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Unsteady Navier-Stokes problem 
 

Navier – Stokes equation govern steady or unsteady, viscous incompressible flows. Here the 
unsteady case is going to be studied, whose governing equation and initial and boundary conditions 
are defined as 
 

𝑣" − 𝜈∇&𝑣 + (𝑣 ∙ ∇)𝑣 + ∇𝑝 = 𝑏								𝑖𝑛	Ω × ]0, 𝑇[ 
∇ ∙ 𝑣 = 0                                           𝑖𝑛	Ω × ]0, 𝑇[ 
𝑣 = 𝑣8																																																			𝑜𝑛	Γ8 × ]0, 𝑇[ 
𝑣(𝑥, 0) = 𝑣<(𝑥)																																																			𝑖𝑛	Ω 

 

Spatial discretization 
 

As usual, applying WRM and after some algebra the weak formulation is obtained, representing 𝒘 
and 𝑞 the weighting functions for momentum equation and incompressibility condition respectably.  
 

? 𝒘 ∙ 𝒗𝒕𝑑Ω +
C

? (∇𝒘): (𝜈∇𝒗)𝑑Ω +? 𝒘 ∙ (𝒂 ∙ ∇)𝒗𝑑Ω
C

− ? (∇ ∙ 𝒘)𝑝𝑑Ω
C

= ? 𝒘 ∙ 𝒇𝑑Ω
CC

 

? 𝑞∇ ∙ 𝒗𝑑Ω
C

= 0 

 

Introducing the approximation forms for velocity and pressures, as well as applying Galerkin 
formulation for their weighted functions (𝒘, 𝑞), the finite element discretization yields the following 
system of semi-discrete equations  
 

G
𝑴𝒗𝒕 + I𝑲 + 𝑪L𝑣(𝑡)NO𝒗(𝑡) + 𝑮𝒑(𝑡) = 𝒇L𝑡, 𝑣(𝑡)N

𝑮𝑻𝒗(𝑡) = 𝒉(𝑡)
𝒗(0) = 𝒗𝟎 − 𝒗𝑫(0)

 

 

where a new element appears with respect to the steady case, the standard mass matrix 𝑴. 
 

Time discretization  
 

Working with a time dependent problem, spatial discretization is not enough. Between all the 
possibilities, two different ways to deal with time integration will be implemented: Monolithic 
schemes (Theta family methods) and Fractional-Steps method. 
 

1. Theta family methods – First order approximation  
 

Theta methods are suitable to solve the previous system of discrete equations. Having the initial 
definition of theta methods (without error term) together with the time dependent momentum 
equation, a new system of equations is achieved.  
 

𝑇ℎ𝑒𝑡𝑎	𝑚𝑒𝑡ℎ𝑜𝑑𝑠 → 			
𝑣\]^_ − 𝑣\]

∆𝑡
= 𝜃𝑣"]^_ + (1 − 𝜃)𝑣"] = 𝜃(𝑣"]^_ − 𝑣"]) − 𝑣"] 

 

𝑇𝑖𝑚𝑒	𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡	𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚	𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 → 𝑣" =
𝑓 − [𝐾 + 𝐶(𝑣)]𝑣 − 𝐺𝑝

𝑀
 

 
 



Substituting 𝑣" in theta methods equation,  
 

𝑣\]^_ − 𝑣\]

∆𝑡
= 𝜃 i

𝑓 − [𝐾 + 𝐶(𝑣)]𝑣]^_ − 𝐺𝑝]^_

𝑀
−
𝑓 − [𝐾 + 𝐶(𝑣)]𝑣] − 𝐺𝑝]

𝑀
j

+
𝑓 − [𝐾 + 𝐶(𝑣)]𝑣] − 𝐺𝑝]

𝑀
 

 

∆𝒗
∆𝒕
𝑴+ 𝜽IL𝑲 + 𝑪(𝒗)N∆𝒗 + 𝑮∆𝒑O = 𝒇 − [𝑲 + 𝑪(𝒗)]𝒗𝒏 − 𝑮𝒑𝒏  

 

This new equation together with the incompressibility condition can be written as a matrix system, 
which will be implemented and solved using Matlab software. 
 

m𝑴 + 𝜃∆𝑡L𝑲 + 𝑪(𝒗)N ∆𝑡𝑮𝑻

𝑮 0
n m∆𝒖∆𝑝n = p∆𝑡[𝒇 − [𝑲 + 𝑪(𝒗)]𝒗

𝒏 − 𝑮𝑝]]
0

q 

 
Remark the fact that if the chosen pair of elements for velocity and pressure field do not match the 
LBB condition, stabilization procedures have to be used. It can be said that the biggest different 
from steady case is that no Picard or N-R methods are needed, making it easier to compute.  
 

