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1. INTRODUCTION 

Stokes equations 

−𝜈 ▽2 𝜐 +▽ 𝑝 = 𝑏       𝑖𝑛𝛺 

▽• 𝜐 = 0                         𝑖𝑛𝛺 

Weak form: 

{
 
 

 
 ∫▽𝑤: 𝑣 ▽ 𝜐𝑑𝛺 −

𝛺

∫𝑝 ▽• 𝑤𝑑𝛺 −

𝛺

= ∫𝑝 ▽• 𝑤𝑑𝛺 −
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𝑤 • 𝑏𝑑𝛺     𝑤 𝒗       
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                                                                                            𝑞 𝑸       
 

Galerkin discretization 
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2. OBJECTIVE 

2.1 Describe physically the problem based on the value of BC. 

2.2 Solve the problem using different element types Q1Q1, Q2Q1, P1P1, P2P1. 

Find the stable ones. 

2.3 Program a stabilization method on the unstable elements. 

 

3. METHODOLOGY AND RESULTS 

3.1 Physical Description of the problem. 

This example based on the value of BC can be considered as a classical 

benchmark test for incompressible flow: the cavity flow problem, 

 



It can be seen obviously that it poses a close solution with velocity field 

 𝑣(𝑣1, 𝑣2)  and pressure filed  p  with boundary conditions in the square 

domain Ω = [0,1]x[0,1]. The provided BC is the divergence free velocity 

distribution. There exists a discontinuity in the boundary conditions at the 

upper corners of  the cavity. Dirichlet boundary conditions are imposed on 

every boundary. Pressure is known at an arbitrary point in the domain. In 

this case, it is set in the lower left corner of the cavity where P equal to 0. 

 

The problem is discretized with 10 x 10 nodes in square, 10 elements in 

each direction. We choose four different types of elements to analysis this 

problem, which are Q1Q1, P1P1, Q2Q1 and P2P1. 

 
The key point for these elements is to show stability while reach the 

compatibility condition as LBB or inf-sup condition to avoid the oscillations 

of unphysical node-to-node pressure. According to this condition, pressure 

approximation must be at least one order lower than velocity approximation 

in each element. The use of GLS not only just enable non-oscillatory 

solution of high Reynold number problems with reasonably fine meshes, 

but also enable the use of equal order interpolation for velocity and 

pressure. They avoid the zero diagonal entries of the global system of 

equations as aforementioned. GLS is a residual based on stabilization. If 

the original FEM solution is good enough, it is the free based on unphysical 

oscillation. Then, the useful affection by this method is negligible. 

 

To overcome the problem which having 0 entries on the main diagonal of 

the algebraic system of equations, we could apply Galerkin Least-Squares 

methond. 

 

 

3.2 Compare the results. 

3.2.1 Q1Q1 Element, 

 
                      Figure 1. Q1Q1 Element scheme                                  Figure 2. Q1Q1 Velocity Vectors 



 
                       Figure 3. Q1Q1 Streamlines                                            Figure 4. Q1Q1 Pressure Field 

The continuous bilinear velocity and continuous pressure element 

does not satisfy LBB condition. As per expectation, it shows 

inaccuracy in term of pressure. The solution oscillates from element 

to element across all the field. 

3.2.2 P1P1 Element, 

 
                      Figure 5. P1P1 Element scheme                                    Figure 6. P1P1 Velocity Vectors 

 
                       Figure 7. P1P1 Streamlines                                            Figure 8. P1P1 Pressure Field 

The continuous triangular velocity and triangular pressure element 

does not satisfy LBB condition. The result is highly inaccurate in 

term of pressure field. Specially, it has larger element to element 

oscillation at corners. The streamlines are discontinuity in the same 

time. 

3.2.3 Q2Q1 Element and P2P1 Element 



 
                      Figure 9. Q2Q1 Element scheme                                    Figure 10. Q2Q1 Velocity Vectors 

 
                       Figure 11. Q2Q1 Streamlines                                            Figure 12. Q2Q1 Pressure Field 

 
                      Figure 13. P2P1 Element scheme                                    Figure 14. P2P1 Velocity Vectors 

 
                       Figure 15. P2P1 Streamlines                                            Figure 16. P2P1 Pressure Field 

 

Both Q2Q1 and P2P1 elements give stable solution. The pressure 

field has a smooth trend across the entire field. And the streamlines 

are smooth and continuous.  

