
Finite Elements in Fluid

Homework 5a: Stokes numerical examples

Ye Mao

Ye Mao, mao.ye@estudiant.upc.edu
Master of Numerical methods on engineering - Universitat Politècnica de Catalunya

1. INTRODUCTION

Stokes equations

−𝜈 ▽2 𝜐 +▽ 𝑝 = 𝑏 𝑖𝑛𝛺

▽• 𝜐 = 0 𝑖𝑛𝛺

Weak form:

{

 ∫▽𝑤: 𝑣 ▽ 𝜐𝑑𝛺 −

𝛺

∫𝑝 ▽• 𝑤𝑑𝛺 −

𝛺

= ∫𝑝 ▽• 𝑤𝑑𝛺 −

𝛺

𝑤 • 𝑏𝑑𝛺 𝑤 𝒗

∫ 𝑞 ▽• 𝜐𝑑𝛺 = 0

𝛺

 𝑞 𝑸

Galerkin discretization

(
𝐾 𝐺

𝐺𝑇 0
) (
𝑢

 𝑝
) = (

𝑓

ℎ
)

2. OBJECTIVE

2.1 Describe physically the problem based on the value of BC.

2.2 Solve the problem using different element types Q1Q1, Q2Q1, P1P1, P2P1.

Find the stable ones.

2.3 Program a stabilization method on the unstable elements.

3. METHODOLOGY AND RESULTS

3.1 Physical Description of the problem.

This example based on the value of BC can be considered as a classical

benchmark test for incompressible flow: the cavity flow problem,

It can be seen obviously that it poses a close solution with velocity field

 𝑣(𝑣1, 𝑣2) and pressure filed p with boundary conditions in the square

domain Ω = [0,1]x[0,1]. The provided BC is the divergence free velocity

distribution. There exists a discontinuity in the boundary conditions at the

upper corners of the cavity. Dirichlet boundary conditions are imposed on

every boundary. Pressure is known at an arbitrary point in the domain. In

this case, it is set in the lower left corner of the cavity where P equal to 0.

The problem is discretized with 10 x 10 nodes in square, 10 elements in

each direction. We choose four different types of elements to analysis this

problem, which are Q1Q1, P1P1, Q2Q1 and P2P1.

The key point for these elements is to show stability while reach the

compatibility condition as LBB or inf-sup condition to avoid the oscillations

of unphysical node-to-node pressure. According to this condition, pressure

approximation must be at least one order lower than velocity approximation

in each element. The use of GLS not only just enable non-oscillatory

solution of high Reynold number problems with reasonably fine meshes,

but also enable the use of equal order interpolation for velocity and

pressure. They avoid the zero diagonal entries of the global system of

equations as aforementioned. GLS is a residual based on stabilization. If

the original FEM solution is good enough, it is the free based on unphysical

oscillation. Then, the useful affection by this method is negligible.

To overcome the problem which having 0 entries on the main diagonal of

the algebraic system of equations, we could apply Galerkin Least-Squares

methond.

3.2 Compare the results.

3.2.1 Q1Q1 Element,

 Figure 1. Q1Q1 Element scheme Figure 2. Q1Q1 Velocity Vectors

 Figure 3. Q1Q1 Streamlines Figure 4. Q1Q1 Pressure Field

The continuous bilinear velocity and continuous pressure element

does not satisfy LBB condition. As per expectation, it shows

inaccuracy in term of pressure. The solution oscillates from element

to element across all the field.

3.2.2 P1P1 Element,

 Figure 5. P1P1 Element scheme Figure 6. P1P1 Velocity Vectors

 Figure 7. P1P1 Streamlines Figure 8. P1P1 Pressure Field

The continuous triangular velocity and triangular pressure element

does not satisfy LBB condition. The result is highly inaccurate in

term of pressure field. Specially, it has larger element to element

oscillation at corners. The streamlines are discontinuity in the same

time.

3.2.3 Q2Q1 Element and P2P1 Element

 Figure 9. Q2Q1 Element scheme Figure 10. Q2Q1 Velocity Vectors

 Figure 11. Q2Q1 Streamlines Figure 12. Q2Q1 Pressure Field

 Figure 13. P2P1 Element scheme Figure 14. P2P1 Velocity Vectors

 Figure 15. P2P1 Streamlines Figure 16. P2P1 Pressure Field

Both Q2Q1 and P2P1 elements give stable solution. The pressure

field has a smooth trend across the entire field. And the streamlines

are smooth and continuous.

