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Introduction

This report will cover the 2D Stokes and Navier Stokes equations. As proposed by exercises, a Stokes
problem with analytical solution will be studied. After, the so-called lid-driven cavity flow will be studied
with Stokes and Navier-stokes models. For each problem, Stokes with analytical solution or Cavity flow, a
brief explanation on MatLab algorithm changes will be given, followed by presentation of respective results.

1 Exercise 1: Stokes problem with analytical solution

The items of Exercise 1 regarding Stokes flow with analytical solution will be discussed in the following
sections separately.
1.1 TItem (a): Computation of H'! and L? norm errors

The error norms H' and L? are computed for the velocity and pressure fields respectively considering the
expressions in and . Two interpolation combination for Velocity and pressure fields are tested as
follows: Q2Q0 and Q2Q1.
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Matlab Routine for H' and L? norm errors computation.

The function for evalution of the error in Velocity (H') and Pressure (L?) fields has the following in-
put/output form.



function [Ev,Ep] Errors_Eval (X,T,XF,TP, referenceElement, P, V)

The computation of the error is done by integration over the domain €2 in each gauss point. The main
code section where errors are evaluated at the gauss point level is found below.

for ig = l:ngaus

dvol

N ig = Hiig,:):
Nxi ig = Hxi(ig,:);
Neta_ig = NHeta(ig,:):
NP _ig = NP(ig,:):
Jacok = [

Nxi_ ig(l:ngeom)* (Xe(:,1))
Neta_ ig(l:ngeom)*® (Xe(:,1))
1:

u = wgplig) *det (Jacok) ;

Hxi_ ig(l:ngeom)* (Xe(:,2})
Neta_ig(l:ngeom)* (Xe(:,2))

res = Jacob', [Nxi ig;Neta ig]:

nx = res(l,:});

ny = res(2,:);

dvlx = na*Ve(:,1): WET =
dviy = ny*Ve(:,2): 1 WRT vy
ph = NP_ig*Pe;

¥ v = N _ig(l:ngeom)*Xe;
[~y~,ue_x,~,~,ve_y,~] = ExactSol (x_v) ;|%E};.‘—-_-3? SCL
Ev Ev + =grec((dvlix - ue_x)"2 +

(dvZy - wve_y)"2)*dvolu; % H1 NORM

x p = NP_ig(l:nenP)*Xp;

end

Results: H! and L? norm errors.

The error norm for velocity and pressure are shown in Figure . The adjusted curve for each case is also
presented along with its equation. It can be observed that for the Q2QO0 formulation, both velocity and
pressure error norms presents a slop near of 1 (0.98 and 0.89 respectively). For the Q2Q1 case the slop
becomes 2 for both norm errors. This is expected as the error norm order of the two variables is controlled
by the lowest order one. The theoretical norm error orders for the case of the Q2Q0 are 1 for H' norm and
2 for L? norm, while for Q2Q1 both H! and L? orders are 2.
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Figure 1: Error Norms: (a) Velocity (H1');(b) Pressure (L?).



1.2 Ttem (b): Stabilized formulation for P1P1 interpolation

The stabilized Galerkin formulation, by a Least Square approach (GLS), of the stokes problem for the case
of P1P1 interpolation is found in equations and . Where 7. = 1/3 is used as an optimal value for
bilinear quadrilateral elements.

a(whv vh) =+ b(whaph) = (wha bh) + (wh7 th)FN - a(wh7 U%) (3)
Nel el

b(b",q") =Y " 7e(Va", Vp")a, = —b(v. q") = D 7e(Va",b")q, (4)
e=1 e=1

As linear elements are used for both velocity and pressure interpolation, the weak form of momentum
equation is not changed. Only the compressibility constrains is changed. Thus, two new tensors are added
to the problem corresponding to the two terms in the equation , named here as A, and h,.

Consequently the system of equations to be solved becomes:

& 9)0)=0dn) ®)

Matlab Routine for P1P1 Galerkin stabilized formulation.

