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Problem description 

This report is aimed at analyzing the methods used to solve an unsteady Navier-Stokes problem 

which describes general viscous unsteady Newtonian flows. A constraint to the Navier-Stokes 

problem is created through the assumption of incompressibility of the fluid. Solving such problem 

using finite elements provide some difficulties. This is due to the fact that pressure is acting as a 

Lagrange multiplier. Another difficulty in solving the Navier-Stokes problem is the nonlinear 

convective term. This term causes instability in the solution. In addition, the nonlinearity of the 

convective term requires iterative methods in order to solve the problem. In addition, time is a 

variable to be considered in the case of an unsteady problem. The Galerkin method is applied for 

the spatially discretize of the problem. Time could be discretized using several methods. In this 

report the θ-methods and the Chorin-Temam projection method are used. 

 

The problem in hand is described as a one*one square domain. The boundary conditions (BC) are 

as follows: three sides are fixed, while the upper side has a prescribed velocity of magnitude one 

in the x-direction. The pressure is set to zero at the lower left corner. The described BCs induce a 

discontinuity at the upper two corners. This results in a singularity in the pressure solution.  

 

The problem is governed by the following differential equation: 

 

Equation 1 Governing differential equation 

The Galerkin special discretization leads to the following system of equations: 

 

Equation 2 System of equations discretized in space to be solved 
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Semi-implicit first order monolitic scheme 

The first method to be implemented is the semi-implicit discretization scheme. This method 

utilizes a procedure based on the θ-family of methods. For a single-step method, while neglecting 

the truncation errors, the time discretization scheme takes the following from: 

 

Equation 3 Time discretization 

It could be observed that the above equation varies depending on the parameter θ. Its value is 

defined in the interval [0; 1]. This determines whether the behavior of the scheme is fully explicit 

(θ = 0) or fully implicit (θ = 1). For a value of θ => 0.5 the method unconditionally stable; however, 

consistency is not assured. For a value of θ = 0.5 (Crank-Nicolson method) the solution is 

unconditionally stable, and it is second order accurate. The system in matrix notation takes the 

following form: 

 

Equation 4 System in matrix form 

Choric-Temam projection method 

The second method to be implemented is the Chorin-Temam method. This is a two-step method 

that calculates the velocity and pressure fields independently. The first step takes into account the 

viscous and convective terms only in order to calculate an intermediate velocity. This is shown in 

the following equation: 

 

Equation 5 Equation for the first step 

This intermediate velocity is used in the second step in order to obtain the final velocity and 

pressure fields, while taking into account incompressibility. This is shown in the following 

equation: 
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Equation 6 Equation for the second step 

Results and discussion 

In this analysis, a comparison between both time discretization methods is due. The problem in 

hand is solved using a 10x10 mesh using Q2Q1 elements. This is done to ensure that no 

stabilization methods would be required as the LBB condition is met using this type of element. 

This comparison is to be conducted for different times at a constant time increment equal to 0.1. It 

is noted that for the semi-implicit first order monolitic scheme a value of θ < 0.5 results in an 

unstable solution. This could be seen in Figure 1. 

 

                        

                                                                Figure 1 Pressure distribution and velocity contours for θ = 0.1 

Thus, this comparison is conducted for θ = 0.5 (Crank-Nicolson) and θ = 1 (implicit). The total 

times are 0.5 (Figure 2), 1 (Figure 3) and 2 (Figure 4) seconds.                   
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Figure 2 Contour plot t = 0.5 

  

Figure 3 Contour plot t = 1 

  

Figure 4 Contour plot t = 2 

  

It could be seen from the above figures that the achieved results are almost the same regardless of 

the method used. The first difference that could be observed is the difference in the density of the 

streamlines; however, the difference is mnimal. The only significant difference between the two 
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methods is the upper position of the flow. The Chorin-Temam show a slightly higher position 

compared to the semi-implicit solution. 

