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1 Introduction
We have seen in the convection dominate diffusion problem that the traditional Galerkin finite
element method will be unstable. In such cases, some stabilization techniques should be utilized to
obtain reliable numerical solutions. Moreover, the saddle point problem we have seen in the Stokes
flow also require us to satisfy the LBB condition. Specific stabilization methods are also needed to
solve this problem. There are therefore two major group of methods for stabilizing the incompressible
Navier-Stokes equation. Similar to last assignment of solving the steady cavity flow equation, we can
add elemental stabilization terms in the weak form such as SUPG, GLS, SGS or LS. On the other
hand, we can apply fractional-step approach to time integration in order to alleviate the numerical
difficulties related to the saddle-point problem which arises from the variational formulation of the
Navier-Stokes equations.

In this project, we implement a fractional-step method to solve the transient incompressible
Navier-Stokes problem, in particular, the cavity flow problem. The basic idea is to split the numerical
treatment of the various operators in the equations, thus decomposing the initially difficult problem
into relatively easier substeps. There are several ways to perform such splitting. In this project, we
apply Chroin-Teman projection method to perform the time integration. The overall order of the
accuracy is dependent on how we approximate the time discretization. Three different approximations
of the convection term of first order accuracy are considered: explicit Euler, semi implicit and implicit
Euler. In the implicit method, we introduce the Newton-Raphson scheme to solve the non-linear
system since it is quadratic convergent. LU decomposition is applied to solve the second step of
Chorin-Temam method.

2 Chorin-Temam projection method

2.1 Strong form

In the following part, detailed maths derivation is demonstrated with the implicit Euler method. The
derivation of explicit Euler and semi-implicit methods is similar. The strong form of the unsteady
viscous incompressible flow we considered in this report is written as:

vt + (v ·∇)v +∇p = 0 x ∈ Ω

∇·(v) = 0 x ∈ Ω

v = vD x ∈ ΓD

v(x, 0) = v0(x) x ∈ Ω

(1)
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2.1 Strong form 2 CHORIN-TEMAM PROJECTION METHOD

Figure 1: Boundary condition

This cavity flow example has become a standard benchmark test for incompressible flows. The
boundary conditions are indicated in Figure 1. As shown in the figure, we consider the plane flow of
an isothermal fluid in a square lid-driven cavity. The upper side of the cavity moves in its own plane
at unit speed, while the other sides are fixed. There is no source term for this problem. Initially, the
velocity is defined as 0. Then after constantly implement unit velocity at the top boundary, we will
observe the flow start to rotate. The steady state solution of the cavity flow with Re = 100 is shown
as follows:

Figure 2: Streamlines of cavity flow Re = 100

These equations are solved with the projection method – Chorin-Temam method. The principle of
it is to compute the velocity and pressure fields separately through the computation of an intermediate
velocity, namely vint. The Chorin-Temam projection method includes two basic steps as follows.
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2 CHORIN-TEMAM PROJECTION METHOD 2.2 First step

2.2 First step

In the first step, we solve a transient convection-diffusion problem of velocity with all Dirichlet
boundary conditions. 

vn+1
int − vn

4t
+ (vn+1 ·∇)vn+1 − ν∇2vn+1 = 0

vn+1
int = vn+1

D

(2)

The Galerkin weak form is(
w,
vn+1
int − vn

4t
)

+ c
(
w,vn+1,vn+1

)
+ a
(
w,vn+1

)
= 0 (3)

Here we introduce Lagrange multiplier to solver the all Dirichlet boundary problem. The Equation
3 becomes 

(
w,
vn+1
int − vn

4t
)

+ c
(
w,vn+1,vn+1

)
+ a
(
w,vn+1

)
+
〈
w,λ

〉
= 0〈

γ, (v − vD)
〉

= 0

(4)

Consider now the approximation v '
∑

iNivi with shape functions Ni and an interpolation for λ
with a set of boundary functions {NL

i (x)}li=1, λ '
∑l

i=1 λiNi for x ∈ ΓD.
The discretization of Equation 12 leads to the system of equations[

M/4t+ K + C(v) AT

A 0

]{
vn+1
int

λ

}
=

{
M/4tvn

b1

}
(5)

The definition of M, K and C is the same as we have seen in Stokes and steady Navier-Stokes
problems. The interpolation space for the Lagrange multiplier is chosen to be NL

i (x) = δ(x − xL
i ),

where {xL
i }li=1 is a set of points along ΓD and is the Dirac delta function. In this case, the second

equation in Equation 12 actually gives us

v(xL
i ) = vD(xL

i ) for i = 1, ...., l (6)

That is, Aij = Nj(x
L
i ), b1i = vD(xLi ).