The code section, at gauss point level, needed to the evaluation of the matrix A, and vector h. are shown

below.

for ig = l:ngaus
N _ig = Niig,:):
HNxi ig = Nxilig,:):
Neta ig = Neta(ig,:):
NP _ig = NP(ig,:):
NPxi ig = NPxi(ig,:):
NPeta ig = NPetalilg,:);

Jacob = [
Hxi ig(l:ngeom)* (Xe(:,1)) Hxi ig(l:ngeom)* (Xe(:,2))
HNeta_ig(l:ingeom)*(Xe(:,1)) Heta_ig(l:ingsom)*(Xe(:,2})
1:

JacokP =
NFxi_ig(linedofP)* (Xp(:,1)) NPxi_ig(l:nedofF) " (Xp(:,2))
HPeta ig(l:nedofP)* (Xp(:,1)) NPeta ig(l:nedofF)* (Xp(:,2)

1:
dvolu = wgpl(ig) *det (Jacok) ;
res = Jacob\[in_ig;Neta_ig];
nx = res({l,:);
ny = res(2,:);
respP = JacobP\[NPxi_ig;NPeta_ig]; (DERIVATIVES CF P SHAPE FUMCTICH
Nx_ P = resP(l,:); $DERIVATIVE OF P SHAPE FUN T

CHS WRT TO x

Ny P = resP(2,:); %DERIV V SHAPE FUNI CHS WRT TC v

Ngp = [reshape([l;0]*N_ig,1l,nedofV); reshape([0;1]*N_ig,l,nedofV)];:
HNx = [reshape([l1:;0)*nx,l,nedofV); reshape([0;1]*n=x,l,nedofV)]:

Ny = [reshape([l:0]*ny,l,nedofV); reshape([0;1]*ny,l,nedofV)]:

dH reshape (res, 1, nedofV) ;

Fe = Ke + (Nx'"*Nx+Ny'*Ny) “dvolu;
Ge = Ge - NP_ig'*dW*dvolu;

ke = BAe - (Nx P'*Nx P + Ny P'*Ny P)*dvolu; $LEFT HAND SIDE EST. TERM

% 1g = N_ig(l:ngeom) *Xe;

f igaus = SourceTerm(x ig):

fe = fe + Ngp'*f_igaus*dvolu;

he = he - resP'*f igaus®dvolu; %RIGHT HAND SIDE ESTABILAZATION TEEM
end




Results: Stabilized Formulation P1P1.

The error norm for velocity and pressure are shown in Figure . The adjusted curve for each case is also
presented along with its equation. For the Galerkin case the H! error norm order in velocity is near 1 (0.97)
while the L? error norm order for the pressure field do not present a smooth slope due to pressure oscillations
in this unstable case, as shown in Figure (a). For the stabilized formulation, both error norms, H' and
L? presents a slop near 1 (1.096 and 0.82 respectively).The theoretical norm error orders for the case of the

P1P1 are 1 for both H! and L2. which is accordance with the found values.

O Galerkin
——0.97"log(h)-1.23
107" O  Stabilized
——- 1.0916"log(N)-1.17

el " e
=T 10 P
= be
z _
8 s
= - -
S 10°° . -
= P P
£ - .
- - -
5 - .
- 2.6 - g
w10 P e
- b
s be
.
i} s
-2.7 -
10771 .

1)

1/20
N2 Element Size [-]

(a)

110

10'

o
C)

Error in Pressure (L2)

o

O Galerkin
—— 0.54%log(h)+0.29
O  Stabilized
—— 0.82%log(N)-0.42|

1/20 110
Element Size [-]

(b)

Figure 2: Error Norms: (a) Velocity (H1);(b) Pressure (L?).

Results for the Pressure field for both Galerkin and stabilized formulation are shown in Figure (), for a
30x30 uniform mesh. Here pressure oscillations are vanished when stabilization is applied and pressure field

resembles the analytic one.
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Figure 3: Pressure Field - 30x30 P1P1 mesh:(a) Galerkin ;(b) Stabilized.

Results for the velocity vector field for both Galerkin and stabilized formulation are shown in Figure
, for a 30x30 uniform mesh. Here results are similar for both formulations, as also seen in the H' error

plot of figure (a).
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Figure 4: Velocity Vector Field - 30x30 P1P1 mesh:(a) Galerkin ;(b) Stabilized.