Here the first order (𝜃 = 1) semi-implicit (𝑪(𝒗) = (𝒗𝒏 ∙ ∇)𝒗𝒏^𝟏) approximation is going to be 
implemented. Having in mind the steady case, the main aspects of general code are going to be 
shown, highlighting the introduction of time parameters (Figure 1) and the new definition of the 
final matrix system (Figure 4), from which velocity and pressure increments are obtained, updating 
the solution at each time step. The well-known equations for 𝑲,𝑮 and 𝑪	 are implemented together 
with the new component, the mass matrix 𝑴 (Figure 2 and Figure 3).   
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

% Time discretization 
tEnd = cinput('End time', 1.5); 
nStep = cinput('Number of time-steps', 240); 
dt = tEnd / nStep; 
 

Figure 1. Time discretization parameters  

 

   Me = Me + Ngp'*Ngp*dvolu; 
  Ke = Ke + (Nx'*Nx+Ny'*Ny)*dvolu;  
  Ge = Ge - NP_ig'*dN*dvolu;  
  x_ig = N_ig(1:ngeom)*Xe;  
  f_igaus = SourceTerm(x_ig);  
  fe = fe + Ngp'*f_igaus*dvolu;  
 

Figure 2. Element matrices and vector definitions 

 

Ce = Ce + Ngp'*(v_ig(1)*Nx+v_ig(2)*Ny)*dvolu; 
 

Figure 3. Convective matrix  



 
 
 
 
 
 
 
 
 
 
 
 
 

Stabilization - LBB condition  
 
Working with velocity – pressure pairs which doesn’t satisfy LBB condition a stabilization technique 
has to be implemented. As in Stokes problem GLS formulation will be used.  
 

? p
𝒘
𝑞q ∙ (𝓛(𝒗, 𝑝) − 𝑭)𝑑Ω +u? p

𝜏_
𝜏&q𝓛

(𝒘, 𝑞) ∙
CwxC

(𝓛(𝒗, 𝑝) − 𝑭)𝑑Ω = 𝟎 

𝜏_ = 𝛼<
ℎ&

4𝜈
				 						𝜏& = 0							(𝛼< =

1
3
	𝑓𝑜𝑟	𝑙𝑖𝑛𝑒𝑎𝑟	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) 

 

Working with linear elements the second order terms goes to zero, so that the GLS does not affect 
the momentum equation. Together with 𝜏& value, the new formulation reduces to  
 

m𝑴 + 𝜃∆𝑡L𝑲 + 𝑪(𝒗)N ∆𝑡𝑮𝑻∆𝑝
𝑮 𝑳

n m∆𝒖∆𝑝n = m
∆𝑡[𝒇 − [𝑲 + 𝑪(𝒗)]𝒗𝒏 − 𝑮𝑝]]

𝒇𝒒
n 

 

where the new terms 𝑳 and 𝒇𝒒 have to added to the previous code (Figure 5 and Figure 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 %R.H.S as in steady NS case (velocity field) 
 fred_1 = fred - (K(dofUnk,dofDir)*valDir + C(dofUnk,dofDir)*valDir); 
     

 %A Matrix  
 Atot = [Mred+teta*dt*(Kred+Cred)   teta*dt*Gred' 
     Gred   zeros(nunkP)]; 
  

 %R.H.S due to time discretization  
    B = [dt*(fred_1 - (Kred+Cred)*veloVect(dofUnk)-Gred'*pres);zeros(nunkP,1)];  
  

 % Computation of velocity and pressure increment 
    solInc = Atot\B; 
 

 % Update the solution 
    veloInc = zeros(ndofV,1);  
    veloInc(dofUnk) = solInc(1:nunkV);  
    presInc = solInc(nunkV+1:end);  
    velo = velo + reshape(veloInc,2,[])'; 
    pres = pres + presInc;  
 

