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1 NAVIER STOKES PROBLEM

PROBLEM STATEMENT

Consider the steady Navier-Stokes equations 1.1, in which it is included the convective term,
then in comparison with the Stokes equations, the viscous expression is not the only term
that can affect the motion of the fluid particles in the momentum equation. As the Reynolds
number increases boundary layers are more obvious and the variations in the velocity profile
become sharper. 

−ν∇2v+ (v ·∇)∇p = b in Ω

∇·v = 0 in Ω

v = vD on ΓD

n ·σ= t on ΓN

(1.1)

Where:

• v - is the velocity.

• p - is the pressure.

• ν - is kinematic viscosity.

• b - is a source term.

• σ - is the Cauchy stress tensor.

• t - is the tractions vector.

The weak form of the Navier-Stokes equations 1.1 in reduced notation is:{
a(w,v)+ c(w,v,v)−b(w, p) = (w, f)

b(v, q) = 0
(1.2)

With,

a(w,v) = ∫
Ω(∇w) : (ν∇v)dΩ (1.3)

b(w, p) = ∫
Ω q∇·vdΩ (1.4)

(w, f) = ∫
Ωw · fdΩ (1.5)

Which corresponds to the previous implementation of Stokes problem, but now it should be
considered the convective term, which it is needed to compute carefully to include in both
iterative solver schemes (Picard and Newton-Raphson):

c(w,v,v) =
∫
Ω

w · (a ·∇)vdΩ (1.6)

The discretization of the above expressions yields a system of nonlinear equations:
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(
K+C(v) GT

G 0

)(
v
p

)
=

(
f
0

)
(1.7)

Then an iterative algorithm has to be used to solve the system of non-linear equations arising
from the discretization of Navier-Stokes equations.

1.1 PICARD ITERATIVE METHOD

This methodology is applicable to non-linear systems that posses the form:

A(xk )xk+1 = b(xk ) (1.8)

Initializing the process with a first guess x0, then iteratively solving the system as:

∆xk+1 = A(xk )−1
(
b(xk )−A(xk )xk

)
(1.9)

Implementing this methodology to the set of equations 1.7 related to the Navier-Stokes prob-
lem, will be necessary to discretize each term and code each shape function and derivatives
of shape functions. But as the class program contains this expressions already coded in the
file StokesSystem.m, then a copy of this file with the name ConvectiveMatrix.m is done. This
file will contain the computation of the convective term of the equation 1.6.

The discretization of the convective C(v) term can be written in compact form as:

C = [
mat N

]T
[

ax 0 ay 0
0 ax 0 ay

][
g r ad N

]
(1.10)

Code Implementation 1

The implementation inside a the file ConvectionMatrix.m is carried out by using the
lines already coded (which are omitted in the next code) related to the computing of
the shape functions and its derivatives for each Gauss point. Then, by considering the
equation 1.17:

function [C] = ConvectionMatrix (X , T , referenceElement , velo )
for ielem = 1 :nElem

%I n i t i a l i z i n g the Ce Matrix
Ce = zeros ( nedofV , nedofV ) ;
for ig =1: ngaus

v_igaus = N_ig *u_e ; %Velocity from the BC’ s included in the function
Ce = Ce + Ngp’ * ( v_igaus ( 1 ) *Nx+v_igaus ( 2 ) *Ny) * dvolu ; % Convective term

end
C( Te_dof , Te_dof ) = C( Te_dof , Te_dof ) + Ce ;

end
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1.2 NEWTON-RAPHSON METHOD

Newton-Rapshon formulation attempts to reduce a value denominated residual less than a
tolerance specified by the user. The residual is considered as the nonlinear system, for in-
stance the Navier Stokes equations 1.7 can be transformed in a vector as:

r =
[ (

K+C(v)
)
v+GT p− f

Gv

]
(1.11)

Then, the iterative method starts with a initial guess x0. The iterations will continue until
convergence is achieved, then the linear system of equations is:

J(xk∆xk+1 =−r(xk ) (1.12)

Updating the solution
xk+1 = xk +∆xk+1 (1.13)

This numerical methodology can performs better than Picard’s method, but the main issue
is the computation of the derivatives in order to complete the formulation of the Jacobian,
which for Navier-Stokes equation has the general form:

J(x) =


∂r1

∂v

∂r1

∂p
∂r2

∂v

∂r2

∂p

 (1.14)

