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The Navier-Stokes equations with unsteady, isothermal and incompressible fluid flow is
stated as below:

vt + (v · ∇)v − ν∇2v +∇p = f inΩ
∇ · v = 0 inΩ
v = vD onΓD

n · σ = t onΓN

(1)

The balance of momentum equation 1 consist of unsteady term, viscous term, convec-
tive term, pressure gradient and external body forces.
The weal form This Navier-Stokes equations is compatible with a 2D flow in a cavity
(Classical problem of the lid-driven square cavity flow). Thus following boundary con-
ditions were taken into consideration while solving the problem as it can be seen in the
figure 1

Figure 1: Boundary conditions

The equation 1 is then discretized in space using Galerkin formulation we obtain
equation 2

Mu̇(t) + [K + C(v)]u+Gp = f
GTu(t) = 0
u(0) = v(0)− vD(0)

(2)
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where matM is a mass matrix. Now there are several ways to discretize in time of
which following two methods were used for this problem.

1 Semi-Implicit Method

In this method for discretization purpose θ method for time discretization can be
implemented as seen in equation 3

ut =
f − (K + c(v))u−Gp

M

the equation becomes
∆u

∆t
− θ∆ut = unt (3)

where,
n = time step,
θ = (1)Implicit or (0) Explicit method.
By plugging in equation 2 in equation 3 we get following:

∆u

∆t
− θ(−(K + Cn+1)un+1 + (K + Cn)un −Gpn+1 +Gpn

M
) =

f − (K + cn)un −Gpn

M
(4)

The Semi-implicit method implies them term C is considered linearized so the above
equation becomes:

∆u

∆t
− θ((K + Cn)∆u+G∆p

M
) =

f − (K + cn)un −Gpn

M

Considering divergence condition the equation becomes:

(M + θ∆t(K + Cn))∆u+ θ∆tG∆p) = ∆t(f − (K + cn)un −Gpn)
GT∆u = 0

(5)

It can be rewritten in matrix form as,[
M + θ∆t(K + Cn) θ∆tG

GT 0

] [
∆u
∆t

]
=

[
∆t(f − (K + cn)un −Gpn)

0

]
(6)
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The piece of the code implemented:

whi l e stp < nstep
stp = stp +1;
C = ConvectionMatrix (X,T, re ferenceElement , ve l o ) ;
Cr = C( dofUnk , dofUnk ) ;
f r e d n = f r e d − (K( dofUnk , dofDir )+C( dofUnk , dofDir ) )∗ va lDi r ;

Att = [ Mred+te ta ∗dt ∗( Kred+Cr) dt∗ t e t a ∗Gred ’ Gred L ] ;
btt = [ dt ∗( f r ed n −(Kred+Cr)∗ veloVect ( dofUnk)−Gred ’∗ pres ) ; f q ] ;
%v e l o c i t y and pr e s su r e increment
s o l i = Att\btt ;

% Updating the s o l u t i o n
v e l o i = ze ro s ( ndofV , 1 ) ;
v e l o i ( dofUnk ) = s o l i ( 1 : nunkV ) ;
p r e s i = s o l i (nunkV+1:end ) ;
ve l o = ve lo + reshape ( ve l o i , 2 , [ ] ) ’ ;
p re s = pres + p r e s i ;

end

2 Chorin-Temam Method

The projection method is an effective means of numerically solving time-dependent
incompressible fluid-flow problems. This method calculates pressure and velocity fields
separately in two step form. The equation 2 is divided into two separate parts one with
viscous and convective term by neglecting incompressibility of flow and one without
viscous and convective part in incompressible fluid-flow giving first step,

Mut + (K + C)u = f
(M + ∆t(K + Cn))u∗ = ∆b+Mun

Second step, which is current time step is formulated as,[
M ∆tG
GT 0

] [
un+1

pn+1

]
=

[
Mu∗

0

]
(7)

The piece of the code implemented:

whi l e stp < nstep
stp = stp +1;
C = ConvectionMatrix (X,T, re ferenceElement , ve l o ) ;
Cr = C( dofUnk , dofUnk ) ;
f r e d n = f r e d − (K( dofUnk , dofDir )+C( dofUnk , dofDir ) )∗ va lDi r ;
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% FIRST STEP
btt = dt∗ f r e d n+Mred∗ veloVect ( dofUnk ) ;
Att = Mred+dt ∗(Cr+Kred ) ;
s o l 1 = Att\btt ;

% SECOND STEP
btt = [ Mred∗ s o l 1 ; f q ] ;
Att = [ Mred Gred ’∗ dt ; Gred L ] ;
s o ln = Att\btt ;

v e l o i = ze ro s ( ndofV , 1 ) ;
v e l o i ( dofUnk ) = so ln ( 1 : nunkV ) ;
p r e s i = so ln (nunkV+1:end ) ;
ve l o = reshape ( ve l o i , 2 , [ ] ) ’ ;
p res = p r e s i ;

end

3 Results

Mesh size considered was 10x10 and element type Q2Q1. Following results were
plotted for different number of time step with θ equals 1 (Black streamlines), 0.5 (Blue
streamlines) and for Chorin-Temam (Red).

(a) θ = 1 (b) θ = 0.5 (c) Chorin-Temam

Figure 2: Number of time steps = 10
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(a) θ = 1 (b) θ = 0.5 (c) Chorin-Temam

Figure 3: Number of time steps = 25

(a) θ = 1 (b) θ = 0.5 (c) Chorin-Temam

Figure 4: Number of time steps = 50
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(a) θ = 1 (b) θ = 0.5 (c) Chorin-Temam

Figure 5: Number of time steps = 75

(a) θ = 1 (b) θ = 0.5 (c) Chorin-Temam

Figure 6: Number of time steps = 100

As we can see there is not much difference observed for various times steps for the
two methods except the flow in upper side of the domain is considerably different for
Semi-Implicit Method and Chorin-Temam method
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