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1 Unsteady convective transport models

Considering the one dimensional transient convection equation:

ut + aux = 0 on x ∈ Ω = (0, 3) and t ∈ (0, tEnd) (1)

with Dirichlet Boundary conditions u(t, 0) = u(t, 3) = 0 ∀t and Initial condition u(0, x) = 1+cos(π(x−x0)/σ)
2 if

|x− x0| ≤ σ and u(0, x) = 0 otherwise.

Where the parameter values are a = 1 and σ = 0.12.

1.1 Time discretization

At each method we will consider a different time discretization schemes. As notation we will use un =

u(tn, x) = u(n ·∆t, x) and ∆un = un+1 − un.

• Crank-Nicholson: For the Crank-Nicholson method we will consider the following scheme

∆un

∆t
+
a∆unx

2
= −aunx (2)

Weak form: Consider ω ∈ H1(Ω) such that ω(0) = ω(3) = 0

1

∆t

∫
Ω

ω∆undΩ +
a

2

∫
Ω

ω∆unxdΩ = −a
∫

Ω

ωunxdΩ (3)

• Lax-Wendroff: For the Lax-Wendroff method we will consider the following scheme

∆un

∆t
= −aunx +

∆t

2
a2unxx (4)

Weak form: Consider ω ∈ H1(Ω) such that ω(0) = ω(3) = 0

1

∆t

∫
Ω

ω
∆un

∆t
dΩ = −a

∫
Ω

ωunxdΩ +
∆t

2
a2

∫
Ω

ωunxxdΩ (5)
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Integrating by parts the last term in on the RHS we get eq. 6 since we had imposed ω(0) = ω(3) = 0.

1

∆t

∫
Ω

ω
∆un

∆t
dΩ = −a

∫
Ω

ωunxdΩ− ∆t

2
a2

∫
Ω

ωxu
n
xdΩ (6)

• Third order Taylor-Galerkin: For the Third order Taylor-Galerkin method we will consider the

following scheme
∆un

∆t
− ∆t

6
∆a2unxx = −aunx +

∆t

2
a2unxx (7)

Weak form: Consider ω ∈ H1(Ω) such that ω(0) = ω(3) = 0

1

∆t

∫
Ω

ω∆undΩ− ∆t

6
a2

∫
Ω

ω∆unxxdΩ = −a
∫

Ω

ωunxdΩ +
∆t

2
a2

∫
Ω

ωunxxdΩ (8)

Integrating by parts the last term in on the RHS and the last one on the LHS we get eq. 9 since we

had imposed ω(0) = ω(3) = 0.

1

∆t

∫
Ω

ω∆undΩ +
∆t

6
a2

∫
Ω

ωx∆unxdΩ = −a
∫

Ω

ωunxdΩ− ∆t

2
a2

∫
Ω

ωxu
n
xdΩ (9)

1.2 Space discretization

Now we consider a FEM discretization in space u(x, t) =
∑nNodes

i=1 uj(t)Nj(x) where the nodal values deppend

on the time and the basis functions of {H1(Ω) ∩ {u(0) = u(3) = 0}} deppend on the space. Considering

ω = Ni(x) and substituting in every weak form we have:

• Crank-Nicholson:

ACN∆un = BCNun ⇒
[

1

∆t
M +

a

2
C

]
∆un = [−aC] un (10)

• Lax-Wendroff:

ALW∆un = BLWun ⇒
[

1

∆t
M

]
∆un =

[
−aC − ∆t

2
a2K

]
un (11)

• Third order Taylor-Galerkin:

ATG3∆un = BTG3u
n ⇒

[
1

∆t
M +

∆t

6
a2K

]
∆un =

[
−aC − ∆t

2
a2K

]
un (12)

where Mij =
∫

Ω
NiNjdΩ, Kij =

∫
Ω
NxiNxjdΩ and Cij =

∫
Ω
NiNxjdΩ

1.3 Courant Number and results

We know the stability conditions of our methods are
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CN LW TG3

Type of method Implicit Explicit Explicit

Order of accuracy 2nd 2nd 3rd

Stability condition Unconditional Cu2 ≤ 1/3 Cu ≤ 1

Table 1: Stability conditions for the 3 methods.

