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1 Stokes
The governing equations for a steady, isothermal and incompressible fluid flow are

stated on Equation 1.1 and are regarded as the (simplified) Navier-Stokes equations.
−ν∇2v + (v · ∇)v +∇p = b in Ω

∇ · v = 0 in Ω

v = vD on ΓD

n · σ = t on ΓN

(1.1)

The first equation, namely the balance of momentum, is composed respectively of
the viscous term, the convective term, the pressure gradient and the external body
forces. Flows under relatively low Reynolds number (Re = vL

ν
< 1, with L being a

characteristic length) are represented by a predominance of the viscous forces over the
convective forces. This allows Equation 1.1 to be further simplified by neglecting the
convective term (v·∇)v. Considering a problem with just Dirichlet boundary conditions,
the simplified governing equations are given by Equation 1.2 and are referred to as Stokes
equations. 

−ν∇2v +∇p = b in Ω

∇ · v = 0 in Ω

v = vD on Γ

(1.2)

1.1 Cavity flow problem
The stokes equations can be applied to model a 2D flow inside a cavity, where the

“lid” (at y = 1) has a velocity v∗ = 1 while all the other walls have velocity zero. Thus,
with the cavity completely filled by fluid and applying the no-slip condition, we can
state the boundary conditions as depicted on Figure 1.1.

Given that we’re dealing only with Dirichlet boundary conditions, only relative pres-
sure fields can be obtained. Thus, a reference value of zero was assigned to the origin.

The problem and corresponding governing equations were discretized via standard
Galerkin formulation, which solves the linear system presented on Equation 1.3.

[
K GT

−G 0

] [
v
p

]
=

[
f
0

]
(1.3)

2



Figure 1.1: Domain and boundary conditions of the cavity problem

The domain was discretized in a regular 10x10 mesh, whereas different elements and
interpolations for the velocity were tested. Triangular elements were tested with linear
pressure interpolation and both linear and quadratic interpolation for velocity (P1P1
and P2P1, respectively) and quadrilateral elements likewise (Q1Q1 and Q2Q1).

The results for the aformentioned cases are given on Figures 1.2 and 1.3 for the
triangular elements and on Figures 1.4 and 1.5 for the quadrilateral.

(a) (b)

Figure 1.2: Vector field (a) and pressure field (b) with P1P1 elements
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(a) (b)

Figure 1.3: Vector field (a) and pressure field (b) with P2P1 elements

(a) (b)

Figure 1.4: Vector field (a) and pressure field (b) with Q1Q1 elements
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(a) (b)

Figure 1.5: Vector field (a) and pressure field (b) with Q2Q1 elements

It’s evident that a linear interpolation of the velocity field has lead to significant
instabilities on the pressure field, even though the velocity field itself has converged
fairly well (with minor oscillations in respect to the stable solutions). This is explained
by the so-called “LBB condition”, which proves that the pressure and the velocity field
are coupled in a way that the interpolation of one variable conditions the interpolation
of the other. If these conditions are not met, the solution will be unstable. Among the
unstable elements are P1P1 and Q1Q1, explaining the obtained instabilities.

However, there are methods to overcome the instabilities and avoid using elements
with quadratic interpolation (higher computational cost). Similarly to the convection-
diffusion problem, the SUPG stabilization technique can be applied, leading to the
modified linear system shown on Equation 1.4.

[
K + K̄ GT + Ḡ

T

−G+ Ḡ 0 + L̄

] [
v
p

]
=

[
f + f̄w

0+ f̄ q

]
(1.4)

Since it’s relevant to apply this method only to linearly interpolated elements we
can exclude the K̄, Ḡ and f̄w terms, given that they contain second derivatives of the
variables and are, thus, zero. Hence, only L̄ and f̄ q need to be inserted to the code.
Their weak form is given on Equations 1.5 and 1.6.

L̄ =
∑
e

∫
Ωe

τ1(∇q) · (∇p)dΩe (1.5)

f̄ q =
∑
e

∫
Ωe

τ1(∇q) · (−f)dΩe (1.6)

Where tau1 =
h2

12ν
(h is size of the element) and q is a scalar shape function.

The discretization of L̄ can be done as follows:
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(∇q) · (∇p) =
[
∂q
∂x

∂q
∂y

] [ ∂p
∂x
∂p
∂y

]
=

∂q

∂x

∂p

∂x
+

∂q

∂y

∂p

∂y

but we know that the pressure derivative is discretized as follows

∂p

∂x
=

∂N1

∂x
p1 +

∂N2

∂x
p2 + ...