2 Exercise 2: Cavity Problem

The items of Exercise 1 regarding Stokes flow with analytical solution will be discussed in the following
sections separately.
2.1 Item (a): Stokes solution of Cavity problem

Velocity field results are not too affected by changing the mesh from a uniform to a adaptive one, refined at
the walls. It can be observed in Figure .

(a) (b)

Figure 5: Stream lines - 20x20 Q2P1 mesh:(a) Uniform ;(b) Adaptive.

The pressure field, however, has a significant change when an adaptive mesh is employed. As seen in
Figure @, the pressure discontinuity at the extremes nodes of the Dirichlet boundary, due to discontinuous
velocity boundary condition, is better captured. As discontinuity is present in a smaller space, for the
adaptive mesh case, pressure peak is increased to conserve energy (FEM seen as an energy balance).



Figure 6: Pressure Field - 20x20 Q2P1 mesh:(a) Uniform ;(b) Adaptive.
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2.2 Items (b) and (c): Navier - Stokes solution of Cavity problem
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The non-linearity of the Navier - Stokes model of the Cavity problem is solved by Picard and Newton -
Rapshon methods. In order to implement those methods the convective, and nonlinear, term of the weak

form is discretized in two ways.

approximation for u.

/ w(a-V)udl = C(a)u = Cju
Q

/ w(u-V)adQl = C(u)a = Caa
Q

Matlab Routine for evaluation of Convective matrix C].

This leads to the definition of Cy; and Cy as follows.

fox

end

function Ce = EleMatStokes (Xe,ngeom, nedofV,ngaus, wogp, N, Hxi,Neta, Conve)

Ce = zeros (nedofV,nedofV);
% Loop on Gauss point

ig = lingaus

H_ig = WNiig,:):

Nxi ig = Nxi(ig,:):

MNeta_ig = Neta(ig,:):

Jacob = [
Nxi_ ig(l:ngeom)* (Xe(:,1)) Nxi ig(l:ngeom)* (Xe(:,2))
Neta ig(l:ngeom)* (Xe(:,1)) Neta ig(l:ngeom)* (Xe(:,2)
1:

dvolu = wgpiig) *det (Jacok) ;

res = Jacob\[Nxi_ig;Neta igl:

nx = res(l,:):
ny = res(2,:):

% Convective velocity

Conv = N_ig*Conve;

v = Conv(l): 5 POINT =

vy = Conv(2): 5 POINT vy

% Gradient

Hx = [reshape([l1l;0]*nx,1,nedofV); reshape ([0;1]*nx,1,nedofV)];

Ny = [reshape([1l:0] *ny,1l,nedofV); reshape ([0;1]*ny,l,nedofV)]:

Ni = [reshape([l;0]*M_ig,l,nedofV); reshape ([0;1]*N_ig,l,nedofV)]:

Ce = Ce + ((Ni')*vx*Nx+(Ni')*vy*Ny)*dvolu; % C

Where a is an

(6)
(7)



Matlab Routine for evaluation of Convective matrix Cs.

Matlab Routine

function Ce = EleMatStokes (Xe,ngeom,nedofV, ngaus,wogp, N, Nxi,Neta, Conve)

Ce = zeros (nedofV,nedofV):

% Loop on Gauss points

for

end

ig = l:ngaus

N ig = N(ig,:);
Hxi ig = Hxi{ig,:):
MNeta_ig = Neta(ig,:);
Jacob = [
Nxi ig(l:ngeom)*® (Xe(:,1)) Nxi ig(l:ngeom)*® (Xe(:,2)
Neta ig(l:ngeom)* (Xe(:,1)) Neta_ ig(l:ngeom)*(Xe(:,2))

1:
dvolu = wgp (ig) *det (Jacob) :
res = Jacob\ [Nxi_ ig:;Neta ig]:
% Convective wvelocity
dConv = res*Conve; % DERIVATIVE OF VELOCITY IN GAUSS POINT
Ni = [reshape([1;0]*N_ig,l,nedofV); reshape([0;1]*N_ig,1l,nedofV)]:
Ce = Ce + Ni'*dConv'*Ni*dvolus

for Newton - Raphson method.

iter = 0; tol = 0.5=-08;
while iter < 100

fprintf('Iteration = %d\n',iter):

