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Assignment VII: Navier-Stokes problem.

Navier-Stokes equation:
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Non-linear system of equations
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An iterative technique (Picard or Newton-Raphson methods) must be employed to iteratively
solve the resulting system of nonlinear algebraic equations.

1 Convection matrix
Cl = (N (S vne) - v). )
j=1

This term was implemented as follows in the code:

1 Ce = Ce + Ngp'=*(v_igaus (1) *Nx+v_igaus (2) *Ny) xdvolu;

Using then Picard’s method for different Reynolds numbers and for a number of elements
of 10 in each direction we obtain the following results that can be observed in the following
image:
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Figure 1.1: Picard’s method using Q2Q1 elements.



2 Newton-Raphson methods for non-linear system of equations

Newton-Raphson method to solve the Navier-Stokes non-linear system of equations. This
method solves an equation of the form r(x) = 0 where, for the Navier-Stokes system, r(x)
is defined as follows:
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Thus, the solution after k iterations can be found by solving the linear system:
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where J(x) is called the Jacobian matrix and it is mathematically defined as:
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It is possible to see that C}(v) = C'(v) from the Piccard’s method but we have to discretize
Cs(v) as it follows:
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We will have then, the next convection terms:

1 Cel
2 Ce2

Cel + Ngp'x(v_igaus (1) *Nx+v_igaus (2) *Ny) xdvolu;
Ce2 + Ngp'x([nx ; nyl=xu_e) 'xNgpxdvolu;




Finally, we can make the comparison of the two methods solving the problem for a Reynolds
number of 50 and triangular elements P2P1:
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Figure 2.1: Solution using Newton-Raphson Method
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Figure 2.2: Comparision of the convergence.



