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Problem Statement:- 

To solve a one-dimensional transient pure convection problem 

 

𝑢𝑡 + 𝑎𝑢𝑥 = 0; 𝑎 = 1; 𝑡𝜖 (0,0.6]; 𝑥 𝜖 (0,1) 

 

S=0 for the given problem 

With the given initial  

𝑢0(𝑥) = {1 𝑖𝑓 𝑥 ≤ 0.2 ; 0 𝐸𝑙𝑠𝑒 

And the homogeneous Dirichlet inflow boundary condition which is given as u (0, t) =1 

1. Courant Number: 

C= 
|𝑎|∆𝑡

∆𝑥
 = 0.75 

2. Crank-Nicholson scheme in time and the Galerkin formulation in space 

𝑢𝑛+1−𝑢𝑛

∆𝑡
  + 

1

2
 (𝒂 . 𝛁)(𝑢𝑛+1 − 𝑢𝑛)= −𝒂 ∗ 𝛁𝑢𝑛 (CN Scheme) 

Weighted Residual and Galerkin Formulation:-  

(w,  
∆𝑢𝑛

∆𝑡
 ) + (w, 

1

2
 (𝒂 . 𝛁)∆𝑢𝑛) =  −(𝑤 , 𝒂 . 𝛁𝑢𝑛  ) 

The given 1D problem considers the convection at unit speed of discontinuous initial data. The 

discontinuity occurs over one element and is initially located at position x = 0.2 of the 

computational domain (0, 1). The given inlet condition is imposed. A mesh of uniform linear 

elements of size h=0.02 is employed.  The results at time t = 0.6 are displayed in Figure 1 

together with the exact solution. They were obtained (for a Courant number C = 0.75) by 

combining the Crank—Nicolson scheme (with linear elements) and the Galerkin formulation, 

It can be observed that the Crank—Nicolson Scheme with Galerkin formulation induces 

spurious oscillations over the whole computational domain. Since Crank—Nicolson is not a 

monotone scheme, residual oscillations remain at the front.  
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Figure 1: Propagation of a steep front using the Crank—Nicolson scheme with the Galerkin 

Method at C =0.75. The graphs show the computed solutions at time t = 0.60, together with 

the exact solution.  

3.  Crank-Nicholson scheme in time and the least-squares formulation in 

space 

 Crank-Nicholson scheme in time: 

𝑢𝑛+1−𝑢𝑛

∆𝑡
  + 

1

2
 (𝒂 . 𝛁)(𝑢𝑛+1 − 𝑢𝑛)= −𝒂 ∗ 𝛁𝑢𝑛 

This equation can be viewed as a spatial strong form that must be solved at each time step, 

namely 𝐿(∆𝑢) − 𝑓 = 0. Where L= 
1

∆𝑡
+

1

2
 (𝒂 . 𝛁) is the spatial differential operator and f = 

−𝒂 ∗ 𝛁𝑢𝑛. Minimization of the least-squares functional, (𝐿(∆𝑢) − 𝑓, 𝐿(∆𝑢) − 𝑓), produces 

the least square equation (𝐿(𝑤), 𝐿(∆𝑢) − 𝑓)= 0 which takes the following explicit form.  

(
𝑤

∆𝑡
+

1

2
 (𝒂 . 𝛁𝐰),

∆𝒖

∆𝒕
+

1

2
 (𝒂 . 𝛁∆𝐮)) = (

𝑤

∆𝑡
+

1

2
 (𝒂 . 𝛁𝐰), −𝒂 ∗ 𝛁𝑢𝑛) 

 

The results at time t = 0.6 are displayed in Figure 2 together with the exact solution. They were 

obtained (for a Courant number C = 0.75) by combining the Crank—Nicolson scheme (with 

linear elements) and the least-squares formulation of Carey and Jiang. It is observed that 

Crank—Nicolson with least-squares succeeds in removing the spurious oscillations induced by 

the Galerkin formulation over the whole computational domain. 
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Figure 2: Propagation of a steep front using the Crank—Nicolson scheme with the least-

squares method. The Courant number is C = 0.75. The graphs show the computed solutions at 

time t = 0.60, together with the exact solution. 

