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Finite Elements in Fluids 

Homework 6: Unsteady Navier-Stokes 

1. Introduction 

Considering the case of unsteady viscous and incompressible flows, the governing 

equations regarding such fluid flow are stated as follows. 

{
 
 

 
 

vt − ν∇
2v + (v · ∇)v + ∇p = b

                                             v · ∇= 0  
                                                            v = vD          

                  −pn + ν(n · ∇)v = t

                                            v(x, 0) = v0(x)

in Ω
in Ω
on ГD
on ГN
in Ω

               (1) 

Then, unsteady Navier-Stokes equations are composed for the unsteady term, the 

viscous term, the convective term, pressure gradient and external body forces.  

Initial velocity field is assumed solenoidal, ∇ · 𝒗𝟎 = 0. 

The model used to apply the transient problem is a squared, [0, 1]2 cavity with flow inside 

and an upper driven lid whose prescribed velocity is 𝑣∗𝑥 = 1, while all the other walls are 
fixed. Dirichlet boundary conditions are described below, although were already 
explained on Hw5: Incompressible flow. Stokes and Navier-Stokes. 
Note that, since only dirichlet bc are imposed, just relative pressure fields are obtained, 
thus, confined pressure is prescribed in the lower left corner of the cavity with a value of 
P=0. Moreover, kinematic viscosity is assumed to be 𝜈 = 0,01 and Reynolds 𝑅𝑒 = 100. 

 

 

Equations in (1) are projected onto a space of weighting functions such that the wear 

formuation is obtained for the momentum equation. Therefore, Galerkin spatial 

discretization of the transient problem yields into the system of semi-discrete equations 

(2). 

{

𝐌𝐮̇(t) + [𝐊 + 𝐂(v(t))]𝐮(t) + 𝐆𝐩(t) = 𝐛

                                                         𝐆𝐓𝐮(t) = 0
                                                                                 𝐮(0) = 𝐯0 − 𝐯D(0)

           (2) 

 

where M is the standard finite element mass matrix. 

 

Figure 1. Lid cavity flow problem. 



The advancing in time for the above system of equations are discretized, for the current case, 

with a semi-implicit method and the Chorin-Temam. 

𝒗𝑡 = 𝑤 ·
𝜕

𝜕𝑡
[
𝑣𝑥
𝑣𝑦
] → 𝑴 = [

𝑁1 0
0 𝑁1
𝑁2 0
0 𝑁2

] [
𝑁1 0 𝑁2 0
0 𝑁1 0 𝑁2

]           (3) 

where w is the weighting function. 

2. Semi-implicit discretization 

So as to represent the semi-implicit method presented within the report, Theta method is used 

for the time discretization [Eq. 4].  

∆𝐮

∆t
− θ∆𝐮t = 𝐮t

n                       (4) 

being ∆𝑢 = 𝑢𝑛+1 − 𝑢𝑛, 𝑛 the time step, and 𝜃 denoting if the method used will be implicit or 

explicit. 

If we depart from the substitution of the first partial differential equation shown on the set of 

equations 2, it is obtained that, 

𝐮𝐭 =
𝐛−(𝐊+𝐂(v))𝐮−𝐆𝐩

𝐌
                                         (5)    

therein, the substitution of [Eq. 5] into [Eq. 4] yields, 

∆𝐮

∆t
− θ(

−(𝐊+𝐂m+1)𝐮n+1+(𝐊+𝐂m)𝐮n−𝐆𝐩n+1+𝐆𝐩n

𝐌
) =

𝐛−(𝐊+𝐂m)𝐮n−𝐆𝐩n

𝐌
           (6) 

In the Equation 6, following the semi-implicit method, the system is solved implicitly. However, 

the convective term is treated explicitly. Thus, 𝐶𝑚+1 is evaluated as 𝐶𝑚, becoming, Equation 6 

as, 

∆𝐮

∆t
+ θ

(𝐊+𝐂m)∆𝐮+𝐆∆𝐩

𝐌
=

𝐛−(𝐊+𝐂m)𝐮n−𝐆𝐩n

𝐌
             (7) 

if terms are rearranged, from Equation 7, it yields: 

(𝐌 + θ∆t(𝐊 + 𝐂m))∆𝐮 + ∆tθ𝐆∆𝐩 = ∆t(𝐛 − (𝐊 + 𝐂m)𝐮n − 𝐆𝐩n)             (8) 

However, because of incompressibility condition, it implies free divergence at all time steps. 