For the semi-implicit method, it can be solved in one step by calculating C with the velocity at the
former step. [

M/4t+ K + C(vn) AT

A 0

]{
vn+1
int

λ

}
=

{
M/4tvn

b1

}
(7)

1 % Convection matrix
2 Cv = CreConv ( velo ,X,T, elemV) ;
3 btot = [ dt∗ f+M∗ reshape ( velo ’ , nunk , 1 ) ; b to t1 s t ] ;
4 Atot = [M+dt ∗(Cv+K) Accd1 ’ ; . . .
5 Accd1 ze ro s ( nDir1 , nDir1 ) ] ;
6 aux1 = Atot\ btot ;

For the fully-implicit method, this system of equations is[
M/4t+ K + C(vn+1

int ) AT

A 0

]{
vn+1
int

λ

}
=

{
M/4tvn

b1

}
(8)

It is solved by Newton-Raphson method as explained in the last homework.
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2.3 Second step 2 CHORIN-TEMAM PROJECTION METHOD

1 f o r i t e r = 1 :20
2 Cv = CreConv ( velo0 ,X,T, elemV) ;
3 re f e renceElement = SetReferenceElementStokes ( elemV , degreeV , elemP , degreeP )

;
4 dCU = dCdU_U(X,T, re ferenceElement , ve lo0 ) ;
5 Atot = [M+dt ∗(Cv+K) Accd1 ’ ; . . .
6 Accd1 ze ro s ( nDir1 , nDir1 ) ] ;
7 Jtot = [M+dt ∗(Cv+K+dCU) Accd1 ’ ; . . .
8 Accd1 ze ro s ( nDir1 , nDir1 ) ] ;
9 % Computation o f r e s i d u a l

10 Rtot = btot−Atot∗ v e l o t o t ;
11 % Computation o f v e l o c i t y increment
12 ve l o Inc = Jtot \Rtot ;
13 % Update the s o l u t i o n
14 v e l o t o t = ve l o t o t + ve l o Inc ;
15 ve lo Inc1 = reshape ( ve l o Inc ( 1 : nunk ) , 2 , [ ] ) ’ ;
16 ve lo0 = ve lo0+ve lo Inc1 ;
17

18 % Check convergence
19 de l ta1 = max( abs ( ve l o Inc ( 1 : nunk ) ) ) ;
20 de l ta2 = max( abs ( Rtot ( 1 : nunk ) ) ) ;
21 f p r i n t f ( ’ Ve loc i ty increment=%8.6e , Residue max=%8.6e\n ’ , de l ta1 , de l t a2 ) ;
22 deltaV = [ deltaV de l t a1 ] ;
23 r e s i du e = [ r e s i due de l t a2 ] ;
24 i f d e l t a1 < t o l ∗max(max( abs ( ve lo ) ) ) && de l ta2 < t o l
25 f p r i n t f ( ’ \ nConvergence achieved in i t e r a t i o n number %g\n ’ , i t e r ) ;
26 break
27 end
28 end
29 aux1 = ve l o t o t ;

For the explicit method, the matrix form is[
M/4t AT

A 0

]{
vn+1
int

λ

}
=

{
(M/4t−K−C(v))vn

b1

}
(9)

and LU decomposition is applied to solve the system of equations
1 Atot = [M Accd1 ’ ; . . .
2 Accd1 ze ro s ( nDir1 , nDir1 ) ] ;
3 [ L1st , U1st ] = lu ( Atot ) ;
4 % Convection matrix
5 Cv = CreConv ( velo ,X,T, elemV) ;
6 btot =[dt∗ f+(M−dt ∗(Cv+K) ) ∗ reshape ( velo ’ , nunk , 1 ) ; b to t1 s t ] ;
7 aux1 = U1st \( L1st \ btot ) ;