 

4. Second-order Lax-Wendroff method 
 

 

TG2 Scheme:-  

 
𝑢𝑛+1−𝑢𝑛

∆𝑡
  =𝑢𝑡

𝑛 +
∆𝑡

2
𝑢𝑡𝑡

𝑛 + 𝑜(∆𝑡2);  

After simplification:-  

 
𝑢𝑛+1−𝑢𝑛

∆𝑡
 = −(𝒂. 𝛁)𝑢𝑛+ 

∆𝑡

2
 (𝒂. 𝛁)2𝑢𝑛 

Galerkin Formulation:-  

The Galerkin formulation of the given 1D problem for this scheme becomes: 

(w, 
∆𝑢

∆𝑡
 ) = (𝑎𝑤𝑥 , 𝑢𝑛 − 

∆𝑡

2
 𝒂. 𝛁 𝑢𝑛 )  

The results at time t = 0.6 are displayed in Figure 3 together with the exact solution. They were 

obtained (for a Courant number C = 0.75). As C=0.75, so the exact solution can’t be expected 

and the method is unstable for C=0.75. The Lax-Wendroff scheme with consistent mass 

representation (TG2) cannot be operated with C2 > 1/3, Moreover, it shows a phase lead at C= 

1/2. To obtain good results we need to reduce the number of time steps so that the courant 

number will fall in the stability range of the TG2 scheme. The improved solutions obtained 

using the TG2 scheme is shown for C=0.3 is shown in the Figure 4.  
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Figure 3: Solutions obtained using the TG2 method for the C= 0.75  

 

Figure 4: Solutions obtained using the TG2 method for the C= 0.3  
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5. TG2-2S 

The two-step versions of the explicit Taylor—Galerkin method TG2 which include first time 

derivatives only and are thus easier to implement than the one-step method TG2.  

Scheme:  

𝑢𝑛+1/2 =  𝑢𝑛 + 
∆𝑡

2
 𝑢𝑡

𝑛  

𝑢𝑛+1 =  𝑢𝑛 + ∆𝑡 𝑢𝑛+1/2  

Galerkin Formulation for the given problem:-  

 

〈𝑤,
𝑢𝑛+1/2−𝑢𝑛

∆𝑡
〉 = −

1

2
 〈w,𝑎𝑢𝑥

𝑛 〉  

 

〈𝑤,
𝑢𝑛+1−𝑢𝑛

∆𝑡
〉 = −〈𝑤, 𝑎𝑢𝑥

𝑛+1/2 〉  

 

This scheme is unstable at C=0.75. It shows spurious oscillations at C=0.3. This can be depicted 

from the Figure 5 and 6. The solutions can be improved using the Discontinuous Galerkin in 

space and the second-order two-step Lax-Wendroff method in time.  The two-step TG2 method 

integrates in time the semi-discrete equations resulting from the discontinuous Galerkin 

method. 

 
 

 

Figure 5: Solutions obtained using the TG2-2S method for the C= 0.75  
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Figure 6: Solutions obtained using the TG2-2S (C=0.3) 

 

 

CODE:-  

Implementation of Initial Conditions: 

% INITIAL CONDITION FOR THE TRANSIENT ANALYSIS 
% Steep front 
u = zeros(numnp, nstep+1); 
x0 = 0.2; 
for i=1:numnp 
   dist = xnode(i)-x0; 
   if dist <= 0 
      u(i,1) = 1; 
   end 
end 

 

1. Crank-Nicholson scheme in time and linear finite element for the 

Galerkin scheme in space: 

function [A,B,f] = system_CN(xnode,a) 
% [A,B,f] = system_CN(xnode,a) 
% L.h.s (A) and r.h.s (B,f) matrices for the second-order 
% implicit Crank-Nicolson scheme using the consistent mass matrix. 
%  
% xnode: nodal coordinates 
% a :    velocity 
% 

  

  
global dt 
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dt_2 = dt/2; 

  
% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]';  
wpg = [1 1]'; 

  
% Shape functions and its derivatives in the reference element 
N_mef   =  [(1-xipg)/2 (1+xipg)/2];   
Nxi_mef =  [-1/2 1/2; -1/2 1/2]; 

  
% Total number of nodes and elements 
numnp = size(xnode,2);  
numel = numnp-1;  

  
% Number of Gauss points on an element 
ngaus = size(wpg,1); 

  
% Allocate storage 
A = zeros(numnp,numnp); 
B = zeros(numnp,numnp); 
f = zeros(numnp,1); 