Stabilization for Q1Q1 and P1P1 elements

3.3 Stabilization for Q1Q1 and P1P1 elements

We consider the GLS method to stabilize the formulation Q1Q1 and P1P1

to overcome the element to element oscillations. The stabilized weak form

of equation is as below:

{
𝑎(𝑤ℎ, 𝑣ℎ) + 𝑏(𝑤ℎ, 𝑝ℎ) = (𝑤ℎ, 𝑏ℎ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑤ℎ 𝒗𝒉

 𝑏(𝑣ℎ, 𝑞ℎ) + 𝜏(▽ 𝑞ℎ ,▽ 𝑝ℎ − 𝑏ℎ) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑞ℎ𝑸ℎ

As concerns the value of the stabilization parameter,

𝜏𝑒 = 𝛼0
ℎ𝑒
2

4𝜈
 , 𝑤ℎ𝑒𝑟𝑒 𝛼0 =

1

3
, 𝑣 = 1 𝑎𝑛𝑑 ℎ𝑒 = 0.1

Where ℎ𝑒 is the element length. 𝑣 is viscosity which can be neglected in

Stokes formulation.

3.3.1 Stabilized Q1Q1 Element and P1P1 Element

 Figure 17. Stab Q1Q1 Element scheme Figure 18. Stab Q1Q1 Velocity Vectors

 Figure 19. Stab Q1Q1 Streamlines Figure 20. Stab Q1Q1 Pressure Field

 Figure 21. Stab P1P1 Element scheme Figure 22. Stab P1P1 Velocity Vectors

 Figure 23. Stab P1P1 Streamlines Figure 24. Stab P1P1 Pressure Field

We can find that now the pressure field becomes smooth and all the

oscillations are vanished. So GLS stabilized scheme produce stable

solution of stokes equation for both Q1Q1 and P1P1.

The equation for the GLS method is discretized as following:

∫ 𝜏𝐿(𝑤) · 𝑅(�⃗� , 𝑝)𝑑𝛺
𝛺𝑒

Where 𝑅 = −
1

𝜌
∇𝑃 +

𝜇

𝜌
∇2�⃗� + 𝑓

 𝐿(𝑤) = −
1

𝜌
∇𝑤𝑐 +

𝜇

𝜌
∇2𝒘, where 𝒘 is a combination of 𝑤𝑥

and 𝑤𝑦

The GLS contribution to the continuity equation reads as following:

∫ 𝜏(∇𝑤𝑐) · (−𝜇∇
2�⃗� + ∇𝑝 − 𝜌𝑓)𝑑𝛺

𝛺𝑒

If the velocity approximation over the element is linear, the GLS will

lead to

∫ 𝜏(∇𝑤𝑐) · (∇𝑝 − 𝜌𝑓)𝑑𝛺
𝛺𝑒

Therefore, the modified weak form of the continuity equation is:

∫ [(−𝑤𝑐) (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
) − 𝜏 (

𝜕𝑤𝑐
𝜕𝑥

𝜕𝑝

𝜕𝑥
+
𝜕𝑤𝑐
𝜕𝑦

𝜕𝑝

𝜕𝑦
)] 𝑑𝛺

𝛺𝑒

= ∫ −𝜏
𝛺𝑒

𝑤𝑐 (
𝜕𝑓𝑥
𝜕𝑥

+
𝜕𝑓𝑦

𝜕𝑦
)𝑑𝛺

Minus term is added to the continuity equation on purpose in order

to get a symmetric stiffness matrix at the end.

The extra terms added to the continuity eq. are:

𝐾𝑖𝑗 = ∫ −𝜏 (
𝜕�̂�𝑖
𝜕𝑥

𝜕�̂�𝑗

𝜕𝑥
+
𝜕�̂�𝑖
𝜕𝑦

𝜕�̂�𝑗

𝜕𝑦
)

𝛺𝑒
𝑑𝛺

𝐹𝑖 = ∫ −𝜏�̂�𝑖 (
𝜕𝑓𝑥
𝜕𝑥

+
𝜕𝑓𝑦

𝜕𝑦
)

𝛺𝑒
𝑑𝛺

Where 𝑤𝑐 = �̂�𝑖

Being, 𝑝ℎ(𝑥, 𝑦) = ∑ 𝑝𝑗�̂�𝑗(𝑥, 𝑦)
𝑛𝑒𝑛𝑝
𝑗=1

4. REFERENCE

[1] Lecture slides in Finite elements in fluid.

[2] Finite Element Methods for Flow Problems, Jean Donea and Antonio

Huerta.