Stabilization for Q1Q1 and P1P1 elements 

 

3.3 Stabilization for Q1Q1 and P1P1 elements 

We consider the GLS method to stabilize the formulation Q1Q1 and P1P1 

to overcome the element to element oscillations. The stabilized weak form 



of equation is as below: 

{
𝑎(𝑤ℎ, 𝑣ℎ) + 𝑏(𝑤ℎ, 𝑝ℎ) = (𝑤ℎ, 𝑏ℎ)      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑤ℎ 𝒗𝒉   

   𝑏(𝑣ℎ, 𝑞ℎ) + 𝜏(▽ 𝑞ℎ ,▽ 𝑝ℎ − 𝑏ℎ) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑞ℎ𝑸ℎ         
 

As concerns the value of the stabilization parameter, 

𝜏𝑒 = 𝛼0
ℎ𝑒
2

4𝜈
  ,   𝑤ℎ𝑒𝑟𝑒 𝛼0 =

1

3
, 𝑣 = 1 𝑎𝑛𝑑 ℎ𝑒 = 0.1 

Where ℎ𝑒 is the element length. 𝑣 is viscosity which can be neglected  in 

Stokes formulation. 

3.3.1 Stabilized Q1Q1 Element and P1P1 Element 

 

                Figure 17. Stab Q1Q1 Element scheme                         Figure 18. Stab Q1Q1 Velocity Vectors 

 

                 Figure 19. Stab Q1Q1 Streamlines                                 Figure 20. Stab Q1Q1 Pressure Field 

 

               Figure 21. Stab P1P1 Element scheme                            Figure 22. Stab P1P1 Velocity Vectors 



 

                   Figure 23. Stab P1P1 Streamlines                                  Figure 24. Stab P1P1 Pressure Field 

 

 

 

We can find that now the pressure field becomes smooth and all the 

oscillations are vanished. So GLS stabilized scheme produce stable 

solution of stokes equation for both Q1Q1 and P1P1.  

 

The equation for the GLS method is discretized as following: 

∫ 𝜏𝐿(𝑤) · 𝑅(𝑉⃗ , 𝑝)𝑑𝛺
𝛺𝑒

 

Where 𝑅 = −
1

𝜌
∇𝑃 +

𝜇

𝜌
∇2𝑉⃗ + 𝑓  

           𝐿(𝑤) = −
1

𝜌
∇𝑤𝑐 +

𝜇

𝜌
∇2𝒘,  where 𝒘 is a combination of 𝑤𝑥 

and 𝑤𝑦 

The GLS contribution to the continuity equation reads as following: 

∫ 𝜏(∇𝑤𝑐) · (−𝜇∇
2𝑉⃗ + ∇𝑝 − 𝜌𝑓 )𝑑𝛺

𝛺𝑒
 

If the velocity approximation over the element is linear, the GLS will 

lead to 

∫ 𝜏(∇𝑤𝑐) · (∇𝑝 − 𝜌𝑓 )𝑑𝛺
𝛺𝑒

 

Therefore, the modified weak form of the continuity equation is: 

∫ [(−𝑤𝑐) (
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𝛺𝑒

𝑤𝑐 (
𝜕𝑓𝑥
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+
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Minus term is added to the continuity equation on purpose in order 

to get a symmetric stiffness matrix at the end.  

The extra terms added to the continuity eq. are: 

𝐾𝑖𝑗 = ∫ −𝜏 (
𝜕𝑆̂𝑖
𝜕𝑥

𝜕𝑆̂𝑗

𝜕𝑥
+
𝜕𝑆̂𝑖
𝜕𝑦

𝜕𝑆̂𝑗

𝜕𝑦
)

𝛺𝑒
𝑑𝛺 

𝐹𝑖 = ∫ −𝜏𝑆̂𝑖 (
𝜕𝑓𝑥
𝜕𝑥

+
𝜕𝑓𝑦

𝜕𝑦
)

𝛺𝑒
𝑑𝛺 

Where 𝑤𝑐 = 𝑆̂𝑖 

Being, 𝑝ℎ(𝑥, 𝑦) = ∑ 𝑝𝑗𝑆̂𝑗(𝑥, 𝑦)
𝑛𝑒𝑛𝑝
𝑗=1  
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5. APPENDIX  

GLS stabilization codes 

function [K,G,f,L,f_q] = StokesSystemStable(X,T,XP,TP,referenceElement) 
% [K,G,f] = StokesSystem(X,T,XP,TP,referenceElement) 
% Matrices K, G and r.h.s vector f obtained after discretizing a Stokes 
problem 
% 
% X,T: nodal coordinates and connectivities for velocity 
% XP,TP: nodal coordinates and connectivities for pressure 
% referenceElement: reference element properties (quadrature, shape 
functions...) 
  
  
elem = referenceElement.elemV; 
ngaus = referenceElement.ngaus; 
wgp = referenceElement.GaussWeights; 
N = referenceElement.N; 
Nxi = referenceElement.Nxi; 
Neta = referenceElement.Neta; 
NP = referenceElement.NP;  
ngeom = referenceElement.ngeom; 
mu=1; 
h=XP(2)-XP(1); 
tau1 = 1/3*h^2/(4*mu); 
  