  
% MATRICES COMPUTATION 
% Loop on elements 
for i=1:numel 
    unos = ones (ngaus,1); 
    h = xnode(i+1)-xnode(i); 
    xm = (xnode(i)+xnode(i+1))/2; 
    weight = wpg*h/2; 
    isp = [i i+1];  
    % Loop on Gauss points (numerical quadrature) 
    for ig=1:ngaus 
        N = N_mef(ig,:); 
        Nx = Nxi_mef(ig,:)*2/h; 
        w_ig = weight(ig); 
        x = xm + h/2*xipg(ig); % x-coordinate of the current Gauss point 
        % Matrices assembly 
        A(isp,isp) = A(isp,isp) + w_ig*(N'*N - dt_2*(a*Nx)'*N); 
        B(isp,isp) = B(isp,isp) + w_ig*dt*(a*Nx)'*N; 
        f(isp) = f(isp) + w_ig*(N')*SourceTerm(x); 
    end 
end 

2. Crank-Nicholson scheme in time and the least-squares formulation in 

space (CJ): 
 function [A,B,f] = system_CJ (xnode,a) 
% [A,B,f] = system_CJ(xnode,a) 
% L.h.s (A) and r.h.s (B,f) matrices for Carey-Jiang  method 
% Crank-Nicolson method is used for the time-integration whereas  
% spatial discretization is performed using linear finite 
% elements and the least-squares formulation. 
%    xnode: nodal coordinates 
%    a :    convection velocity 
% 

  
global dt 

  
dt_2 = dt/2; 
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% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]';  
wpg = [1 1]'; 

  
% Shape functions on the reference element 
N_mef   =  [(1-xipg)/2 (1+xipg)/2];   
Nxi_mef =  [-1/2 1/2; -1/2 1/2]; 

  
% Total number of nodes and elements 
numnp = size(xnode,2);  
numel = numnp-1;  

  
% Number of Gauss points in each element 
ngaus = size(wpg,1); 

  
% Allocate storage 
A = zeros(numnp,numnp); 
B = zeros(numnp,numnp); 
f = zeros(numnp,1); 

  
% MATRICES COMPUTATION 
% Loop on elements 
for i=1:numel 
    unos = ones (ngaus,1); 
    h = xnode(i+1)-xnode(i); 
    xm = (xnode(i)+xnode(i+1))/2; 
    weight = wpg*h/2; 
    isp = [i i+1];  
    % Loop on Gauss points (numerical quadrature) 
    for ig=1:ngaus 
        N = N_mef(ig,:); 
        Nx = Nxi_mef(ig,:)*2/h; 
        w_ig = weight(ig); 
        x = xm + h/2*xipg(ig); % x-coordinate of Gauss point 
        % Matrices assembly 
        A(isp,isp) = A(isp,isp) + w_ig*(N'*N + dt_2*a*(N'*Nx + Nx'*N + 

dt_2*a*Nx'*Nx)); 
        B(isp,isp) = B(isp,isp) - w_ig*dt*a*(N'*Nx + dt_2*a*Nx'*Nx); 
        % In this case there is no source term 
    end 
end 

  

3. TG2(Lax-Wendroff) 
function [A,B,f] = system_LW(xnode,a) 
% [A,B,f] = system_LW(xnode,a) 
% L.h.s (A) and r.h.s (B,f) matrices for the second-order 
% explicit Taylor-Galerkin method (Lax-Wendroff). 
% The spatial discretization is performed using linear finite 
% elements and the Galerkin formulation. 
%    xnode: nodal coordinates 
%    a :    convection velocity 
% 

  
global dt 

  
dt_2 = dt/2; 

  
% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]';  
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wpg = [1 1]'; 

  
% Shape functions on the reference element 
N_mef   =  [(1-xipg)/2 (1+xipg)/2];   
Nxi_mef =  [-1/2 1/2; -1/2 1/2]; 

  
% Total number of nodes and elements 
numnp = size(xnode,2);  
numel = numnp-1;  

  
% Number of Gauss points in each element 
ngaus = size(wpg,1); 

  
% Allocate storage 
A = zeros(numnp,numnp); 
B = zeros(numnp,numnp); 
f = zeros(numnp,1); 