Figure 4. Matrix system and solutions update 

 Me = Me + Ngp'*Ngp*dvolu; 
 Ke = Ke + (Nx'*Nx+Ny'*Ny)*dvolu;  
 Ge = Ge - NP_ig'*dN*dvolu;  
 Le = Le + (nx'*nx + ny'*ny)*dvolu;  
 x_ig = N_ig(1:ngeom)*Xe;  
 f_igaus = SourceTerm(x_ig);  
 fe = fe + Ngp'*f_igaus*dvolu;  
 fqe = fqe – tau1*[nx;ny]'*f_igaus*dvolu;  
 

Figure 5. Element matrix components – GLS   

 

 %R.H.S as in steady NS case (velocity field) 
 fred_1 = fred - (K(dofUnk,dofDir)*valDir + C(dofUnk,dofDir)*valDir); 
     

 %A Matrix  
 Atot = [Mred+teta*dt*(Kred+Cred)  teta*dt*Gred' 
     Gred   L] 
  

 %R.H.S due to time discretization  
    B = [dt*(fred_1 - (Kred+Cred)*veloVect(dofUnk)-Gred'*pres);fq];  
  

 % Computation of velocity and pressure increment 
    solInc = Atot\B; 
 

Figure 6. Matrix system - GLS 



Results and conclusions 
 

First order semi-implicit case is going to be solve for Q2Q1 and Q1Q1 velocity – pressure elements. 
Using 10 and 20 elements per side and a time step  𝑑𝑡 = 0.015𝑠, results are going to be shown and 
compared.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Pressure field – Q2Q1 10 elements, final t step   

Figure 11. Streamlines – Q2Q1 10 elements  

Figure 10. Pressure field – Q2Q1 20 elements , final t step  

Figure 12. Streamlines – Q2Q1 20 elements  

Figure 7. Pressure field – Q2Q1 10 elements, Initial t step  

Figure 9. Pressure field – Q2Q1 20 elements, Initial t step  



Figures above show the results for Q2Q1 elements, for which no stabilization technique is needed 
as they fulfil LBB condition. Left pictures represent the pressure field at first time iteration, whereas 
right hand side ones represent it achieved the total time. See how the boundary condition that 
contains the discontinuity changes as time increases. A refined mesh of 20 element, that implies 
more time and computational cost, is computed in order to improve the results that with 10 
elements show small variations close to the boundary sides. The obtained final results remind to 
the steady case, suggesting that the implementation of the method has been successful.   
 
Now, results for Q1Q1 elements are shown. Due to GLS stabilization term quite good results are 
achieved, in which the difference between a gross (Figure 13) and a refined (Figure 14) mesh is 
much more significant. This fact happened in Stokes problem too, where a 30x30 elements mesh 
was implemented in order to improve bad pressure field results in those zones close to the 
boundaries. For this type of elements combinations is worth to increase the computational cost in 
order to be sure about the validity of the results.  
 
 

 
 
 

2. Fractional step methods – Chorin-Temam projection method  
 

Other typical methods for unsteady Navier-Stokes time discretization are the fractional-step 
methods, in which time is decomposed into two or more steps, dividing the initial problem into 
relatively easier substeps. Working with a two steps method, the first step that treats the convective 
and viscous terms can be implemented by an explicit algorithm, while the second step that works 
with pressure and incompressibility condition must be treated using an implicit time integration 
scheme. Here, a semi-implicit Chorin – Temam method is going to be studied to solve unsteady 
Navier-Stokes equations.  
 
Chorin – Temam projection method 
 

The projection method is based on compute velocity and pressure fields separately through the 
computation of an intermediate velocity. It includes two steps: 
 

Step 1. First, viscous and convective terms in the N-S equations are treated. From the previous time 
step velocity field (𝑣]), an intermediate velocity is finding (𝑣\]"]^_).  
 

Figure 13. Pressure field – Q1Q1 10 elements GLS stabilization  Figure 14. Pressure field – Q1Q1 20 elements GLS stabilization  



G
𝑣\]"]^_ − 𝑣]

∆𝑡 + (𝑣∗ ∙ ∇)𝑣∗∗ − 𝜈∇&𝑣∗∗ = 𝑏]^_						𝑖𝑛	Ω

𝑣\]"]^_ = 𝑣8]^_																																																										𝑜𝑛	Γ
 

 
where for semi-implicit method 𝑣∗ = 𝑣]  and 𝑣∗∗ = 𝑣]^_. 
As for all the previous methods the weak form is obtained to construct a finite element version, that 
results in the following algebraic system which will be implement in a Matlab code. Note that 𝑴,𝑲 
and 𝑪 will be defined as in theta methods case (Figure2 and Figure 3), appearing the principal 
difference in how the r.h.s. is defined (Figure 15).  
 

