Master Of Science in Computational Mechanics Finite Elements in Fluids

Chinmay Khisti

(23 April 2019)

Assignment 7

 (Unsteady Incompressible Flow)The Navier-Stokes equations with unsteady, isothermal and incompressible fluid flow is stated as below:

$$
\begin{array}{cc}
v_{t}+(v \cdot \nabla) v-\nu \nabla^{2} v+\nabla p=f & \text { in } \Omega \\
\nabla \cdot v=0 & \text { in } \Omega \\
v=v_{D} & \text { on } \Gamma_{D} \tag{1}\\
n \cdot \sigma=t & \text { on } \Gamma_{N}
\end{array}
$$

The balance of momentum equation 1 consist of unsteady term, viscous term, convective term, pressure gradient and external body forces.
The weal form This Navier-Stokes equations is compatible with a 2D flow in a cavity (Classical problem of the lid-driven square cavity flow). Thus following boundary conditions were taken into consideration while solving the problem as it can be seen in the figure 1

Figure 1: Boundary conditions

The equation 1 is then discretized in space using Galerkin formulation we obtain equation 2

$$
\begin{align*}
& M \dot{u}(t)+[K+C(v)] u+G_{p}=f \\
& G^{T} u(t)=0 \tag{2}\\
& u(0)=v(0)-v_{D}(0)
\end{align*}
$$

$$
M=\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1} \\
N_{2} & 0 \\
0 & N_{2} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
N_{n} & 0 \\
0 & N_{n}
\end{array}\right]\left[\begin{array}{ccccccc}
N_{1} & 0 & N_{2} & 0 & \ldots & N_{n} & 0 \\
0 & N_{1} & 0 & N_{2} & \ldots & 0 & N_{n}
\end{array}\right]
$$

where $\operatorname{mat} M$ is a mass matrix. Now there are several ways to discretize in time of which following two methods were used for this problem.

1 Semi-Implicit Method

In this method for discretization purpose θ method for time discretization can be implemented as seen in equation 3

$$
u_{t}=\frac{f-(K+c(v)) u-G p}{M}
$$

the equation becomes

$$
\begin{equation*}
\frac{\Delta u}{\Delta t}-\theta \Delta u_{t}=u_{t}^{n} \tag{3}
\end{equation*}
$$

where,
$\mathrm{n}=$ time step,
$\theta=$ (1)Implicit or (0) Explicit method.
By plugging in equation 2 in equation 3 we get following:

$$
\begin{equation*}
\frac{\Delta u}{\Delta t}-\theta\left(\frac{-\left(K+C^{n+1}\right) u^{n+1}+\left(K+C^{n}\right) u^{n}-G p^{n+1}+G p^{n}}{M}\right)=\frac{f-\left(K+c^{n}\right) u^{n}-G p^{n}}{M} \tag{4}
\end{equation*}
$$

The Semi-implicit method implies them term C is considered linearized so the above equation becomes:

$$
\frac{\Delta u}{\Delta t}-\theta\left(\frac{\left(K+C^{n}\right) \Delta u+G \Delta p}{M}\right)=\frac{f-\left(K+c^{n}\right) u^{n}-G p^{n}}{M}
$$

Considering divergence condition the equation becomes:

$$
\begin{align*}
& \left.\left(M+\theta \Delta t\left(K+C^{n}\right)\right) \Delta u+\theta \Delta t G \Delta p\right)=\Delta t\left(f-\left(K+c^{n}\right) u^{n}-G p^{n}\right) \\
& G^{T} \Delta u=0 \tag{5}
\end{align*}
$$

It can be rewritten in matrix form as,

$$
\left[\begin{array}{cc}
M+\theta \Delta t\left(K+C^{n}\right) & \theta \Delta t G \tag{6}\\
G^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta u \\
\Delta t
\end{array}\right]=\left[\begin{array}{c}
\Delta t\left(f-\left(K+c^{n}\right) u^{n}-G p^{n}\right) \\
0
\end{array}\right]
$$

The piece of the code implemented:

```
while stp < nstep
    stp = stp +1;
    C = ConvectionMatrix(X,T, referenceElement,velo);
    Cr = C(dofUnk,dofUnk );
    fred_n = fred - (K(dofUnk, dofDir)+C(dofUnk, dofDir ) )*valDir;
    Att = [Mred+teta*dt*(Kred+Cr) dt*teta*Gred' Gred L];
    btt = [dt*(fred_n-(Kred+Cr)*veloVect(dofUnk)-Gred '* pres); f_q];
    %velocity and pressure increment
    soli = Att\btt;
    % Updating the solution
    veloi = zeros(ndofV,1);
    veloi(dofUnk)= soli(1:nunkV);
    presi = soli(nunkV+1:end);
    velo = velo + reshape(veloi, 2,[])';
    pres = pres + presi;
end
```


2 Chorin-Temam Method

The projection method is an effective means of numerically solving time-dependent incompressible fluid-flow problems. This method calculates pressure and velocity fields separately in two step form. The equation 2 is divided into two separate parts one with viscous and convective term by neglecting incompressibility of flow and one without viscous and convective part in incompressible fluid-flow giving first step,

$$
\begin{gathered}
M u_{t}+(K+C) u=f \\
\left(M+\Delta t\left(K+C^{n}\right)\right) u^{*}=\Delta b+M u^{n}
\end{gathered}
$$

Second step, which is current time step is formulated as,

$$
\left[\begin{array}{cc}
M & \Delta t G \tag{7}\\
G^{T} & 0
\end{array}\right]\left[\begin{array}{l}
u^{n+1} \\
p^{n+1}
\end{array}\right]=\left[\begin{array}{c}
M u^{*} \\
0
\end{array}\right]
$$

The piece of the code implemented:

```
while stp < nstep
    stp = stp +1;
    C = ConvectionMatrix(X,T, referenceElement, velo);
    Cr = C(dofUnk,dofUnk );
    fred_n = fred - (K(dofUnk, dofDir)+C(dofUnk, dofDir))*valDir;
```

```
% FIRST STEP
btt = dt*fred_n+Mred *veloVect(dofUnk);
Att = Mred+dt*(Cr+Kred);
sol_1 = Att\btt;
% SECOND STEP
btt = [Mred*sol_1; f_q];
Att = [Mred Gred'*dt; Gred L];
soln = Att\btt;
veloi = zeros(ndofV ,1);
veloi(dofUnk)= soln(1:nunkV);
presi = soln(nunkV+1:end);
velo = reshape(veloi , 2,[])';
pres = presi;
```

end

3 Results

Mesh size considered was 10×10 and element type Q2Q1. Following results were plotted for different number of time step with θ equals 1 (Black streamlines), 0.5 (Blue streamlines) and for Chorin-Temam (Red).

Figure 2: Number of time steps $=10$

Figure 3: Number of time steps $=25$

Figure 4: Number of time steps $=50$

Figure 5: Number of time steps $=75$

Figure 6: Number of time steps $=100$

As we can see there is not much difference observed for various times steps for the two methods except the flow in upper side of the domain is considerably different for Semi-Implicit Method and Chorin-Temam method

