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1. INTRODUCTION 

1.1 Pure transport equation 

𝑢𝑡 + (𝒂 •▽ 𝑢) = 𝑠           𝑖𝑛 𝛺 × [0, 𝑇]      

𝑢(𝒙, 0) = 𝑢0(𝒙)               𝑜𝑛 𝛺 𝑎𝑡 𝑡 = 0    

𝑢 = 𝑢𝐷                               𝑜𝑛  𝛤𝐷
𝑖𝑛 × [0, 𝑇] 

−𝒂𝑢 • 𝒏 = ℎ                     𝑜𝑛  𝛤𝐷
𝑖𝑛 × [0, 𝑇] 

𝛤𝑖𝑛 = {𝑥𝛤|𝒂 • 𝒏 < 𝟎}  

       In the examples: 

 Zero source term 

 Dirichlet boundary conditions on the inflow boundary 

 

1.2 method 

1.2.1 θ-method 

△ 𝑢

△ 𝑡
+ 𝜃(𝒂 •▽ 𝑢) △ 𝑢 = 𝜃𝑠𝑛+1 + (1 − 𝜃)𝑠𝑛 − 𝑎 •▽ 𝑢𝑛  

Crank-Nicolson: 𝜃 = 1/2 

1.2.2 Lax-Wendroff 

△ 𝑢

△ 𝑡
= −𝒂 •▽ 𝑢𝑛 +

△ 𝑡

2
(𝒂 •▽)2𝑢𝑛 + 𝑠𝑛 +

△ 𝑡

2
(𝑠𝑡

𝑛 − 𝒂 •▽ 𝑠𝑛)  

1.2.3 Third order Taylor-Galerkin 

[1 −
△ 𝑡2

6
(𝒂 •▽)2]

△ 𝑢

△ 𝑡

= −𝒂 •▽ 𝑢𝑛 +
△ 𝑡

2
(𝒂 •▽)2𝑢𝑛 + 𝑠𝑛 +

△ 𝑡

2
(𝑠𝑡

𝑛 − 𝒂 •▽ 𝑠𝑛)

+
△ 𝑡2

6
(𝑠𝑡𝑡

𝑛 − 𝒂 •▽ 𝑠𝑡
𝑛)  

 

2. OBJECTIVE 

2.1 Solve the following exercise. 

{

𝑢𝑡 + 𝑎𝑢𝑥 = 0          𝑥 ∈ (0,1), 𝑡 ∈ (0,0.6]

𝑢(𝒙, 0) = 𝑢0(𝒙)     𝑥 ∈ (0,1)                       

𝑢(0, 𝑡) = 1              𝑥 ∈ (0,0.6]                    

 

 

𝑢0(𝒙) = {
1  𝑖𝑓 𝑥 ≤ 0.2,
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑎 = 1,△ 𝑥 = 2 · 10−2,△ 𝑡 = 1.5 · 10−2 

 

2.2 Compute the courant number. 

2.3 Solve the problem using the Crank-Nicholson scheme in time and linear 



finite element for the Galerkin scheme in space. Discussing the solution 

accurate. 

2.4 Solve the problem using the second-order Lax-Wendroff method. 

Discussing whether the solution is accurate or not. Change it and comment 

the results. 

2.5 Solve the problem using the third-order explicit Taylor Galerkin method. 

Comment the result. 

 

3. METHODOLOGY AND RESULTS 

3.1 The courant number C = |a|Δt/h, where a is convection coefficient, Δt is 

length of time steps and h is the length of space. For the case, the number 

of time steps is 40, due to 0.6/(1.5 · 10−2). And courant number can be 

calculated as 0.75.  

3.2 From the result, we can find the neither the consistent matrix or the lumped 

one can get the accurate solution. The oscillation due to the Galerkin 

formulation and Crank Nicolson is not such a monotone scheme. Using 

nonlinear viscosity added in front improve the scheme locally in first order 

accurate. 

 
              Figure 1. Crank Nicolson Consistent Matrix at t=0.6s         Figure 2. Crank Nicolson Lumped Matrix at t=0.6s 

  

3.3 Since the Courant number is large than the stability range of Lax-Wendroff, 

we can not expect the solution to be accurate. To get a better solution, we 

can lumpe mass matrix on Lax-Wendroff. This method can increase the 

stability range of Lax-Wendroff(TG2). 

 



 
                Figure 3. Lax-Wendroff Consistent Matrix at t=0.6s          Figure 4. Lax-Wendroff Lumped Matrix at t=0.6s                        

 

To get the lumped mass matrix, we should prepare a diagonal matrix with the 

diagonal terms which are the sum of its rows’ component. 

 

 
Add codes in main function to implement the Matrixlumped function. 

 
3.4  The third-order explicit Taylor-Galerkin method shows smoothly and gets 

better accuracy than Lax-Wendroff with lumped matrix. Due to the 

Galerkin formulation, the steep functions cannot be shaped. Compared 

with TG2, this method blur and reduce the oscillation range. 

 
              Figure 5. TG3 Consistent Matrix at t=0.6s 

                             

4. Conclusion 

Crank-Nicholson method cannot keep stability in this case whether it is 

consistent matrix or lumped matrix. For Lax Lax-Wendroff(TG2), the stability 

range is C ≤ √1/3. We can add the lumped mass matrix and obtain the stability 

solution. It is meant that stability range increase when using a lumped mass 

matrix representation. It is obviously that when keeping C in the stability range, 

results are more accurate if the consistent mass matrix representation is used. 
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