Cl = ConvectionMatrix (X, T, referenceElement,velo)
C2 = ConvectionMatrix2 (X, T, referenceElement, velo)
Credl = Cl(dofUnk,dofUnk);
CredZ = C2Z(dofUnk,dofUnk);

LAtot = L;
Atot (1 :nunkV, 1:nunkV) = A(l:nunkV, l:nunkV) + Credl;
kbtot = [fred - Cl(dofUnk,deofDir)*wvalDir; zeros(nunkP,1)]:

% Computation of residual
res = Atot*soll0 - btot ;
% Computation of welocity and pressure
tJacokian Matrix
J11l = Kred + Credl + Cred2;
J = [ Jl11 Gred'
Gred zeros (nunkP) ]:
% Solution Increment
sollnc = —J\res;

% Update the solution

weloInc = zeros (ndofvV,1);

velolnc (dofUnk) = sollnc(l:nunkvV);
presInc = sollnc(nunkV+l:end):;

velo = velo + reshape(veloInc,2,[])':
pres = pres + preslnc:

end

% Check convergence
deltal = max(abs(veloInc)):

deltaZ = max(aks(xres));

fprintf({'Velocity increment=%%Z.6e, EResidue max=%3.6e\n',deltal,deltal);

if deltal < tol*max (max(aks(velo))) && deltaZ < tol
fprintf({'‘\nConvergence achieved in iteration number %ghn',iter);
break

end

% Update wvariakles for next iteration
wveloVect = reshape (velo',ndofV,1):
20l0 = [veloVect (dofUnk): pres]:

iter = iter + 1;




Results: Picard and Newton - Raphson method.

The problem were run using both Picard and Newt-Raphson method to overcome the convective non-
linearity. For both methods four Reynolds number were tested (100, 500, 1000, and 2000). The initial
condition for the case where R, = 100 was the zero velocity field (u, = u, = 0) while for the other reynolds
numbers, the previous reynolds solution were used to initialize the velocity field (e.g, for R, = 500, R. = 100
solution was the initial condition and so on). Results for the convergence on the Maximum Residual is
shown in figure . It can be noticed that Picard requires higher iterations to reach the convergence
criteria. Also, the higher the R, the higher the iterations number. When R, = 2000 Picard can not achieve
the convergence to the required level. When using this initial condition scheme, Newton - Raphson performs
really well requiring less than 10 iterations to converge for all cases.
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Figure 7: Convergence in Max-Residual - 20x20 Q2P1 mesh:(a) Picard ;(b) Newton - Raphson.

Results for the Pressure and Velocity field for each reynolds number (100, 500, 1000 and 2000) are shown
from Figure to Figure . As a general result, as the Reynolds number is increased the vortex core is
moved downwards to the center of the cavity. Also the vortex strength is increased, as expected. Given this
increment in the rotational velocity, the pressure is reduced to conserve the energy (FEM model seen as an

energy balance). It can be noticed that near the vortex core the pressure reduction is higher and a pressure
valley is formed in the graph..

Figure 8: Pressure Field - 20x20 Q2P1 mesh R, = 100:(a) Picard ;(b) Newton - Raphson.



Figure 9: Pressure Field - 20x20 Q2P1 mesh R, = 500:(a) Picard ;(b) Newton - Raphson.

Figure 10: Pressure Field - 20x20 Q2P1 mesh R. = 1000:(a) Picard ;(b) Newton - Raphson.
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Figure 11: Pressure Field - 20x20 Q2P1 mesh R. = 2000:(a) Picard ;(b) Newton - Raphson.



Figure 12: Streamlines - 20x20 Q2P1 mesh R, = 100:(a) Picard ;(b) Newton - Raphson.
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Figure 13: Streamlines - 20x20 Q2P1 mesh R. = 500:(a) Picard ;(b) Newton - Raphson.
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Figure 14: Streamlines - 20x20 Q2P1 mesh R, = 1000:(a) Picard ;(b) Newton - Raphson.
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(a) (b)
Figure 15: Streamlines - 20x20 Q2P1 mesh R. = 2000:(a) Picard ;(b) Newton - Raphson.
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