5. APPENDIX

GLS stabilization codes

function [K,G,f,L,f_q] = StokesSystemStable(X,T,XP,TP,referenceElement)
% [K,G,f] = StokesSystem(X,T,XP,TP,referenceElement)
% Matrices K, G and r.h.s vector f obtained after discretizing a Stokes
problem
%
% X,T: nodal coordinates and connectivities for velocity
% XP,TP: nodal coordinates and connectivities for pressure
% referenceElement: reference element properties (quadrature, shape
functions...)

elem = referenceElement.elemV;
ngaus = referenceElement.ngaus;
wgp = referenceElement.GaussWeights;
N = referenceElement.N;
Nxi = referenceElement.Nxi;
Neta = referenceElement.Neta;
NP = referenceElement.NP;
ngeom = referenceElement.ngeom;
mu=1;
h=XP(2)-XP(1);
tau1 = 1/3*h^2/(4*mu);

% Number of elements and number of nodes in each element
[nElem,nenV] = size(T);
nenP = size(TP,2);

% Number of nodes
nPt_V = size(X,1);
if elem == 11
 nPt_V = nPt_V + nElem;
end
nPt_P = size(XP,1);

% Number of degrees of freedom
nedofV = 2*nenV;
nedofP = nenP;
ndofV = 2*nPt_V;
ndofP = nPt_P;

K = zeros(ndofV,ndofV);
G = zeros(ndofP,ndofV);
f = zeros(ndofV,1);
L = zeros(ndofP,ndofP);
f_q=zeros(ndofP,1);

% Loop on elements
for ielem = 1:nElem
 % Global number of the nodes in element ielem
 Te = T(ielem,:);
 TPe = TP(ielem,:);

 % Coordinates of the nodes in element ielem
 Xe = X(Te(1:ngeom),:);
 % Degrees of freedom in element ielem
 Te_dof = reshape([2*Te-1; 2*Te],1,nedofV);
 TPe_dof = TPe;

 % Element matrices
 [Ke,Ge,fe,Le,f_qe] =
EleMatStokes(Xe,ngeom,nedofV,nedofP,ngaus,wgp,N,Nxi,Neta,NP,tau1);

 % Assemble the element matrices
 K(Te_dof, Te_dof) = K(Te_dof, Te_dof) + Ke;
 G(TPe_dof,Te_dof) = G(TPe_dof,Te_dof) + Ge;
 f(Te_dof) = f(Te_dof) + fe;
 L(TPe_dof,TPe_dof)= L(TPe_dof,TPe_dof) + Le;
 f_q(TPe_dof) = f_q(TPe_dof) + f_qe;
end

function [Ke,Ge,fe,Le,f_qe] =
EleMatStokes(Xe,ngeom,nedofV,nedofP,ngaus,wgp,N,Nxi,Neta,NP,tau1)
%

Ke = zeros(nedofV,nedofV);
Ge = zeros(nedofP,nedofV);
fe = zeros(nedofV,1);
Le = zeros(nedofP,nedofP);
f_qe=zeros(nedofP,1);

% Loop on Gauss points
for ig = 1:ngaus
 N_ig = N(ig,:);
 Nxi_ig = Nxi(ig,:);
 Neta_ig = Neta(ig,:);
 NP_ig = NP(ig,:);
 Jacob = [
 Nxi_ig(1:ngeom)*(Xe(:,1)) Nxi_ig(1:ngeom)*(Xe(:,2))
 Neta_ig(1:ngeom)*(Xe(:,1)) Neta_ig(1:ngeom)*(Xe(:,2))
];
 dvolu = wgp(ig)*det(Jacob);
 res = Jacob\[Nxi_ig;Neta_ig];
 nx = res(1,:);
 ny = res(2,:);

 Ngp = [reshape([1;0]*N_ig,1,nedofV); reshape([0;1]*N_ig,1,nedofV)];
 % Gradient
 Nx = [reshape([1;0]*nx,1,nedofV); reshape([0;1]*nx,1,nedofV)];
 Ny = [reshape([1;0]*ny,1,nedofV); reshape([0;1]*ny,1,nedofV)];
 %NPx = [reshape([1;0]*nx,1,nedofP); reshape([0;1]*nx,1,nedofP)];
 %NPy = [reshape([1;0]*ny,1,nedofP); reshape([0;1]*ny,1,nedofP)];

 % Divergence
 dN = reshape(res,1,nedofV);

 Ke = Ke + (Nx'*Nx+Ny'*Ny)*dvolu;
 Ge = Ge - NP_ig'*dN*dvolu;
 %Le = Le + tau1*([nx;nx;ny;ny]'*[nx;ny;nx;ny])*dvolu;
 Le = Le - tau1*(nx'*nx+ny'*ny)*dvolu;
 x_ig = N_ig(1:ngeom)*Xe;
 f_igaus = SourceTerm(x_ig);
 fe = fe + Ngp'*f_igaus*dvolu;
 f_qe = f_qe - tau1*([nx; ny]'*f_igaus)*dvolu;
end