  
% MATRICES COMPUTATION 
% Loop on elements 
for i=1:numel 
    unos = ones (ngaus,1); 
    h = xnode(i+1)-xnode(i); 
    xm = (xnode(i)+xnode(i+1))/2; 
    weight = wpg*h/2; 
    isp = [i i+1];  
    % Loop on Gauss points (numerical quadrature) 
    for ig=1:ngaus 
        N = N_mef(ig,:); 
        Nx = Nxi_mef(ig,:)*2/h; 
        w_ig = weight(ig); 
        x = xm + h/2*xipg(ig); % x-coordinate of Gauss point 
        % Matrices assembly 
        A(isp,isp) = A(isp,isp) + w_ig*N'*N; 
        B(isp,isp) = B(isp,isp) + w_ig*dt*(a*Nx)'*(N-dt_2*a*Nx); 
        f(isp) = f(isp) + dt*w_ig*(dt_2*a*Nx + N)'*SourceTerm(x); 
    end 
end 

 

4. TG2-2S:  

function [A1,B1,f1,A2,B2,f2,C2] = system_TG22S (xnode,a) 
% [A1,B1,f1,A2,B2,f2,C2] = system_TG32S(xnode,a) TWO STEP 
% The spatial discretization is performed using linear finite 
% elements and the Galerkin formulation. 
% xnode: nodal coordinates 
% a : convection velocity 
% 
global dt 
%alpha=1/9; %%%ALPHA= 1/9 (TG3); ALPHA 1/12 ( TG4) 
%dt_2 = dt*dt/2; 
%dt2_alpha = dt^2*alpha; %%%%%%%%%%%%% ALPHA 
%% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]'; 
wpg = [1 1]'; 
% Shape functions on the reference element 
N_mef = [(1-xipg)/2 (1+xipg)/2]; 
Nxi_mef = [-1/2 1/2; -1/2 1/2]; 
% Total number of nodes and elements 
numnp = size(xnode,2); 
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numel = numnp-1; 
% Number of Gauss points in each element 
ngaus = size(wpg,1); 
% Allocate storage 
A1 = zeros(numnp,numnp); 
B1 = zeros(numnp,numnp); 
f1 = zeros(numnp,1); 
A2 = zeros(numnp,numnp); 
B2 = zeros(numnp,numnp); 
f2 = zeros(numnp,1); 
C2 = zeros(numnp,numnp); 
% MATRICES COMPUTATION 
% Loop on the elements 
for i=1:numel 
unos = ones (ngaus,1); 
h = xnode(i+1)-xnode(i); 
xm = (xnode(i)+xnode(i+1))/2; 
weight = wpg*h/2; 
isp = [i i+1]; 
% Loop on Gauss points (numerical quadrature) 
for ig = 1:ngaus 
N = N_mef(ig,:); 
Nx = Nxi_mef(ig,:)*2/h; 
w_ig = weight(ig); 
x = xm + h/2*xipg(ig); % x-coordinate of Gauss point 
% Matrices assembly 
A1(isp,isp) = A1(isp,isp) + w_ig*(N'*N); 
B1(isp,isp) = B1(isp,isp) - w_ig*((dt/2*N'*(a*Nx))); 
f1(isp) = f1(isp) + w_ig*(N')*SourceTerm(x); 
A2(isp,isp) = A2(isp,isp) + w_ig*(N'*N); 
B2(isp,isp) = B2(isp,isp); 
f2(isp) = f2(isp) + w_ig*(N')*SourceTerm(x); 
C2(isp,isp) = C2(isp,isp) - w_ig*(dt*N'*(a*Nx)); 
end 
end 

 

STEPS TO WRITE THE ENTIRE MATRIX:-  

 
% Entire matrix (including boundary condition); 
%Atot = [A Accd';Accd 0]; 
%[L,U] = lu(Atot); 
if meth == 8% 2-step method 
A1tot = [A1 Accd';Accd zeros(2)]; 
[L1,U1] = lu(A1tot); 
A2tot = [A2 Accd';Accd zeros(2)]; 
[L2,U2] = lu(A2tot); 
else 
Atot = [A Accd';Accd zeros(2)]; 
[L,U] = lu(Atot); 
end 

 

SOLUTION STEPS:-  

% SOLUTION AT EACH TIME STEP  
for n = 1:nstep 
if meth == 8 % 2-step method 
btot = [B1*u(:,n)+ f1; bccd]; 
aux = U1\(L1\btot); 
u_m = u(:,n) + aux(1:numnp); 
btot = [C2*u_m + f2; bccd]; 
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aux = U2\(L2\btot); 
u(:,n+1) = u(:,n) + aux(1:numnp); 
else 
btot = [B*u(:,n)+f; bccd]; 
aux = U\(L\btot); 
u(:,n+1) = u(:,n) + aux(1:numnp); 
end 
end 

 

 

                ---- END---- 