 

Figure 5 Typical pressure distribution for t = 2 

All methods achieve a similar final pressure field. A typical one is obtained using the Chorin-

Temam projection method at time equal to 2 (Figure 5).  
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Code 

Semi-implicit first order monolitic scheme 

Initial conditions: 

velo = zeros(ndofV/2,2);  

y2 = dom(4);  

nodesY2 = find(abs(X(:,2)-y2) < 1e-6);  

velo(nodesY2,1) = 1;  

  

save velocity.mat  

 

 

Modifications to the MainNavierStokes function: 

% Semi-implicit first order monolitic scheme 

  

if unstesdy_1 == 1 

     

    fprintf('Semi-implicit first order monolitic scheme : \n') 

     

    dt = delt_t; 

     

    while iter < max_iter 

         

        fprintf('Iteration = %d\n',iter); 

       

        C = ConvectionMatrix (X,T, referenceElement , velo ); 

        Cred = C(dofUnk , dofUnk ); 

        fredn = fred - (K(dofUnk , dofDir )+C(dofUnk , dofDir ))* valDir ; 

  

        % System of equations 

        Atot = [ Mred+theta*dt*(Kred+Cred) dt*theta*Gred'  

        Gred zeros(nunkP) ]; 

        btot = [dt *( fredn -( Kred + Cred )* veloVect ( dofUnk )-Gred' * 

pres );  

        zeros(nunkP,1) ]; 

  

        % Computation of velocity and pressure increment 

        solInc = Atot \ btot ; 

         

        % Update of the solution 

        veloInc = zeros(ndofV ,1); 

        veloInc ( dofUnk ) = solInc (1: nunkV ); 

        presInc = solInc ( nunkV +1: end ); 

        velo = velo + reshape (veloInc ,2 ,[])' ; 

        pres = pres + presInc ; 

         

        % Check convergence 

        delta1 = max(abs(velo(:,1)));  

         

        % Update variables for next iteration 

        veloVect = reshape(velo',ndofV,1); 

        sol0 = [veloVect(dofUnk); pres];  
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        iter = iter + 1;  

        time = delt_t * iter; 

         

        % Convergence plot 

        plot(time,log(delta1),'r.','MarkerSize',20) 

        xlabel('time')  

        ylabel('Log(velocity)')  

        hold on 

    end 

        hold off 

end  

 

 

Choric-Temam projection method 

 

Modifications to the iterative scheme in the mainNavierStokes: 

% Choric-Temam projection method 

  

if unstesdy_2 == 1 

   

    fprintf('Choric-Temam projection method : \n') 

     

dt = delt_t; 

  

 while iter < max_iter 

      

    fprintf('Iteration = %d\n',iter); 

     

    C = ConvectionMatrix (X,T, referenceElement , velo ); 

    Cred = C(dofUnk , dofUnk ); 

    fredn = fred - (K(dofUnk , dofDir )+C(dofUnk , dofDir ))* valDir ; 

  

    % FIRST STEP 

    btot = dt* fredn + Mred * veloVect ( dofUnk ); 

    Atot = Mred +dt *( Cred + Kred ); 

    int = Atot \ btot ; 

  

    % SECOND STEP 

    btot = [ Mred *int; zeros(nunkP,1)]; 

    Atot = [ Mred Gred'*dt; Gred zeros(nunkP)]; 

    solInc = Atot \ btot ; 

  

    veloInc = zeros (ndofV ,1); 

    veloInc ( dofUnk ) = solInc (1: nunkV ); 

    presInc = solInc ( nunkV +1: end ); 

    velo = reshape ( veloInc ,2 ,[])'; 

    pres = presInc ; 

        

   % Check convergence 

   delta1 = max(abs(velo(:,1)));  

         

   % Update variables for next iteration 
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   veloVect = reshape(velo',ndofV,1); 

   sol0 = [veloVect(dofUnk); pres];  

   iter = iter + 1;       

      

   % Convergence plot 

   plot(iter,log(delta1),'r.','MarkerSize',20) 

   xlabel('time')  

   ylabel('Log(velocity)')  

   hold on 

 end 

   hold off 

 

 