2.3 Second step

The second step of the Chorin-Temam method determines the end-of-step velocity vn+1 and pressure
pn+1 solving 

vn+1 − vn+1
int

4t
+∇pn+1 = 0 x ∈ Ω

∇·vn+1 = 0 x ∈ Ω

n ·vn+1 = n ·vn+1
D x ∈ Γ

(10)
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3 NUMERICAL RESULTS

Now, the boundary condition only prescribes the normal component of the velocity, which can be
translated as vx = 0 on the left and right boundaries and vy = 0 on the top and bottom boundaries.
The Galerkin weak form is 

(
w,
vn+1 − vn+1

int

4t
)

+ b
(
w,pn+1

)
= 0

b
(
vn+1, q

)
= 0

(11)

Similarly we introduce Lagrange multiplier. Hence, the Equation 11 becomes
(
w,
vn+1 − vn+1

int

4t
)

+ b
(
w,pn+1

)
+
〈
w,λ

〉
= 0〈

γ, (v − vD)
〉

= 0

b
(
vn+1, q

)
= 0

(12)

Similarly, the matrix form is[
M/dt AT GT

G A 0

]
v
λ
p

 =


Mvn+1

int /4t
b2

0

 (13)

where G is the same as we have seen in the steady Navier-Stokes problem.
This system of equations can be solved by LU decomposition of the left hand matrix. Therefore, we
only need to solve

LU


v
λ
p

 =


Mvn+1

int /4t
b2

0

 (14)

3 Numerical results
Numerical studies are applied on the cavity flow with Re = 100. The mesh and position of un-
kowns are shown in Figure 3. The velocity is defined in a 9 node quadrilateral and pressure 4 node
quadrilateral.

Figure 3: Uniform mesh
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3.1 Explicit method 3 NUMERICAL RESULTS

3.1 Explicit method

Figure 4 shows the pressure and streamline plots from the explicit method with time step equal to
0.1. It shows that for large time step, the explicit method is unstable and give unreasonable results.

(a) pressure t = 0.1 (b) pressure t = 0.4

(c) streamlines t = 0.1 (d) streamlines t = 0.4

Figure 4: Plots of explicit method with 4t = 0.1

If we refine the time step 4t = 0.01, stable results will be achieved. Therefore, the explicit
method is conditional stable, which requires a very fine time discretization.
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3 NUMERICAL RESULTS 3.2 Fully-implicit method

(a) pressure t = 0.4 (b) streamlines t = 0.4

Figure 5: Plots of explicit method with 4t = 0.01

3.2 Fully-implicit method

Figure 7 illustrates that for large time step 4t = 0.1, the results is accurate enough to depict the
physical features of the cavity flow. In fact, the implicit methods are unconditionally stable. There-
fore, it is preferable to apply semi-implicit and fully-implicit methods when the mesh is relatively
coarse.

(a) pressure t = 0.4 (b) streamlines t = 0.4

Figure 6: Plots of fully-implicit method with 4t = 0.1

As we can see from Figure 7, the fluid in the domain gradually begin to rotate due to the imposed
velocity at the top boundary as time passes. When the final time is very large, it tend to be the
same as the results we obtained from the steady Navier-Stokes problem as shown in Figure 2.
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3.3 Semi-implicit method 3 NUMERICAL RESULTS

(a) streamlines t = 0.1 (b) streamlines t = 0.5

(c) streamlines t = 1 (d) streamlines t = 5

Figure 7: Evolution of streamlines with fully-implicit method 4t = 0.1

3.3 Semi-implicit method

The semi-implicit method is also unconditionally stable. For example, as shown in Figure 8, the
method gives reasonable results even with large time step 4t = 0.1.

(a) pressure t = 0.5 (b) streamlines t = 0.5

Figure 8: Plots of fully-implicit method with 4t = 0.1

If the Reynolds number is very high, for example Re = 1000, the coarse mesh will not be able
to capture the boundary layer. As we can see from Figure 9, great perturbation happens in the
streamlines and the pressure field with mesh 10 × 10. With mesh 20 × 20, the results are more
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3 NUMERICAL RESULTS 3.3 Semi-implicit method

accurate as it simulate the transition in the boundary layer better. However, finer mesh is still
required as the change of pressure in the corner elements are too agile.

(a) pressure mesh 10× 10 (b) streamlines mesh 10× 10

(c) pressure mesh 20× 20 (d) streamlines mesh 20× 20

Figure 9: Plots of semi-implicit method with Re = 1000
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