∂p

∂x
=

[
∂N1

∂x
∂N2

∂x
... ∂Nm

∂x

]

p1
p2
...
pm


The weight function is similarly discretized and, knowing that on the implementation

the vector containing the derivatives of the shape function in respect to x is called nx,
we can write:

(∇q) · (∇p) = (nxq)
T (nxp) + (nyq)

T (nyp)

or, given that the equation holds for any weight function q:

(∇q) · (∇p) = (nT
xnx + nT

yny)p (1.7)
Following the same procedure f̄ q is discretized as:

(∇q) · (−f) = −
[
nx ny

] [f1
f2

]
(1.8)

Implementing Equations 1.7 and 1.8 to the code and adding them as seen on Equation
1.4 we are able to solve the modified linear system. The new results for the P1P1 and
Q1Q1 elements are presented on Figures 1.6 and 1.7, respectively.
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(a) (b)

Figure 1.6: Vector field (a) and pressure field (b) with P1P1 elements (SUPG)

(a) (b)

Figure 1.7: Vector field (a) and pressure field (b) with Q1Q1 elements (SUPG)

As we can see, the modified linear system given by the SUPG method provides stable
results for the pressure field with a consistent formulation. This proves to be useful,
given that the linear interpolation methods provided results with significant greater
speed than the quadratic (0.097s against 0.421s for quadrilateral elements).
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2 Navier-Stokes
The Navier-Stokes equations, as seen on Exercise 1, are repeated below.

−ν∇2v + (v · ∇)v +∇p = b in Ω

∇ · v = 0 in Ω

v = vD on ΓD

n · σ = t on ΓN

(2.1)

When the convective term is relevant in respect to the viscous term, it must be
implemented, with the expense of adding a nonlinearity to the problem. The Galerkin
formulation takes now the form given in Equation 2.2[

K +C(v) GT

−G 0

] [
v
p

]
=

[
f
0

]
⇒ Ax = b (2.2)

The convection matrix C(v) is formulated after the discretization of the convective
term:

w · (v · ∇)v = w ·
[
vx vy

]
·
[

∂
∂x
∂
∂y

] [
vx vy

]
= w · (vx

∂

∂x
+ vy

∂

∂y
)
[
vx vy

]
= w · (vx

∂

∂x

[
vx
vy

]
+ vy

∂

∂y

[
vx
vy

]
)

= w(
[
vx vy

]
(
∂

∂x

[
vx
vy

]
+

∂

∂y

[
vx
vy

]
))

Thus, the Convection matrix will be given by:

C = w · ( ∂

∂x

[
vx
vy

]
+

∂

∂y

[
vx
vy

]
)

or, in discretized form, knowing that the reshaped shape function vector and its deriva-
tives are given by N , Nx, N y and vr is the reshaped velocity:

C = N (Nxvr +N yvr)
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2.1 Iterative methods
The non-linearity of the convection term requires an iterative method to solve it. The

Picard’s method uses an initial guess to calculate the residual and then assign a new
guess:

A(xk)xk+1 = b(xk)

res = b(xk)−A(xk)xk ⇒ A−1(xk)b(xk) = xk+1

The method solves one linear system of equations per iteration k, converging linearly
until the imposed tolerance.

The Newton-Raphson’s method, on the other hand, has a quadratic convergence and
defines (for the Navier-Stokes problem):

res =

[
K +C)v +GTp− f

Gv

]
and, via Taylor expansion

resk+1 = resk + J∆x

where J is the jacobian matrix and ∆x is the vector with the increment of the velocity
and pressure fields in respect to the previous iteration. To obtain the field on the current
iteration, resk+1 is assumed to be zero and, by inverting the jacobian, the increment
can be found. The difficulty lies on calculating the Jacobian:

J =

[
∂res1
∂v

∂res1
∂p

∂res2
∂v

∂res2
∂p

]
=

[
K +C(v) + dC

dv
v GT

−G 0

]
where the third term of J11, which will be from now on called C2, it’s still unknown. But
from the definition of the convection matrix given before and applying the derivative in
respect to the velocity vector (neglecting second order derivatives) we find:

C2 = w ·

[
∂vx
∂x

∂vx
∂y

∂vy
∂x

∂vy
∂y

] [
vx vy

]
= w · (

[
∂
∂x
∂
∂y

] [
vx vy

]
)T · v

which after discretization becomes:

C2 = N · (
[
nx

ny

]
ue)

TN

where ue is the vector velocity.

9



After the implementation the solver was used with a mesh of 10x10, quadrilateral
elements Q2Q1, a Reynolds number of 100 and tolerance of 10−12 for the convergence
of the solution. The results are displayed below.

(a) (b)

Figure 2.1: Vector field (a) and pressure field (b) solved with Picard’s method

(a) (b)

Figure 2.2: Vector field (a) and pressure field (b) solved with Newton-Raphson’s method

The achieved results are virtually the same and consistent with the problem. However,
the methods can be differed by their convergence rates, shown below:

Newton-raphson converged much faster, requiring only 5 iterations to reach a residual
of four orders of magnitude lower than the tolerance. Whereas the Picard’s method took
four times the number of iterations and two times the computational cost (1,49s against
2,39s).
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Figure 2.3: Convergence rate comparison
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