Where Cu represents the Courant number that is Cu = |a|∆t/∆x.

Figure 1: Results for different times, Cu = 0.5, 0.6, 1.2 and the 3 methods.

As we can see in Figure 1, changing the number of time steps and as a consequence ∆t, we can see different

behaviours. For Cu = 0.5 ⇒ Cu2 = 0.25 ≤ 1/3, the 3 methods are stable and we can see a more accurate

solution for the 3rd order one (TG3). For Cu = 0.6 ⇒ Cu2 = 0.36 ∈ [1/3, 1], the Law-Wendroff method is

unstable and the other ones are not. Finally, for Cu = 1.2⇒ Cu2 = 1.44 > 1 the third order Taylor-Galerkin

method is also unstable but the Crank-Nicholson is not. So we confirm the stability conditions from table

??.
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2 Compressible flows

We consider the Burgers’ perturbed equations

ut + uux = εuxx (13)

u(x, 0) = u0(x) (14)

So the weak form is: Consider ω ∈ {H1(Ω) ∩ ω(x) = 0,∀x ∈ δΩ}∫
Ω

ωutdΩ +

∫
Ω

ωuuxdΩ = ε

∫
Ω

ωuxxdΩ (15)

Integrating by parts the RHS (taking into account that ω(x) = 0,∀x ∈ δΩ),∫
Ω

ωuxxdΩ = −
∫

Ω

ωxuxdΩ +

∫
δΩ

ωux · nd(δΩ) = −
∫

Ω

ωxuxdΩ (16)

We end with the expression: ∫
Ω

ωutdΩ +

∫
Ω

ωuuxdΩ + ε

∫
Ω

ωxuxdΩ (17)

Considering now a FEM discretization of the space u(x, t) ≈ uh(x, t) =
∑nNodes

j=1 uj(t)Nj(x), and we can

consider ω = Ni(x) for i = 1, ..., nNodes. Applying it to the weak form (eq. 17), we end with the non-linear

system of ODE’s

MU̇ + C(U)U + εKU = 0 (18)

where Mij =
∫

Ω
Ni(x)Nj(x)dΩ, Kij =

∫
Ω

(Ni)x(Nj)xdΩ and (C(U))ij =
∫

Ω
Ni(
∑
k UkNk)(Nj)x.

If we apply a Backward-Euler scheme to the time derivative we have:

M
Un+1 −Un

∆t
+ C(Un+1)Un+1 + εKUn+1 = 0⇒ (M + ∆t(C(Un+1) + εK))Un+1 = MUn (19)

that is a non-linear system.

To solve this system we will use two methods: Picard Method and Newton-Raphson method.

2.1 Picard method

At each time step we have to solve A(Un+1)Un+1 = (M + ∆t(C(Un+1) + εK))Un+1 = MUn

Our method will follow the scheme:

• Initial value: 0Un+1 = Un.

• Until ||k+1Un+1 −k Un+1|| > tol: k+1Un+1 = A−1(kUn+1)(MUn)
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2.2 Newton-Raphson method

At each time step we have to solve f(Un+1) = 0 with f(U) = (M + ∆t(C(U) + εK))U−MUn

Our method will follow the scheme:

• Initial value: 0Un+1 = Un.

• Until ||∆k+1Un+1|| > tol:

∆k+1Un+1 = −J−1(kUn+1)f(kUn+1) (20)

k+1Un+1 =k Un+1 + ∆k+1Un+1 (21)

where J = df
U = (M + ∆t(C(U) + εK)) + dC

U U.

So we have to define dC
U = C ′, where C ′ijk(U) =

dCij

Uk
(U) =

∫
Ω
NiNk(Nj)x that is independent of U.

Thus dC
U U =

∑nNodes

k C ′ijkUk.

I can not plot the results of the Newton-Raphson method, since I do not know how to compute C ′.

5


