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1 Unsteady convective transport models

Considering the one dimensional transient convection equation:
ur+auy =0onz € Q=1(0,3) and ¢t € (0,tmnq) (1)

with Dirichlet Boundary conditions u(¢,0) = u(¢,3) = 0 V¢ and Initial condition u(0,z) = w if
|z — zg| < o and u(0,z) = 0 otherwise.

Where the parameter values are a = 1 and o = 0.12.

1.1 Time discretization
At each method we will consider a different time discretization schemes. As notation we will use u" =

u(t™,z) = u(n - At,x) and Au" =y —yn.

e Crank-Nicholson: For the Crank-Nicholson method we will consider the following scheme

Au™ n alAul
At 2

~ —au (2)

Weak form: Consider w € H*() such that w(0) = w(3) =0

1
= / AudQ+ 2 / wAUAQ = —a / wuldS (3)
At Jo 2 Ja Q
e Lax-Wendroff: For the Lax-Wendroff method we will consider the following scheme
Au™ n At 5
A T s + 5 0 Uy (4)

Weak form: Consider w € H'(2) such that w(0) = w(3) =0

i Au™
Al Jo AL

dQ = —a/ wurdQ + gOLQ/ wul, dQ (5)
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Integrating by parts the last term in on the RHS we get eq. 6 since we had imposed w(0) = w(3) = 0.

i Au"
At Jo " A

Q) = —a/ wuydQ — g(12/ Wyt d§) (6)
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e Third order Taylor-Galerkin: For the Third order Taylor-Galerkin method we will consider the

following scheme

Au™ At At
_=ZA 2, n - _ n =Y 2 n
s g AaTuz, au + 5 @ Ui (7)
Weak form: Consider w € H'(2) such that w(0) = w(3) =0
1 At At
—/ wAu"dQ — —aQ/ wAuy, dQ = —a/ wuldf) + —aQ/ wul dS) (8)
At Jg 6 Jao Q 2 Ja

Integrating by parts the last term in on the RHS and the last one on the LHS we get eq. 9 since we
had imposed w(0) = w(3) = 0.

1 At At
— | wAu"dQ + —az/ wyAuldQ = —a/ wuydQ — —aZ/ Wty d§) (9)
At Jo 6 Jo o 2 Ja

1.2 Space discretization

Now we consider a FEM discretization in space u(z,t) = > ;7" u;(t)N;(z) where the nodal values deppend

on the time and the basis functions of {H'(Q) N {u(0) = u(3) = 0}} deppend on the space. Considering

w = N;(x) and substituting in every weak form we have:

e Crank-Nicholson:

1
AcyAu™ = Boyu® = {AtM + ;C} Au” = [-aC]u” (10)
e Lax-Wendroff:
n n 1 n At 2 n

ArwAu" = Bpyu® = KtM Au” = |—aC — ?a Klu (11)

e Third order Taylor-Galerkin:

1 At At

ArasAu® = Brgsu™ = {AtM + 6a2K] Au" = {aC — 2aQK] u” (12)

where Mij = fQ NZN]dQ, Kij = fQ NIZNIJdQ and Cij = fQ NZNdeQ

1.3 Courant Number and results

We know the stability conditions of our methods are



CN LW TG3

Type of method Implicit Explicit Explicit

Order of accuracy 2nd 2nd 3rd

Stability condition | Unconditional | Cu? <1 /3] Cu<l

Table 1: Stability conditions for the 3 methods.

Where Cu represents the Courant number that is Cu = |a|At/Awx.

t=1.5,Cu=0.5 t=15,Cu=0.5 t=1.5,Cu=0.5

=15, Cu= 0.6 1=0.735, Cu = 0.6 t=1.5, Cu=0.6

Exact solution -Exact solution

—CN-LMM-+G solution 1t|=—LW+G solution

-Exact solution
—LW-+G solution

[l

As we can see in Figure 1, changing the number of time steps and as a consequence At, we can see different

Exact solutlon
TGS solution

Figure 1: Results for different times, Cu = 0.5,0.6,1.2 and the 3 methods.

behaviours. For Cu = 0.5 = Cu? = 0.25 < 1/3, the 3 methods are stable and we can see a more accurate
solution for the 3rd order one (TG3). For Cu = 0.6 = Cu? = 0.36 € [1/3,1], the Law-Wendroff method is
unstable and the other ones are not. Finally, for Cu = 1.2 = Cu? = 1.44 > 1 the third order Taylor-Galerkin

method is also unstable but the Crank-Nicholson is not. So we confirm the stability conditions from table

77.



2 Compressible flows
We consider the Burgers’ perturbed equations

Up + Uy = EUgy (13)

u(z,0) = uo(x) (14)

So the weak form is: Consider w € {H*(Q) Nw(x) = 0,Vz € §Q}

/ wudS) + / WU, dS) = e/ Wtz dS) (15)
Q Q Q
Integrating by parts the RHS (taking into account that w(z) = 0,Vx € 6Q),
/wumdQ = 7/ wmuxdﬂ+/ Wi, - nd(0Q) = 7/ We Uz dS) (16)
Q Q 50 Q
We end with the expression:
/ wudS) + / WU, dQ + e/ Wyl dQ) (17)
Q Q Q
Considering now a FEM discretization of the space u(z,t) ~ u”(z,t) = ng;d u;(t)N;(z), and we can

consider w = N;(z) for i = 1,...,nNodes- Applying it to the weak form (eq. 17), we end with the non-linear

system of ODE’s

MU + C(U)U + ¢KU = 0 (18)
where M;; = [, N; x)dQ, Kij = [o(N, )2dS and ( = [o Ni(3>-, UpNi) ().
If we apply a Backward-Euler scheme to the time derivative we have:
Un+1 . gL
M—————+ C(U™HU £ KU = 0= (M + At(C(U™™) + K))U™ T = MU™ (19)

that is a non-linear system.

To solve this system we will use two methods: Picard Method and Newton-Raphson method.

2.1 Picard method

At each time step we have to solve A(U"T1)U"T = (M + At(C(U"1) + K))U" ! = MU"

Our method will follow the scheme:
e Initial value: 2U™*+! = U™,

e Until Hk+1Un+1 _k Un+1|| > tol: k+1Un+1 — Afl(kUn+1)(MUn)



2.2 Newton-Raphson method

At each time step we have to solve f(U"*!) = 0 with f(U) = (M + At(C(U) + ¢K))U — MU"

Our method will follow the scheme:
e Initial value: ‘U1 = U".

e Until [|AFIU™ | > tol:

Ak+1Un+1 — _J*l(kUn*‘rl)f(kUn*‘rl) (20)

k+lUn+1 :kt UTI,+1 + Ak+1Un+1 (21)

where J = &£ = (M + At(C(U) + €K)) + S U.

So we have to define & = C’, where C}(U)

Thus $FU = Y2V C Uy,

(3

%(U) = [ NiN(N;), that is independent of U.

I can not plot the results of the Newton-Raphson method, since I do not know how to compute C”.