Therefore, working out the final system of equations, it reads as, 

{
(𝐌 + θ∆t(𝐊 + 𝐂m))∆𝐮 + ∆tθ𝐆∆𝐩 = ∆t(𝐛 − (𝐊 + 𝐂m)𝐮n − 𝐆𝐩n)

𝐆𝐓∆𝐮 = 0
                 (9) 

which in matrix form, and providing the increment of the solution at each time step, is as 

follows, 

[
𝑴 + 𝜃∆𝑡(𝑲 + 𝑪𝑚) ∆𝑡𝜃𝑮

𝑮𝑇 0
] [
∆𝒖
∆𝒑
] = [

∆𝑡(𝒃 − (𝑲 + 𝑪𝑚)𝒖𝑛 − 𝑮𝒑𝑛)
0

]           (10) 

2.1. Results 



The domain is discretized into a 10x10 staggered mesh of Q2Q1 elements. Semi-implicit method 

with 𝜃 = 1 and 𝜃 = 0.5 are used with a time step value of ∆𝑡 = 0.01𝑠. Moreover, here below 

are plotted the solution for those theta methods at different time steps (t=0.25, so as to show 

the behaviour of the flow at different stages of the solution.  

2.1.1. Theta method, 𝜽 = 𝟎. 𝟓. 

 

 

As clearly seen in Fig. , solution for 𝜃 < 0.5 does not converge. So, it is used a basic SUPG 

stabilization technique (Q1Q1 element type) and solution finally did converge. 

 

 

 

Figure 2. Crank-Nicolson streamlines at t=0.25s. 

 

Figure 3. Crank-Nicolson streamlines at t=0.5s. 

 

 

Figure 4. Crank-Nicolson streamlines at t=0.25s. 

 

Figure 5. Crank-Nicolson Press. solution at t=1s. 

 

 

Figure 6. Crank-Nicolson streamlines at t=1s. 

Q1Q1 element type. 

 

Figure 7. Crank-Nicolson Press. solution at t=1s. 

Q1Q1 element type. 

 



2.1.2. Theta method, 𝜽 = 𝟏. 

 

 

In order to show reliability on results for 𝜃 < 0.5, it is compared with same element type the 

similarity in the convergence of the results. 

 

 

 

 

 

 

Figure 8. Implicit method streamlines at t=0.25s. 

 

Figure 9. Implicit method streamlines at t=0.5s. 

 

 

Figure 10. Implicit method streamlines at t=1s. 

 

Figure 11. Implicit method Press. solution at t=1s. 

 

 

Figure 12. Implicit method streamlines at t=1s. 

Q1Q1 element type. 

 

Figure 13. Implicit method Press. solution at t=1s. 

Q1Q1 element type. 

 



3. Chorin-Temam projection method 

The principle of the Chorin-Temam projection method is to compute the velocity and pressure 

fields separately throughout two stages. In the first one, an intermediate velocity that does not 

satisfy the incompressibility constraint is computed at each time step. In the second stage, the 

pressure is used to project that intermediate velocity onto a space of divergence-free velocity 

field in order to get the next updates for pressure and velocity. 

The development of the discretization for the first stage of the method is driven first through 

the computation of the intermediate velocity 𝒖∗ explicitly using the momentum equation and 

ignoring the pressure gradient. Thus, 

𝑴𝒖𝑡 + (𝑲 + 𝑪)𝒖 = 𝒃                (11) 

which in fact, by rearranging terms and solving at each time step is, 

(𝑴 + ∆𝑡(𝑲 + 𝑪𝑚))𝒖∗ = 𝑴𝒖𝑛 + ∆𝑡𝒃              (12) 

The second stage, within the projection step, starts with the intermediate velocity being 

corrected to obtain the final solution of time step 𝒖𝑛+1. Then,  

𝑴𝒖𝑡 + 𝑮𝒑 = 0                 (13) 

{
𝑴𝒖𝑛+1 + ∆𝑡𝑮𝒑𝑛+1 = 𝑴𝒖∗

𝐆𝐓𝐮𝒏+𝟏 = 0
               (14) 

which in matrix form leads to the following, 

[
𝑴 ∆𝑡𝑮
𝑮𝑇 0

] [
𝒖𝑛+1

𝒑𝑛+1
] = [

𝑴𝒖∗

0
]               (15) 

3.1. Results 

 

 

Figure 14. Chorin-Temam streamlines at t=0.25s. 

 

Figure 15. Chorin-Temam streamlines at t=0.5s. 

 



 

A fully implicit method requires the solution of a nonlinear system of equations at each time 

step. Though, semi-implicit methods are preferred since convective term and external forces 

are treated explicitly.   

 

 

 

 

 

 

Figure 16. Chorin-Temam streamlines at t=1s. 

 

Figure 17. Chorin-Temam Press. solution at t=1s. 

 