  
% Number of elements and number of nodes in each element 
[nElem,nenV] = size(T); 
nenP = size(TP,2);  
  
% Number of nodes 
nPt_V = size(X,1); 
if elem == 11 
    nPt_V = nPt_V + nElem;  
end 
nPt_P = size(XP,1); 
  
% Number of degrees of freedom  
nedofV = 2*nenV;  
nedofP = nenP; 
ndofV = 2*nPt_V;  
ndofP = nPt_P;  
  
K = zeros(ndofV,ndofV); 
G = zeros(ndofP,ndofV);  
f = zeros(ndofV,1); 
L = zeros(ndofP,ndofP); 
f_q=zeros(ndofP,1); 
  
% Loop on elements 
for ielem = 1:nElem 
    % Global number of the nodes in element ielem 
    Te = T(ielem,:); 
    TPe = TP(ielem,:);  



    % Coordinates of the nodes in element ielem 
    Xe = X(Te(1:ngeom),:); 
    % Degrees of freedom in element ielem 
    Te_dof = reshape([2*Te-1; 2*Te],1,nedofV); 
    TPe_dof = TPe;  
     
    % Element matrices 
    [Ke,Ge,fe,Le,f_qe] = 
EleMatStokes(Xe,ngeom,nedofV,nedofP,ngaus,wgp,N,Nxi,Neta,NP,tau1); 
     
    % Assemble the element matrices 
    K(Te_dof, Te_dof) = K(Te_dof, Te_dof) + Ke; 
    G(TPe_dof,Te_dof) = G(TPe_dof,Te_dof) + Ge;  
    f(Te_dof) = f(Te_dof) + fe; 
    L(TPe_dof,TPe_dof)= L(TPe_dof,TPe_dof) + Le; 
    f_q(TPe_dof) = f_q(TPe_dof) + f_qe; 
end 
  
  
  
  
  
  
function [Ke,Ge,fe,Le,f_qe] = 
EleMatStokes(Xe,ngeom,nedofV,nedofP,ngaus,wgp,N,Nxi,Neta,NP,tau1) 
% 
  
Ke = zeros(nedofV,nedofV); 
Ge = zeros(nedofP,nedofV); 
fe = zeros(nedofV,1); 
Le = zeros(nedofP,nedofP); 
f_qe=zeros(nedofP,1); 
  
  
% Loop on Gauss points  
for ig = 1:ngaus 
    N_ig    = N(ig,:); 
    Nxi_ig  = Nxi(ig,:); 
    Neta_ig = Neta(ig,:); 
    NP_ig = NP(ig,:);  
    Jacob = [ 
        Nxi_ig(1:ngeom)*(Xe(:,1))   Nxi_ig(1:ngeom)*(Xe(:,2)) 
        Neta_ig(1:ngeom)*(Xe(:,1))  Neta_ig(1:ngeom)*(Xe(:,2)) 
        ]; 
    dvolu = wgp(ig)*det(Jacob); 
    res = Jacob\[Nxi_ig;Neta_ig]; 
    nx = res(1,:); 
    ny = res(2,:); 
     
    Ngp = [reshape([1;0]*N_ig,1,nedofV); reshape([0;1]*N_ig,1,nedofV)]; 
    % Gradient 
    Nx = [reshape([1;0]*nx,1,nedofV); reshape([0;1]*nx,1,nedofV)]; 
    Ny = [reshape([1;0]*ny,1,nedofV); reshape([0;1]*ny,1,nedofV)]; 
    %NPx = [reshape([1;0]*nx,1,nedofP); reshape([0;1]*nx,1,nedofP)]; 
    %NPy = [reshape([1;0]*ny,1,nedofP); reshape([0;1]*ny,1,nedofP)]; 



    % Divergence 
    dN = reshape(res,1,nedofV); 
  
    Ke = Ke + (Nx'*Nx+Ny'*Ny)*dvolu;  
    Ge = Ge - NP_ig'*dN*dvolu;  
    %Le = Le + tau1*([nx;nx;ny;ny]'*[nx;ny;nx;ny])*dvolu; 
    Le = Le - tau1*(nx'*nx+ny'*ny)*dvolu;  
    x_ig = N_ig(1:ngeom)*Xe;  
    f_igaus = SourceTerm(x_ig);  
    fe = fe + Ngp'*f_igaus*dvolu; 
    f_qe = f_qe - tau1*([nx; ny]'*f_igaus)*dvolu; 
end 
  
 
 

 

 

  

 

 

 


