Universitat Politècnica de Catalunya

Agustina FELIPE RAMUDO

Assignment VII: Navier-Stokes problem.

Navier-Stokes equation:

$$
\begin{cases}-\nu \nabla^{2} \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}+\nabla p=\mathbf{b} & \text { in } \Omega \\ \nabla \cdot \mathbf{v}=0 & \text { in } \Omega \\ \mathbf{v}=\mathbf{v}_{D} & \text { on } \Gamma_{D} \\ \mathbf{n} \cdot \sigma=\mathbf{t} & \text { on } \Gamma_{N}\end{cases}
$$

$\underline{\text { Non-linear system of equations }}$

$$
\left(\begin{array}{cc}
\mathbf{K}+\mathbf{C}(\mathbf{v}) & \mathbf{G}^{T} \\
\mathbf{G} & \mathbf{0}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{p}}=\binom{\mathbf{f}}{\mathbf{0}}
$$

An iterative technique (Picard or Newton-Raphson methods) must be employed to iteratively solve the resulting system of nonlinear algebraic equations.

1 Convection matrix

$$
\left[C\left(\mathbf{v}^{\mathbf{h}}\right)\right]_{i j}=\left(\mathbf{N}_{i},\left(\left(\sum_{j=1}^{n} \mathbf{v}_{j} N_{j}(\mathbf{x})\right) \cdot \nabla\right), \mathbf{v}^{\mathbf{h}}\right)
$$

This term was implemented as follows in the code:
$1 \mathrm{Ce}=\mathrm{Ce}+\mathrm{Ngp}^{\prime} \star\left(\right.$ v_igaus $\left.^{\mathrm{C}}(1) \star \mathrm{Nx}+\mathrm{v}_{\mathrm{i}} \mathrm{igaus}(2) \star \mathrm{Ny}\right) \star \mathrm{dvolu}$;

Using then Picard's method for different Reynolds numbers and for a number of elements of 10 in each direction we obtain the following results that can be observed in the following image:

Figure 1.1: Picard's method using Q2Q1 elements.

2 Newton-Raphson methods for non-linear system of equations

Newton-Raphson method to solve the Navier-Stokes non-linear system of equations. This method solves an equation of the form $\mathbf{r}(\mathbf{x})=0$ where, for the Navier-Stokes system, $\mathbf{r}(\mathbf{x})$ is defined as follows:

$$
\mathbf{r}=\left[\begin{array}{c}
(\mathbf{K}+\mathbf{C}(\mathbf{v})) \mathbf{v}+\mathbf{G}^{T} \mathbf{p}-\mathbf{f} \\
\mathbf{G} \mathbf{v}
\end{array}\right]
$$

Thus, the solution after k iterations can be found by solving the linear system:

$$
\left\{\begin{array}{l}
\mathbf{J}\left(\mathbf{x}^{k}\right) \Delta \mathbf{x}^{k+1}=-r\left(\mathbf{x}^{k}\right) \\
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\Delta \mathbf{x}^{k+1}
\end{array}\right.
$$

where $\mathbf{J}(\mathbf{x})$ is called the Jacobian matrix and it is mathematically defined as:

$$
\mathbf{J}(\mathbf{x})=\left(\begin{array}{cc}
\frac{\partial \mathbf{r}_{1}}{\partial \mathbf{v}} & \frac{\partial \mathbf{r}_{1}}{\partial \mathbf{p}} \\
\frac{\partial \mathbf{r}_{2}}{\partial \mathbf{v}} & \frac{\partial \mathbf{r}_{2}}{\partial \mathbf{p}}
\end{array}\right)
$$

Where:

$$
\frac{\partial \mathbf{r}_{1}}{\partial \mathbf{v}}=\mathbf{K}+\underbrace{\left(\mathbf{N}_{i},(\mathbf{v} \cdot \nabla), \mathbf{N}_{j}\right)}_{\mathbf{C}_{\mathbf{2}}(\mathbf{v})}+\underbrace{\left(\mathbf{N}_{i},\left(\mathbf{N}_{j} \cdot \nabla\right), \mathbf{v}\right)}_{\mathbf{C}_{\mathbf{1}}(\mathbf{v})}
$$

It is possible to see that $C_{1}(v)=C(v)$ from the Piccard's method but we have to discretize $C_{2}(v)$ as it follows:

$$
\begin{aligned}
\mathbf{w} \cdot(\mathbf{v} \cdot \nabla) \mathbf{v} & =\mathbf{w}\left[\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right]\left[\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right] \\
& =\mathbf{w}\left[\begin{array}{cc}
\frac{\partial v_{x}}{\partial x} & \frac{\partial v_{x}}{\partial y} \\
\frac{\partial v_{y}}{\partial x} & \frac{\partial v_{y}}{\partial y}
\end{array}\right]\left[\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right]
\end{aligned}
$$

We will have then, the next convection terms:

```
Ce1 = Ce1 + Ngp'*(v_igaus(1)*Nx+v_igaus(2)*Ny)*dvolu;
Ce2 = Ce2 + Ngp'*([nx ; ny]*u_e)'*Ngp*dvolu;
```

Finally, we can make the comparison of the two methods solving the problem for a Reynolds number of 50 and triangular elements P2P1:

Figure 2.1: Solution using Newton-Raphson Method

Figure 2.2: Comparision of the convergence.