𝑴𝟏 �
𝒗\]"]^_ − 𝒗]

∆𝑡
� + L𝑲 + 𝑪(𝒗𝒏)N𝒗𝒊𝒏𝒕𝒏^𝟏 = 𝒇𝒏^𝟏 

 
 
 
 
 
 
 
 
 
 
 
 
Step 2. Then, the final step velocity and the pressure are obtained solving  
 

⎩
⎨

⎧𝒗
]^_ − 𝒗\]"]^_

∆𝑡
+ ∇𝑝]^_ = 0						𝑖𝑛	Ω

∇ ∙ 𝑣]^_ = 0																																	𝑖𝑛	Ω
𝑛 ∙ 𝒗]^_ = 𝑛 ∙ 𝑣8]^_																				𝑜𝑛	Γ

 

 

The weak form is introduced, obtaining the finite element version and inducing the following system 
of equations. Highlight the fact that, this last system is quite similar to the Stokes problem case, 
changing the 𝑲 matrix for the 𝑴 matrix. Using once again the previous definitions for the different 
matrices (Figure 2), the 2nd step of C-T projection method and the final updating are implemented 
(Figure 16).  
 

m𝑀& ∆𝑡𝐺�
𝐺 0

n m𝑣
]^_

𝑝]^_n = m𝑀&𝑣\]"]^_
0

n 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 %R.H.S as in steady NS case 
 fred_1 = fred - (K(dofUnk,dofDir)*valDir + C(dofUnk,dofDir)*valDir); 
        
 % STEP 1           
 B = dt*fred_1 + Mred*veloVect(dofUnk); 
 Atot = Mred+dt*(Cred+Kred); 
 int = Atot\B; 
 

Figure 15. Step 1 implementation – C-T projection method 

 

 

  % STEP 2 
  B_2 = [Mred*int; f_q]; 
  Atot_2 = [Mred Gred'*dt; Gred L]; 
  solInc = Atot_2\B_2; 
             
  % Update the solution 
  veloInc = zeros(ndofV,1);  
  veloInc(dofUnk) = solInc(1:nunkV);  
  presInc = solInc(nunkV+1:end);  
  velo = reshape(veloInc,2,[])';  
  pres = presInc;  
 

Figure 16. Step 2 and updating implementation – C-T projection method 

 



Stabilization - LBB condition  
 

Once again, working with element-pairs that do not fulfil the LBB condition, means to introduce a 
stabilization term, GLS formulation in this case. Following the same and having in mind that it will 
be implemented to work just with linear elements (second order terms vanish), the following 
scheme is obtained 
 

m𝑀& ∆𝑡𝐺�
𝐺 𝐿

n m𝒗
]^_

𝒑]^_n = i
𝑴𝟐𝒗\]"]^_

𝒇𝒒
j 

 
 

Applying the previous L and 𝒇𝒒 definitions (Figure 5), stable results will be obtained for Q1Q1 
elements discretization.  
 
Results and conclusions 
 
Semi-implicit Chorin-Temam case is going to be solved for Q2Q1 and Q1Q1 velocity – pressure 
elements, using 10 and 20 elements per side and a time step  𝑑𝑡 = 0.015𝑠. Pressure and velocity 
results are almost the same than for semi-implicit theta method, so that just final time step results 
are going to be shown.  

 

Figure 17. Pressure field – Q2Q1 10 elements, Final t step   

Figure 19. Streamlines – Q2Q1 10 elements  

Figure 18. Pressure field – Q2Q1 20 elements, final t step   

Figure 20. Steamlines – Q2Q1 20 elements  



For Q2Q1 discretization once again small perturbations appear close to the boundaries, that almost 
disappear when the number of elements increase. Depending on the case, it should be assessed 
whether higher precision, which increases computational cost, is worth it.    

 
Finally, results for Q1Q1 discretization. The difference in final results accuracy in those zones close 
to the boundaries, highlining the boundary which includes the discontinuity, compensates the extra 
computational cost. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Pressure field – Q1Q1 10 elements GLS  Figure 22. Pressure field – Q1Q1 10 elements GLS 