Where for almost all the values is trivial:

J(x) =
 ∂r1

∂v
GT

G 0


Except for the J (1,1) component, which can be expressed by the chain rule as:

∂r1

∂v
= K+C(v)+ ∂C(v)

∂v
(1.15)

Thus, the above expression can be divided in two to computing in a simpler way. The first
to terms corresponds to a variable that it will called C1 (which is the same term used with
Picard), and the last term related to the derivative will be C2:

C1 =
[
mat N

]T
[

ax 0 ay 0
0 ax 0 ay

][
g r ad N

]
(1.16)

C2 =
[
mat N

]T

dVx
d x

dVx
d y

dVy

d x
dVy

d y

[
mat N

]
(1.17)
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Code Implementation 2

In order to have the option of using Picard and Newton-Raphson method, a new file
named ConvectiveMatrixNR.m is copied from the file ConvectiveMatrix.m used before
in Picard. This file uses the same procedure to compute the shape functions depend-
ing the chosen element and its derivatives, then

function [C1 , C2] = ConvectionMatrixNR (X , T , referenceElement , velo )
for ielem = 1 :nElem

%I n i t i a l i z i n g the Ce Matrix
Ce1 = zeros ( nedofV , nedofV ) ;
Ce2 = zeros ( nedofV , nedofV ) ;
for ig =1: ngaus

v_igaus = N_ig *u_e ; %Velocity from the BC’ s included in the function
Ce1 = Ce1 + Ngp’ * ( v_igaus ( 1 ) *Nx+v_igaus ( 2 ) *Ny) * dvolu ;
Ce2 = Ce2 + Ngp’ * ( [ nx ; ny ] * u_e ) ’ *Ngp* dvolu ;

end
C1( Te_dof , Te_dof ) = C1( Te_dof , Te_dof ) + Ce1 ;
C2( Te_dof , Te_dof ) = C2( Te_dof , Te_dof ) + Ce2 ;

end

In the main file an option to choose the iterative method is implemented, then the
corresponding modifications inside a while loop used before in the Picard method are
(the repeated lines from the class code are omitted):

while i t e r < 100
%Convective terms for Jacobian and System
[C1 , C2] = ConvectionMatrixNR (X , T , referenceElement , velo ) ;
Cred1 = C1( dofUnk , dofUnk ) ;
Cred2 = C2( dofUnk , dofUnk ) ;

%Navier−Stokes System
A = [ Kred + Cred1 Gred ’ ;

Gred zeros (nunkP) ] ;
Atot = A ;
btot = [ fred − (C1( dofUnk , dofDir ) ) * valDir ; zeros (nunkP , 1 ) ] ;

% Jacobian d e f i n i t i o n
J = [ Kred + Cred1 + Cred2 Gred ’ ;

Gred zeros (nunkP) ] ;

F = Atot * sol0 − btot ; %Residual Function

% Computation of v e l o c i t y and pressure increment
solInc =−J \F ;

% Update the solution ( omitted )
[ . . . ]

% Check convergence l i n e s ( omitted )
[ . . . ]

% Update variables for next i t e r a t i o n ( omitted )
[ . . . ]

end
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1.3 CAVITY FLOW PROBLEM - SOLVER SCHEME COMPARISON

In order to compare both iterative nonlinear solver schemes, the cavity flow problem is solved
using a 10x10 Q2Q1 quadrilateral discretization in the domain for the velocity and pressure.
In order to compare the behavior of both schemes a convergence comparison is shown in the
figure 1.1. Using the tolerance error of 0.5e−08, the same value is achieved. Newton-Raphson
needs five iterations meanwhile Picard’s method requires 13 iterations to converge. More-
over, it is noticeable the linear behavior of Picard, and the quadratic behavior of NR which
helps to find the solution using less iterations, but it is needed to comment that computing
the Jacobian can be a cost problem for larger systems.

(a)

(b)

Figure 1.1: a) Picard and b) Newton-Rapshon convergence comparison.
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Furthermore, both solutions are practically the same. The streamlines of velocity and the
pressure distribution graph are similar and coherent with the expected results of a cavity flow
problem.

(a) (b)

Figure 1.2: a) Velocity and b) pressure solutions using Picard Method.

(a) (b)

Figure 1.3: a) Velocity and b) pressure solutions using Newton-Rapshon Method.
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